1
|
Xu J, Chen Y, Mou X, Huang Y, Ma S, Zhang L, Zhang Y, Long Q, Ali MK, Xie J. Mycobacterium smegmatis msmeg_3314 is involved in pyrazinamide and fluoroquinolones susceptibility via NAD +/NADH dysregulation. Future Microbiol 2020; 15:413-426. [PMID: 32250176 DOI: 10.2217/fmb-2019-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To identify and characterize new mycobacterium pyrazinamide (PZA) resistance genes in addition to pncA, rpsA and panD. Materials & methods: To screen a Tn7 M. smegmatis mc2155 transposon library using 50 μM PZA and a PZA hypersensitive mutant (M492) was obtained. MIC was further used to confirm the hypersensitivity of M492 mutant by culturing the mutant in Middlebrook 7H9 liquid medium at 37°C. Results: msmeg_3314 is the gene underlying the hypersensitive phenotype of mutant M492. The observed resistance to PZA and fluoroquinolones involved the alteration of Mycobacterium cell wall permeability and the dissipation of the proton motive force. NAD+/NADH dysregulation and attenuated glyoxylate shunt might underlie the declined scavenging capacity of reactive oxygen species in the msmeg_3314-deficient mutants. Conclusion: msmeg_ 3314 is a novel gene involved in pyrazinamide resistance and might be a new candidate for drugs target.
Collapse
Affiliation(s)
- Junqi Xu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Chen
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital), Dadong District, Shenyang City, Liaoning 110044, China
| | - Xi Mou
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Shuang Ma
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Liyuan Zhang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yuan Zhang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Quanxin Long
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.,The Second Affiliated Hospital & the Key Laboratory of Molecular Biology of Infectious Diseases of The Ministry of Education, Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Md Kaisar Ali
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of The Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
2
|
Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil. Appl Environ Microbiol 2017; 83:AEM.01244-17. [PMID: 28778889 DOI: 10.1128/aem.01244-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/26/2017] [Indexed: 01/16/2023] Open
Abstract
The symbiosis of the highly metal-resistant Sinorhizobium meliloti CCNWSX0020 and Medicago lupulina has been considered an efficient tool for bioremediation of heavy metal-polluted soils. However, the metal resistance mechanisms of S. meliloti CCNWSX00200 have not been elucidated in detail. Here we employed a comparative transcriptome approach to analyze the defense mechanisms of S. meliloti CCNWSX00200 against Cu or Zn exposure. Six highly upregulated transcripts involved in Cu and Zn resistance were identified through deletion mutagenesis, including genes encoding a multicopper oxidase (CueO), an outer membrane protein (Omp), sulfite oxidoreductases (YedYZ), and three hypothetical proteins (a CusA-like protein, a FixH-like protein, and an unknown protein), and the corresponding mutant strains showed various degrees of sensitivity to multiple metals. The Cu-sensitive mutant (ΔcueO) and three mutants that were both Cu and Zn sensitive (ΔyedYZ, ΔcusA-like, and ΔfixH-like) were selected for further study of the effects of these metal resistance determinants on bioremediation. The results showed that inoculation with the ΔcueO mutant severely inhibited infection establishment and nodulation of M. lupulina under Cu stress, while inoculation with the ΔyedYZ and ΔfixH-like mutants decreased just the early infection frequency and nodulation under Cu and Zn stresses. In contrast, inoculation with the ΔcusA-like mutant almost led to loss of the symbiotic capacity of M. lupulina to even grow in uncontaminated soil. Moreover, the antioxidant enzyme activity and metal accumulation in roots of M. lupulina inoculated with all mutants were lower than those with the wild-type strain. These results suggest that heavy metal resistance determinants may promote bioremediation by directly or indirectly influencing formation of the rhizobium-legume symbiosis.IMPORTANCE Rhizobium-legume symbiosis has been promoted as an appropriate tool for bioremediation of heavy metal-contaminated soils. Considering the plant-growth-promoting traits and survival advantage of metal-resistant rhizobia in contaminated environments, more heavy metal-resistant rhizobia and genetically manipulated strains were investigated. In view of the genetic diversity of metal resistance determinants in rhizobia, their effects on phytoremediation by the rhizobium-legume symbiosis must be different and depend on their specific assigned functions. Our work provides a better understanding of the mechanism of heavy metal resistance determinants involved in the rhizobium-legume symbiosis, and in further studies, genetically modified rhizobia harboring effective heavy metal resistance determinants may be engineered for the practical application of rhizobium-legume symbiosis for bioremediation in metal-contaminated soils.
Collapse
|