1
|
Englisch A, Hayn C, Jung S, Heitmann JS, Hackenbruch C, Maringer Y, Nelde A, Wacker M, Denk M, Zieschang L, Kammer C, Martus P, Salih HR, Walz JS. iVAC-XS15-CLL01: personalized multi-peptide vaccination in combination with the TLR1/2 ligand XS15 in CLL patients undergoing BTK-inhibitor-based regimens. Front Oncol 2024; 14:1441625. [PMID: 39252947 PMCID: PMC11381404 DOI: 10.3389/fonc.2024.1441625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common form of leukemia among adults in Western countries. Despite the introduction of targeted therapies, including first-line Bruton's tyrosine kinase inhibitor (BTKi) treatment, CLL remains largely incurable. Frequent disease relapses occur due to remaining treatment-resistant CLL cells, calling for novel therapies to eliminate minimal residual disease (MRD). Peptide-based vaccination targeting human leucocyte antigen (HLA)-presented CLL-associated antigens represents a promising, low-side-effect therapeutic option to optimize treatment responses and eliminate residual tumor cells by inducing an anti-leukemic immune response. The iVAC-XS15-CLL01 trial is an open-label, first-in-human (FIH) Phase I trial, evaluating the CLL-VAC-XS15 vaccine in CLL patients undergoing BTKi-based therapy. The vaccine was developed from HLA-presented CLL-associated antigen peptides, identified through comparative mass-spectrometry-based immunopeptidome analyses of CLL versus healthy samples in a previous study. To facilitate rapid and cost-effective deployment, vaccine peptides are selected for each patient from a pre-manufactured "peptide warehouse" based on the patient's individual HLA allotype and CLL immunopeptidome. The trial enrolls 20 CLL patients, who receive up to three doses of the vaccine, adjuvanted with the toll-like-receptor (TLR) 1/2 ligand XS15 and emulsified in Montanide ISA 51 VG. The primary objective of the iVAC-XS15-CLL01 trial is to assess the safety and immunogenicity of the CLL-VAC-XS15 vaccine. Secondary objectives are to evaluate the vaccine impact on MRD, progression-free survival, and overall survival, as well as comprehensive immunophenotyping to characterize vaccine-induced T-cell responses. This Phase I trial aims to advance CLL treatment by enhancing immune-mediated disease clearance and guiding the design of subsequent Phase II/III trials to implement a new therapeutic strategy for CLL patients.
Collapse
Affiliation(s)
- Alexander Englisch
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tübingen, Tübingen, Germany
| | - Clara Hayn
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
| | - Susanne Jung
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Christopher Hackenbruch
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Marcel Wacker
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Monika Denk
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
| | - Lisa Zieschang
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
| | - Christine Kammer
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University Hospital Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Chatzidavid S, Kontandreopoulou CN, Giannakopoulou N, Diamantopoulos PT, Stafylidis C, Kyrtsonis MC, Dimou M, Panayiotidis P, Viniou NA. The Role of Methylation in Chronic Lymphocytic Leukemia and Its Prognostic and Therapeutic Impacts in the Disease: A Systematic Review. Adv Hematol 2024; 2024:1370364. [PMID: 38435839 PMCID: PMC10907108 DOI: 10.1155/2024/1370364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Epigenetic regulation has been thoroughly investigated in recent years and has emerged as an important aspect of chronic lymphocytic leukemia (CLL) biology. Characteristic aberrant features such as methylation patterns and global DNA hypomethylation were the early findings of the research during the last decades. The investigation in this field led to the identification of a large number of genes where methylation features correlated with important clinical and laboratory parameters. Gene-specific analyses investigated methylation in the gene body enhancer regions as well as promoter regions. The findings included genes and proteins involved in key pathways that play central roles in the pathophysiology of the disease. Τhe application of these findings beyond the theoretical understanding can not only lead to the creation of prognostic and predictive models and scores but also to the design of novel therapeutic agents. The following is a review focusing on the present knowledge about single gene/gene promoter methylation or mRNA expression in CLL cases as well as records of older data that have been published in past papers.
Collapse
Affiliation(s)
- Sevastianos Chatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Thalassemia and Sickle Cell Disease Center, Laikon General Hospital, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis T. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marie-Christine Kyrtsonis
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Maria Dimou
- Hematology Section of the First Department of Propaedeutic Internal Medicine, Laikon University Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation Unit, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Hematology Department, Iatriko Kentro Palaiou Falirou, Athens, Greece
| |
Collapse
|
3
|
Zhang Q, Gao Y, Lin S, Goldin LR, Wang Y, Stevenson H, Edelman DC, Killian K, Marti G, Meltzer PS, Xiang S, Caporaso NE. Genome-wide DNA methylation profiling in chronic lymphocytic leukaemia. Front Genet 2023; 13:1056043. [PMID: 36712882 PMCID: PMC9873975 DOI: 10.3389/fgene.2022.1056043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background: DNA methylation aberrations are widespread among the malignant B lymphocytes of patients with chronic lymphocytic leukaemia (CLL), suggesting that DNA methylation might contribute to the pathogenesis of CLL. Aim: We aimed to explore the differentially methylated positions (DMPs) associated with CLL and screen the differentially methylated and expressed genes (DMEGs) by combining public databases. We aimed to observe the direction of each DMEG in CLL based on the DMPs in the promoter and the body region respectively to narrow down DMEGs. We also aimed to explore the methylation heterogeneity of CLL subgroups and the effect of B cells maturation on CLL. Methods: In this population-based case control study, we reported a genome-wide DNA methylation association study using the Infinium HumanMethylation450 BeadChip, profiling the DNA methylation of CD19+ B Cells from 48 CLL cases and 28 healthy controls. By integrating methylation data and expression data from public databases, gene sets were jointly screened, and then the relationship between methylation sites in promoter and body region and expression of each gene was explored. In addition, support vector machine (SVM) classification algorithm was used to identify subgroups of CLL cases based on methylation pattern, and the effect of B-cell differentiation related methylation sites on CLL-related sites was observed. Results: We identified 34,797 DMPs related to CLL across the genome, most of which were hypomethylated; the majority were located in gene body regions. By combining these DMPs with published DNA methylation and RNA sequencing data, we detected 26,244 replicated DMPs associated with 1,130 genes whose expression were significantly different in CLL cases. Among these DMEGs, nine low expressed DMEGs were selected with hypermethylated in promoter and hypomethylated in body region, and 83 high expressed DMEGs were selected with both hypomethylated in promoter and body region. The 48 CLL cases were divided into 3 subgroups based on methylation site by SVM algorithm. Over 92% of CpGs associated with B cell subtypes were found in CLL-related DMPs. Conclusion: The DNA methylation pattern was altered across the genome in CLL patients. The methylation of ZAP70, FMOD, and ADAMTS17 was significantly different between CLL cases and controls. Further studies are warranted to confirm our findings and identify the underlying mechanisms through which these methylation markers are associated with CLL.
Collapse
Affiliation(s)
- Qiuyi Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China,Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Ying Gao,
| | - Shuchun Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lynn R. Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yonghong Wang
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Holly Stevenson
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Daniel C. Edelman
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Keith Killian
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gerald Marti
- Lymphoid Malignancies Section, Hematology Branch, NHLBI, National Institutes of Health, Bethesda, MD, United States
| | - Paul S. Meltzer
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Hassannia H, Amiri MM, Ghaedi M, Sharifian RA, Golsaz-Shirazi F, Jeddi-Tehrani M, Shokri F. Preclinical Assessment of Immunogenicity and Protectivity of Novel ROR1 Fusion Proteins in a Mouse Tumor Model. Cancers (Basel) 2022; 14:5827. [PMID: 36497309 PMCID: PMC9738141 DOI: 10.3390/cancers14235827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a new tumor associated antigen (TAA) which is overexpressed in several hematopoietic and solid malignancies. The present study aimed to produce and evaluate different fusion proteins of mouse ROR1 (mROR1) to enhance immunogenicity and protective efficacy of ROR1. Four ROR1 fusion proteins composed of extracellular region of mROR1, immunogenic fragments of TT as well as Fc region of mouse IgG2a were produced and employed to immunize Balb/C mice. Humoral and cellular immune responses and anti-tumor effects of these fusion proteins were evaluated using two different syngeneic murine ROR1+ tumor models. ROR1-specific antibodies were induced in all groups of mice. The levels of IFN-γ, IL-17 and IL-22 cytokines in culture supernatants of stimulated splenocytes were increased in all groups of immunized mice, particularly mice immunized with TT-mROR1-Fc fusion proteins. The frequency of ROR1-specific CTLs was higher in mice immunized with TT-mROR1-Fc fusion proteins. Finally, results of tumor challenge in immunized mice showed that immunization with TT-mROR1-Fc fusion proteins completely inhibited ROR1+ tumor cells growth in two different syngeneic tumor models until day 120 post tumor challenge. Our preclinical findings, for the first time, showed that our fusion proteins could be considered as a potential candidate vaccine for active immunotherapy of ROR1-expressing malignancies.
Collapse
Affiliation(s)
- Hadi Hassannia
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari P.O. Box 48157-33971, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Mojgan Ghaedi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Ramezan-Ali Sharifian
- Department of Hematology and Oncology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran P.O. Box 14197-33141, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran P.O. Box 19839-69412, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| |
Collapse
|
5
|
Abstract
Since its initial identification in 1992 as a possible class 1 cell-surface receptor without a known parent ligand, receptor tyrosine kinase-like orphan receptor 1 (ROR1) has stimulated research, which has made apparent its significance in embryonic development and cancer. Chronic lymphocytic leukemia (CLL) was the first malignancy found to have distinctive expression of ROR1, which can help distinguish leukemia cells from most noncancer cells. Aside from its potential utility as a diagnostic marker or target for therapy, ROR1 also factors in the pathophysiology of CLL. This review is a report of the studies that have elucidated the expression, biology, and evolving strategies for targeting ROR1 that hold promise for improving the therapy of patients with CLL or other ROR1-expressing malignancies.
Collapse
Affiliation(s)
- Thomas J. Kipps
- Center for Novel Therapeutics, Moores Cancer Center, Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
6
|
HLA-DR Presentation of the Tumor Antigen MSLN Associates with Clinical Outcome of Ovarian Cancer Patients. Cancers (Basel) 2022; 14:cancers14092260. [PMID: 35565389 PMCID: PMC9101593 DOI: 10.3390/cancers14092260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The immunopeptidome represents the entirety of peptides that are presented on the surface of cells on human leukocyte antigen (HLA) molecules and are recognized by the T-cell receptors of CD4+ and CD8+ T-cells. Malignant cells present tumor-associated antigens essential for tumor immune surveillance, which can be targeted by T-cell-based immunotherapy approaches. For ovarian carcinomas, various tumor-associated antigens, such as Mucin-16 and Mesothelin, have been described. The aim of our study is to analyze immunopeptidome-defined tumor antigen presentation in ovarian carcinoma patients in relation to clinical characteristics and disease outcomes to define potential biomarkers. Our work demonstrates the central role of HLA-DR-restricted peptide presentation of the tumor antigen Mesothelin and of CD4+ T-cell responses for tumor immune surveillance, and underlines Mesothelin as a prime target antigen for novel immunotherapeutic approaches for ovarian carcinoma patients. Abstract T-cell recognition of HLA-presented antigens is central for the immunological surveillance of malignant disease and key for the development of novel T-cell-based immunotherapy approaches. In recent years, large-scale immunopeptidome studies identified naturally presented tumor-associated antigens for several malignancies. Regarding ovarian carcinoma (OvCa), Mucin-16 (MUC16) and Mesothelin (MSLN) were recently described as the top HLA class I- and HLA class II-presented tumor antigens, respectively. Here, we investigate the role and impact of immunopeptidome-presented tumor antigens on the clinical outcomes of 39 OvCa patients with a follow-up time of up to 50 months after surgery. Patients with a HLA-restricted presentation of high numbers of different MSLN-derived peptides on their tumors exhibited significantly prolonged progression-free (PFS) and overall survival (OS), whereas the presentation of MUC16-derived HLA class I-restricted peptides had no impact. Furthermore, a high HLA-DRB gene expression was associated with increased PFS and OS. In line, in silico prediction revealed that MSLN-derived HLA class II-presented peptides are predominantly presented on HLA-DR allotypes. In conclusion, the correlation of MSLN tumor antigen presentation and HLA-DRB gene expression with prolonged survival indicates a central role of CD4+ T-cell responses for tumor immune surveillance in OvCa, and highlights the importance of immunopeptidome-guided tumor antigen discovery.
Collapse
|
7
|
Nelde A, Maringer Y, Bilich T, Salih HR, Roerden M, Heitmann JS, Marcu A, Bauer J, Neidert MC, Denzlinger C, Illerhaus G, Aulitzky WE, Rammensee HG, Walz JS. Immunopeptidomics-Guided Warehouse Design for Peptide-Based Immunotherapy in Chronic Lymphocytic Leukemia. Front Immunol 2021; 12:705974. [PMID: 34305947 PMCID: PMC8297687 DOI: 10.3389/fimmu.2021.705974] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Antigen-specific immunotherapies, in particular peptide vaccines, depend on the recognition of naturally presented antigens derived from mutated and unmutated gene products on human leukocyte antigens, and represent a promising low-side-effect concept for cancer treatment. So far, the broad application of peptide vaccines in cancer patients is hampered by challenges of time- and cost-intensive personalized vaccine design, and the lack of neoepitopes from tumor-specific mutations, especially in low-mutational burden malignancies. In this study, we developed an immunopeptidome-guided workflow for the design of tumor-associated off-the-shelf peptide warehouses for broadly applicable personalized therapeutics. Comparative mass spectrometry-based immunopeptidome analyses of primary chronic lymphocytic leukemia (CLL) samples, as representative example of low-mutational burden tumor entities, and a dataset of benign tissue samples enabled the identification of high-frequent non-mutated CLL-associated antigens. These antigens were further shown to be recognized by pre-existing and de novo induced T cells in CLL patients and healthy volunteers, and were evaluated as pre-manufactured warehouse for the construction of personalized multi-peptide vaccines in a first clinical trial for CLL (NCT04688385). This workflow for the design of peptide warehouses is easily transferable to other tumor entities and can provide the foundation for the development of broad personalized T cell-based immunotherapy approaches.
Collapse
Affiliation(s)
- Annika Nelde
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Tatjana Bilich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Malte Roerden
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Ana Marcu
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Jens Bauer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Marian C Neidert
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | | | - Gerald Illerhaus
- Clinic for Hematology and Oncology, Klinikum Stuttgart, Stuttgart, Germany
| | - Walter Erich Aulitzky
- Department of Hematology, Oncology and Palliative Medicine, Robert-Bosch-Krankenhaus Stuttgart, Stuttgart, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Robert Bosch Center for Tumor Diseases (RBCT), Stuttgart, Germany
| |
Collapse
|
8
|
The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. Blood 2019; 133:550-565. [DOI: 10.1182/blood-2018-07-866830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/01/2018] [Indexed: 12/30/2022] Open
Abstract
Abstract
Antileukemia immunity plays an important role in disease control and maintenance of tyrosine kinase inhibitor (TKI)-free remission in chronic myeloid leukemia (CML). Thus, antigen-specific immunotherapy holds promise for strengthening immune control in CML but requires the identification of CML-associated targets. In this study, we used a mass spectrometry–based approach to identify naturally presented HLA class I– and class II–restricted peptides in primary CML samples. Comparative HLA ligandome profiling using a comprehensive dataset of different hematological benign specimens and samples from CML patients in deep molecular remission delineated a panel of novel frequently presented CML-exclusive peptides. These nonmutated target antigens are of particular relevance because our extensive data-mining approach suggests the absence of naturally presented BCR-ABL– and ABL-BCR–derived HLA-restricted peptides and the lack of frequent tumor-exclusive presentation of known cancer/testis and leukemia-associated antigens. Functional characterization revealed spontaneous T-cell responses against the newly identified CML-associated peptides in CML patient samples and their ability to induce multifunctional and cytotoxic antigen-specific T cells de novo in samples from healthy volunteers and CML patients. Thus, these antigens are prime candidates for T-cell–based immunotherapeutic approaches that may prolong TKI-free survival and even mediate cure of CML patients.
Collapse
|
9
|
Targeting the tumor promoting effects of adenosine in chronic lymphocytic leukemia. Crit Rev Oncol Hematol 2018; 126:24-31. [DOI: 10.1016/j.critrevonc.2018.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/27/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
|
10
|
Hassannia H, Amiri MM, Jadidi-Niaragh F, Hosseini-Ghatar R, Khoshnoodi J, Sharifian RA, Golsaz-Shirazi F, Jeddi-Tehrani M, Shokri F. Inhibition of tumor growth by mouse ROR1 specific antibody in a syngeneic mouse tumor model. Immunol Lett 2018; 193:35-41. [DOI: 10.1016/j.imlet.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
|
11
|
MicroRNA dysregulation to identify therapeutic target combinations for chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2017; 114:10731-10736. [PMID: 28923920 DOI: 10.1073/pnas.1708264114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Loss of miR-15/16 is the most common genetic lesion in chronic lymphocytic leukemia (CLL), promoting overexpression of BCL2, which factors in leukemia pathogenesis. Indeed, an inhibitor of Bcl2, venetoclcax, is highly active in the treatment of patients with CLL. However, single-agent venetoclcax fails to eradicate minimal residual disease in most patients. Accordingly, we were interested in other genes that may be regulated by miR-15/16, which may target other drivers in CLL. We found that miR-15/16 targets ROR1, which encodes an onco-embryonic surface protein expressed on the CLL cells of over 90% of patients, but not on virtually all normal postpartum tissues. CLL with high-level expression of ROR1 also have high-level expression of Bcl2, but low-to-negligible miR-15/16 Moreover, CLL cases with high-level ROR1 have deletion(s) at the chromosomal location of the genes encoding miR-15/16 (13q14) more frequently than cases with low-to-negligible ROR1, implying that deletion of miR-15/16 may promote overexpression of ROR1, in addition to BCL2 ROR1 is a receptor for Wnt5a, which can promote leukemia-cell proliferation and survival, and can be targeted by cirmtuzumab, a humanized anti-ROR1 mAb. We find that this mAb can enhance the in vitro cytotoxic activity of venetoclcax for CLL cells with high-level expression of ROR1, indicating that combining these agents, which target ROR1 and Bcl2, may have additive, if not synergistic, activity in patients with this disease.
Collapse
|
12
|
Nath O, Singh A, Singh IK. In-Silico Drug discovery approach targeting receptor tyrosine kinase-like orphan receptor 1 for cancer treatment. Sci Rep 2017; 7:1029. [PMID: 28432357 PMCID: PMC5430761 DOI: 10.1038/s41598-017-01254-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Receptor tyrosine kinases (RTK) are important cell signaling molecules that influence many cellular processes. Receptor tyrosine kinase such as orphan receptor 1 (Ror1), a surface antigen, is a member of the RTK family of Ror, which plays a crucial role in cancers that have high-grade histology. As Ror1 has been implicated to be a potential target for cancer therapy, we selected this protein for further investigation. The secondary and tertiary structure of this protein was determined, which revealed that this protein contained three β-sheets, seven α-helices, and coils. The prediction of the active site revealed its cage-like function that opens for ligand entry and then closes for interacting with the ligands. Optimized ligands from the database were virtually screened to obtain the most efficient and potent ones. The screened ligands were evaluated for their therapeutic usefulness. Furthermore, the ligands that passed the test were docked to the target protein resulting in a few ligands with high score, which were analyzed further. The highest scoring ligand, Beta-1, 2,3,4,6-Penta-O-Galloyl-D-Glucopyranose was reported to be a naturally occurring tannin. This in silico approach indicates the potential of this molecule for advancing a further step in cancer treatment.
Collapse
Affiliation(s)
- Onkar Nath
- Jawaharlal Nehru University, SCIS, New Delhi, 110067, India
| | - Archana Singh
- Department of Botany, Hans Raj College, University of Delhi, Delhi, 110007, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.
- Department of Entomology, University of Kentucky, S-225 AG. Science - North, lexington, KY, 40546-0091, United States.
| |
Collapse
|
13
|
Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumour Biol 2016; 37:10021-39. [DOI: 10.1007/s13277-016-5059-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/01/2016] [Indexed: 12/25/2022] Open
|