Boucenna S, Cohen D, Meltzoff AN, Gaussier P, Chetouani M. Robots Learn to Recognize Individuals from Imitative Encounters with People and Avatars.
Sci Rep 2016;
6:19908. [PMID:
26844862 PMCID:
PMC4741103 DOI:
10.1038/srep19908]
[Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022] Open
Abstract
Prior to language, human infants are prolific imitators. Developmental science grounds infant imitation in the neural coding of actions, and highlights the use of imitation for learning from and about people. Here, we used computational modeling and a robot implementation to explore the functional value of action imitation. We report 3 experiments using a mutual imitation task between robots, adults, typically developing children, and children with Autism Spectrum Disorder. We show that a particular learning architecture - specifically one combining artificial neural nets for (i) extraction of visual features, (ii) the robot’s motor internal state, (iii) posture recognition, and (iv) novelty detection - is able to learn from an interactive experience involving mutual imitation. This mutual imitation experience allowed the robot to recognize the interactive agent in a subsequent encounter. These experiments using robots as tools for modeling human cognitive development, based on developmental theory, confirm the promise of developmental robotics. Additionally, findings illustrate how person recognition may emerge through imitative experience, intercorporeal mapping, and statistical learning.
Collapse