1
|
Borrero‐de Acuña JM, Poblete‐Castro I. Rational engineering of natural polyhydroxyalkanoates producing microorganisms for improved synthesis and recovery. Microb Biotechnol 2022; 16:262-285. [PMID: 35792877 PMCID: PMC9871526 DOI: 10.1111/1751-7915.14109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial production of biopolymers derived from renewable substrates and waste streams reduces our heavy reliance on petrochemical plastics. One of the most important biodegradable polymers is the family of polyhydroxyalkanoates (PHAs), naturally occurring intracellular polyoxoesters produced for decades by bacterial fermentation of sugars and fatty acids at the industrial scale. Despite the advances, PHA production still suffers from heavy costs associated with carbon substrates and downstream processing to recover the intracellular product, thus restricting market positioning. In recent years, model-aided metabolic engineering and novel synthetic biology approaches have spurred our understanding of carbon flux partitioning through competing pathways and cellular resource allocation during PHA synthesis, enabling the rational design of superior biopolymer producers and programmable cellular lytic systems. This review describes these attempts to rationally engineering the cellular operation of several microbes to elevate PHA production on specific substrates and waste products. We also delve into genome reduction, morphology, and redox cofactor engineering to boost PHA biosynthesis. Besides, we critically evaluate engineered bacterial strains in various fermentation modes in terms of PHA productivity and the period required for product recovery.
Collapse
Affiliation(s)
| | - Ignacio Poblete‐Castro
- Biosystems Engineering LaboratoryDepartment of Chemical and Bioprocess EngineeringUniversidad de Santiago de Chile (USACH)SantiagoChile
| |
Collapse
|
2
|
Borrero-de Acuña JM, Rohde M, Saldias C, Poblete-Castro I. Fed-Batch mcl- Polyhydroxyalkanoates Production in Pseudomonas putida KT2440 and Δ phaZ Mutant on Biodiesel-Derived Crude Glycerol. Front Bioeng Biotechnol 2021; 9:642023. [PMID: 33796510 PMCID: PMC8007980 DOI: 10.3389/fbioe.2021.642023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Crude glycerol has emerged as a suitable feedstock for the biotechnological production of various industrial chemicals given its high surplus catalyzed by the biodiesel industry. Pseudomonas bacteria metabolize the polyol into several biopolymers, including alginate and medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs). Although P. putida is a suited platform to derive these polyoxoesters from crude glycerol, the attained concentrations in batch and fed-batch cultures are still low. In this study, we employed P. putida KT2440 and the hyper-PHA producer ΔphaZ mutant in two different fed-batch modes to synthesize mcl-PHAs from raw glycerol. Initially, the cells grew in a batch phase (μmax 0.21 h–1) for 22 h followed by a carbon-limiting exponential feeding, where the specific growth rate was set at 0.1 (h–1), resulting in a cell dry weight (CDW) of nearly 50 (g L–1) at 40 h cultivation. During the PHA production stage, we supplied the substrate at a constant rate of 50 (g h–1), where the KT2440 and the ΔphaZ produced 9.7 and 12.7 gPHA L–1, respectively, after 60 h cultivation. We next evaluated the PHA production ability of the P. putida strains using a DO-stat approach under nitrogen depletion. Citric acid was the main by-product secreted by the cells, accumulating in the culture broth up to 48 (g L–1) under nitrogen limitation. The mutant ΔphaZ amassed 38.9% of the CDW as mcl-PHA and exhibited a specific PHA volumetric productivity of 0.34 (g L–1 h–1), 48% higher than the parental KT2440 under the same growth conditions. The biosynthesized mcl-PHAs had average molecular weights ranging from 460 to 505 KDa and a polydispersity index (PDI) of 2.4–2.6. Here, we demonstrated that the DO-stat feeding approach in high cell density cultures enables the high yield production of mcl-PHA in P. putida strains using the industrial crude glycerol, where the fed-batch process selection is essential to exploit the superior biopolymer production hallmarks of engineered bacterial strains.
Collapse
Affiliation(s)
- José Manuel Borrero-de Acuña
- Institute for Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility of Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Cesar Saldias
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Macul, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Faculty of Life Sciences, Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
3
|
Ai M, Zhu Y, Jia X. Recent advances in constructing artificial microbial consortia for the production of medium-chain-length polyhydroxyalkanoates. World J Microbiol Biotechnol 2021; 37:2. [PMID: 33392870 DOI: 10.1007/s11274-020-02986-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/20/2020] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are a class of high-molecular-weight polyesters made from hydroxy fatty acid monomers. PHAs produced by microorganisms have diverse structures, variable physical properties, and good biodegradability. They exhibit similar physical properties to petroleum-based plastics but are much more environmentally friendly. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), in particular, have attracted much interest because of their low crystallinity, low glass transition temperature, low tensile strength, high elongation at break, and customizable structure. Nevertheless, high production costs have hindered their practical application. The use of genetically modified organisms can reduce production costs by expanding the scope of substrate utilization, improving the conversion efficiency of substrate to product, and increasing the yield of mcl-PHAs. The yield of mcl-PHAs produced by a pure culture of an engineered microorganism was not high enough because of the limitations of the metabolic capacity of a single microorganism. The construction of artificial microbial consortia and the optimization of microbial co-cultivation have been studied. This type of approach avoids the addition of precursor substances and helps synthesize mcl-PHAs more efficiently. In this paper, we reviewed the design and construction principles and optimized control strategies for artificial microbial consortia that produce mcl-PHAs. We described the metabolic advantages of co-cultivating artificial microbial consortia using low-value substrates and discussed future perspectives on the production of mcl-PHAs using artificial microbial consortia.
Collapse
Affiliation(s)
- Mingmei Ai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| |
Collapse
|
4
|
Choi SY, Cho IJ, Lee Y, Kim YJ, Kim KJ, Lee SY. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907138. [PMID: 32249983 DOI: 10.1002/adma.201907138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms produce diverse polymers for various purposes such as storing genetic information, energy, and reducing power, and serving as structural materials and scaffolds. Among these polymers, polyhydroxyalkanoates (PHAs) are microbial polyesters synthesized and accumulated intracellularly as a storage material of carbon, energy, and reducing power under unfavorable growth conditions in the presence of excess carbon source. PHAs have attracted considerable attention for their wide range of applications in industrial and medical fields. Since the first discovery of PHA accumulating bacteria about 100 years ago, remarkable advances have been made in the understanding of PHA biosynthesis and metabolic engineering of microorganisms toward developing efficient PHA producers. Recently, nonnatural polyesters have also been synthesized by metabolically engineered microorganisms, which opened a new avenue toward sustainable production of more diverse plastics. Herein, the current state of PHAs and nonnatural polyesters is reviewed, covering mechanisms of microbial polyester biosynthesis, metabolic pathways, and enzymes involved in biosynthesis of short-chain-length PHAs, medium-chain-length PHAs, and nonnatural polyesters, especially 2-hydroxyacid-containing polyesters, metabolic engineering strategies to produce novel polymers and enhance production capabilities and fermentation, and downstream processing strategies for cost-effective production of these microbial polyesters. In addition, the applications of PHAs and prospects are discussed.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeo-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 2020; 104:7745-7766. [PMID: 32789744 PMCID: PMC7447670 DOI: 10.1007/s00253-020-10811-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Pseudomonas putida is a Gram-negative, rod-shaped bacterium that can be encountered in diverse ecological habitats. This ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive in harsh environments. Owing to these characteristics, there is a growing interest in this microbe for industrial use, and the corresponding research has made rapid progress in recent years. Hereby, strong drivers are the exploitation of cheap renewable feedstocks and waste streams to produce value-added chemicals and the steady progress in genetic strain engineering and systems biology understanding of this bacterium. Here, we summarize the recent advances and prospects in genetic engineering, systems and synthetic biology, and applications of P. putida as a cell factory. KEY POINTS: • Pseudomonas putida advances to a global industrial cell factory. • Novel tools enable system-wide understanding and streamlined genomic engineering. • Applications of P. putida range from bioeconomy chemicals to biosynthetic drugs.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
6
|
Możejko-Ciesielska J, Serafim LS. Proteomic Response of Pseudomonas putida KT2440 to Dual Carbon-Phosphorus Limitation during mcl-PHAs Synthesis. Biomolecules 2019; 9:E796. [PMID: 31795154 PMCID: PMC6995625 DOI: 10.3390/biom9120796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas putida KT2440, one of the best characterized pseudomonads, is a metabolically versatile producer of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) that serves as a model bacterium for molecular studies. The synthesis of mcl-PHAs is of great interest due to their commercial potential. Carbon and phosphorus are the essential nutrients for growth and their limitation can trigger mcl-PHAs' production in microorganisms. However, the specific molecular mechanisms that drive this synthesis in Pseudomonas species under unfavorable growth conditions remain poorly understood. Therefore, the proteomic responses of Pseudomonas putida KT2440 to the limited carbon and phosphorus levels in the different growth phases during mcl-PHAs synthesis were investigated. The data indicated that biopolymers' production was associated with the cell growth of P. putida KT2440 under carbon- and phosphorus-limiting conditions. The protein expression pattern changed during mcl-PHAs synthesis and accumulation, and during the different physiological states of the microorganism. The data suggested that the majority of metabolic activities ceased under carbon and phosphorus limitation. The abundance of polyhydroxyalkanoate granule-associated protein (PhaF) involved in PHA synthesis increased significantly at 24 and 48 h of the cultivations. The activation of proteins belonging to the phosphate regulon was also detected. Moreover, these results indicated changes in the protein profiles related to amino acids metabolism, replication, transcription, translation, stress response mechanisms, transport or signal transduction. The presented data allowed the investigation of time-course proteome alterations in response to carbon and phosphorus limitation, and PHAs synthesis. This study provided information about proteins that can be potential targets in improving the efficiency of mcl-PHAs synthesis.
Collapse
Affiliation(s)
- Justyna Możejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10719 Olsztyn, Poland
- Chemistry Department, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Luísa S. Serafim
- Chemistry Department, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
7
|
Możejko-Ciesielska J, Mostek A. A 2D-DIGE-based proteomic analysis brings new insights into cellular responses of Pseudomonas putida KT2440 during polyhydroxyalkanoates synthesis. Microb Cell Fact 2019; 18:93. [PMID: 31138236 PMCID: PMC6537436 DOI: 10.1186/s12934-019-1146-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/22/2019] [Indexed: 11/15/2022] Open
Abstract
Background Polyhydroxyalkanoates (PHAs) have attracted much attention in recent years as natural alternatives to petroleum-based synthetic polymers that can be broadly used in many applications. Pseudomonas putida KT2440 is a metabolically versatile microorganism that is able to synthesize medium-chain-length PHAs (mcl-PHAs). The phenomena that drive mcl-PHAs synthesis and accumulation seems to be complex and are still poorly understood. Therefore, here we determine new insights into cellular responses of Pseudomonas putida KT2440 during biopolymers production using two-dimensional difference gel-electrophoresis (2D-DIGE) followed by MALDI TOF/TOF mass spectrometry. Results The maximum mcl-PHAs content in Pseudomonas putida KT2440 cells was 24% of cell dry weight (CDW) and was triggered by nitrogen depletion. Proteomic analysis allowed the detection of 150 and 131 protein spots differentially regulated at 24 h and 48 h relative to the cell growth stage (8 h), respectively. From those, we successfully identified 84 proteins that had altered expression at 24 h and 74 proteins at 48 h of the mcl-PHAs synthesis process. The protein–protein interactions network indicated that the majority of identified proteins were functionally linkage. The abundance of proteins involved in carbon metabolism were significantly decreased at 24 h and 48 h of the cultivations. Moreover, proteins associated with ATP synthesis were up-regulated suggesting that the enhanced energy metabolism was necessary for the mcl-PHAs accumulation. Furthermore, the induction of proteins involved in nitrogen metabolism, ribosome synthesis and transport was observed. Our results indicate that mcl-PHAs accumulated in the bacterial cells changed the protein abundance involved in stress response and cellular homeostasis. Conclusions The presented data allow us to investigate time-course proteome rearrangement in response to nitrogen limitation and biopolyesters accumulation. Our results have pointed out novel proteins that might take part in cellular responses of mcl-PHA-accumulated bacteria. The study provides an additional knowledge that could be helpful to improve the efficiency of the bioprocess and make it more economically feasible. Electronic supplementary material The online version of this article (10.1186/s12934-019-1146-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna Możejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Agnieszka Mostek
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, Olsztyn, Poland
| |
Collapse
|
8
|
Możejko-Ciesielska J, Mostek A. Time-Course Proteomic Analysis of Pseudomonas putida KT2440 during Mcl-Polyhydroxyalkanoate Synthesis under Nitrogen Deficiency. Polymers (Basel) 2019; 11:polym11050748. [PMID: 31035475 PMCID: PMC6571654 DOI: 10.3390/polym11050748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 11/05/2022] Open
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) have gained great attention as a new green alternative to petrochemical-derived polymers. Due to their outstanding material properties they can be used in a wide range of applications. Pseudomonas putida KT2440 is a metabolically versatile producer of mcl-polyhydroxyalkanoates. Although the metabolism of polyhydroxyalkanoate synthesis by this bacterium has been extensively studied, the comparative proteome analysis from three growth stages of Pseudomonas putida KT2440 cultured with oleic acid during mcl-PHA synthesis has not yet been reported. Therefore; the aim of the study was to compare the proteome of Pseudomonas putida KT2440 at different time points of its cultivation using the 2D difference gel electrophoresis (2D-DIGE) technique. The analyses showed that low levels of a nitrogen source were beneficial for mcl-PHA synthesis. Proteomic analysis revealed that the proteins associated with carbon metabolism were affected by nitrogen starvation and mcl-PHA synthesis. Furthermore, the induction of proteins involved in nitrogen metabolism, ribosome synthesis, and transport was observed, which may be the cellular response to stress related to nitrogen deficiency and mcl-PHA content in bacterial cells. To sum up; this study enabled the investigators to acquire a better knowledge of the molecular mechanisms underlying the induction of polyhydroxyalkanoate synthesis and accumulation in Pseudomonas putida KT2440 that could lead to improved strategies for PHAs in industrial production.
Collapse
Affiliation(s)
- Justyna Możejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10719 Olsztyn, Poland.
| | - Agnieszka Mostek
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10748 Olsztyn, Poland.
| |
Collapse
|
9
|
Poblete-Castro I, Wittmann C, Nikel PI. Biochemistry, genetics and biotechnology of glycerol utilization in Pseudomonas species. Microb Biotechnol 2019; 13:32-53. [PMID: 30883020 PMCID: PMC6922529 DOI: 10.1111/1751-7915.13400] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/17/2019] [Accepted: 02/23/2019] [Indexed: 11/30/2022] Open
Abstract
The use of renewable waste feedstocks is an environment‐friendly choice contributing to the reduction of waste treatment costs and increasing the economic value of industrial by‐products. Glycerol (1,2,3‐propanetriol), a simple polyol compound widely distributed in biological systems, constitutes a prime example of a relatively cheap and readily available substrate to be used in bioprocesses. Extensively exploited as an ingredient in the food and pharmaceutical industries, glycerol is also the main by‐product of biodiesel production, which has resulted in a progressive drop in substrate price over the years. Consequently, glycerol has become an attractive substrate in biotechnology, and several chemical commodities currently produced from petroleum have been shown to be obtained from this polyol using whole‐cell biocatalysts with both wild‐type and engineered bacterial strains. Pseudomonas species, endowed with a versatile and rich metabolism, have been adopted for the conversion of glycerol into value‐added products (ranging from simple molecules to structurally complex biopolymers, e.g. polyhydroxyalkanoates), and a number of metabolic engineering strategies have been deployed to increase the number of applications of glycerol as a cost‐effective substrate. The unique genetic and metabolic features of glycerol‐grown Pseudomonas are presented in this review, along with relevant examples of bioprocesses based on this substrate – and the synthetic biology and metabolic engineering strategies implemented in bacteria of this genus aimed at glycerol valorization.
Collapse
Affiliation(s)
- Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Natural Sciences, Universidad Andrés Bello, Santiago de Chile, Chile
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Universität des Saarlandes, Saarbrücken, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
10
|
Montazer Z, Habibi Najafi MB, Levin DB. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can J Microbiol 2019; 65:224-234. [DOI: 10.1139/cjm-2018-0335] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have characterized the ability of eight bacterial strains to utilize powdered low-density polyethylene (LDPE) plastic (untreated and without any additives) as a sole carbon source. Cell mass production on LDPE-containing medium after 21 days of incubation varied between 0.083 ± 0.015 g/L cell dry mass (cdm) for Micrococcus luteus IRN20 and 0.39 ± 0.036 g/L for Cupriavidus necator H16. The percent decrease in LDPE mass ranged from 18.9% ± 0.72% for M. luteus IRN20 to 33.7% ± 1.2% for C. necator H16. Linear alkane hydrolysis products from LDPE degradation were detected in the culture media, and the carbon chain lengths of the hydrolysis products detected varied, depending on the species of bacteria. We also determined that C. necator H16 produced short-chain-length polyhydroxyalkanoate biopolymers, while Pseudomonas putida LS46 and Acinetobacter pittii IRN19 produced medium-chain-length biopolymers while growing on polyethylene powder. Cupriavidus necator H16 accumulated poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-V) polymers to 3.18% ± 0.4% of cdm. The monomer composition of the PHB-V was 94.9% ± 0.61% 3-hydroxybutyrate and 5.03% ± 0.56% 3-hydroxyvalerate. This is the first report that provides direct evidence for simultaneous bioconversion of LDPE plastic to biodegradable polyhydroxyalkanoate polymers.
Collapse
Affiliation(s)
- Zahra Montazer
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - David B. Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
11
|
Xu Z, Li X, Hao N, Pan C, de la Torre L, Ahamed A, Miller JH, Ragauskas AJ, Yuan J, Yang B. Kinetic understanding of nitrogen supply condition on biosynthesis of polyhydroxyalkanoate from benzoate by Pseudomonas putida KT2440. BIORESOURCE TECHNOLOGY 2019; 273:538-544. [PMID: 30472353 DOI: 10.1016/j.biortech.2018.11.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 05/10/2023]
Abstract
Nitrogen supply is critical to the synthesis of intracellular PHA in various bacteria. However, the specific role of the nitrogen in synthesizing PHA from benzoate, a lignin model compound use for the study of bacteria catabolism of aromatics, is still not clear. In this study, two culture conditions were maintained for Pseudomonas putida KT2440 to produce PHA using benzoate as a carbon source. Under nitrogen-limited and surplus conditions, the accumulation of PHA was to 37.3% and 0.25% of cell dry weight, respectively. A model fit to the kinetics of biomass growth and PHA accumulation showed good agreement with data. GC-MS and NMR showed that PHA contained six hydroxyl fatty acid monomers under nitrogen-limited conditions, while two monomers were identified under nitrogen surplus conditions. The average molecular weight of PHA increased after the nitrogen source was exhausted. These results provide a promising strategy for optimization of lignin to PHA yields.
Collapse
Affiliation(s)
- Zhangyang Xu
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Xiaolu Li
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Naijia Hao
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Chunmei Pan
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Luis de la Torre
- School of Engineering and Applied Sciences, Washington State University, Richland, WA 99354, USA
| | - Aftab Ahamed
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - John H Miller
- School of Engineering and Applied Sciences, Washington State University, Richland, WA 99354, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Joshua Yuan
- Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, 77843, USA
| | - Bin Yang
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA.
| |
Collapse
|
12
|
Mozejko-Ciesielska J, Pokoj T, Ciesielski S. Transcriptome remodeling of Pseudomonas putida KT2440 during mcl-PHAs synthesis: effect of different carbon sources and response to nitrogen stress. J Ind Microbiol Biotechnol 2018; 45:433-446. [PMID: 29736608 PMCID: PMC6028892 DOI: 10.1007/s10295-018-2042-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/27/2018] [Indexed: 01/15/2023]
Abstract
Bacterial response to environmental stimuli is essential for survival. In response to fluctuating environmental conditions, the physiological status of bacteria can change due to the actions of transcriptional regulatory machinery. The synthesis and accumulation of polyhydroxyalkanoates (PHAs) are one of the survival strategies in harsh environments. In this study, we used transcriptome analysis of Pseudomonas putida KT2440 to gain a genome-wide view of the mechanisms of environmental-friendly biopolymers accumulation under nitrogen-limiting conditions during conversion of metabolically different carbon sources (sodium gluconate and oleic acid). Transcriptomic data revealed that phaG expression is associated with medium-chain-length-PHAs' synthesis not only on sodium gluconate but also on oleic acid, suggesting that PhaG may play a role in this process, as well. Moreover, genes involved in the β-oxidation pathway were induced in the PHAs production phase when sodium gluconate was supplied as the only carbon and energy source. The transition from exponential growth to stationary phase caused a significant expression of genes involved in nitrogen metabolism, energy supply, and transport system. In this study, several molecular mechanisms, which drive mcl-PHAs synthesis, have been investigated. The identified genes may provide valuable information to improve the efficiency of this bioprocess and make it more economically feasible.
Collapse
Affiliation(s)
- Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Tomasz Pokoj
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
13
|
Sharma PK, Munir RI, de Kievit T, Levin DB. Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis. Can J Microbiol 2017; 63:1009-1024. [DOI: 10.1139/cjm-2017-0412] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pseudomonas chlororaphis PA23 was isolated from soybean roots as a plant-growth-promoting rhizobacterium. This strain secretes a wide range of compounds, including the antibiotics phenazine-1-carboxylic acid (PCA), pyrrolnitrin, and 2-hydroxyphenazine. We have determined that P. chlororaphis PA23 can synthesize medium-chain-length polyhydroxyalkanoate (PHA) polymers utilizing free fatty acids, such as octanoic acid and nonanoic acid, as well as vegetable oils as sole carbon sources. Genome analysis identified a pha operon containing 7 genes in P. chlororaphis PA23 that were highly conserved. A nonpigmented strain that does not synthesize PCA, P. chlororaphis PA23-63, was also studied for PHA production. Pseudomonas chlororaphis PA23-63 produced 2.42–5.14 g/L cell biomass and accumulated PHAs from 11.7% to 32.5% cdm when cultured with octanoic acid, nonanoic acid, fresh canola oil, waste canola fryer oil, or biodiesel-derived waste free fatty acids under batch culture conditions. The subunit composition of the PHAs produced from fresh canola oil, waste canola fryer oil, or biodiesel-derived free fatty acids did not differ significantly. Addition of octanoic acid and nonanoic acid to canola oil cultures increased PHA production, but addition of glucose did not. PHA production in the phz mutant, P. chlororaphis PA23-63, was greater than that in the parent strain.
Collapse
Affiliation(s)
- Parveen K. Sharma
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Riffat I. Munir
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Teresa de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - David B. Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
14
|
Mozejko-Ciesielska J, Dabrowska D, Szalewska-Palasz A, Ciesielski S. Medium-chain-length polyhydroxyalkanoates synthesis by Pseudomonas putida KT2440 relA/spoT mutant: bioprocess characterization and transcriptome analysis. AMB Express 2017; 7:92. [PMID: 28497290 PMCID: PMC5427061 DOI: 10.1186/s13568-017-0396-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas putida KT2440 is a model bacteria used commonly for medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production using various substrates. However, despite many studies conducted on P. putida KT2440 strain, the molecular mechanisms of leading to mcl-PHAs synthesis in reaction to environmental stimuli are still not clear. The rearrangement of the metabolism in response to environmental stress could be controlled by stringent response that modulates the transcription of many genes in order to promote survival under nutritional deprivation conditions. Therefore, in this work we investigated the relation between mcl-PHAs synthesis and stringent response. For this study, a relA/spoT mutant of P. putida KT2440, unable to induce the stringent response, was used. Additionally, the transcriptome of this mutant was analyzed using RNA-seq in order to examine rearrangements of the metabolism during cultivation. The results show that the relA/spoT mutant of P. putida KT2440 is able to accumulate mcl-PHAs in both optimal and nitrogen limiting conditions. Nitrogen starvation did not change the efficiency of mcl-PHAs synthesis in this mutant. The transition from exponential growth to stationary phase caused significant upregulation of genes involved in transport system and nitrogen metabolism. Transcriptional regulators, including rpoS, rpoN and rpoD, did not show changes in transcript abundance when entering the stationary phase, suggesting their limited role in mcl-PHAs accumulation during stationary phase.
Collapse
|
15
|
Borrero-de Acuña JM, Hidalgo-Dumont C, Pacheco N, Cabrera A, Poblete-Castro I. A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production. Sci Rep 2017; 7:4373. [PMID: 28663596 PMCID: PMC5491512 DOI: 10.1038/s41598-017-04741-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
Cell lysis is crucial for the microbial production of industrial fatty acids, proteins, biofuels, and biopolymers. In this work, we developed a novel programmable lysis system based on the heterologous expression of lysozyme. The inducible lytic system was tested in two Gram-negative bacterial strains, namely Escherichia coli and Pseudomonas putida KT2440. Before induction, the lytic system did not significantly arrest essential physiological parameters in the recombinant E. coli (ECPi) and P. putida (JBOi) strain such as specific growth rate and biomass yield under standard growth conditions. A different scenario was observed in the recombinant JBOi strain when subjected to PHA-producing conditions, where biomass production was reduced by 25% but the mcl-PHA content was maintained at about 30% of the cell dry weight. Importantly, the genetic construct worked well under PHA-producing conditions (nitrogen-limiting phase), where more than 95% of the cell population presented membrane disruption 16 h post induction, with 75% of the total synthesized biopolymer recovered at the end of the fermentation period. In conclusion, this new lysis system circumvents traditional, costly mechanical and enzymatic cell-disrupting procedures.
Collapse
Affiliation(s)
- José Manuel Borrero-de Acuña
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile.
| | - Cristian Hidalgo-Dumont
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
| | - Nicolás Pacheco
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
| | - Alex Cabrera
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
16
|
Synthesis and Physical Properties of Polyhydroxyalkanoate Polymers with Different Monomer Compositions by Recombinant Pseudomonas putida LS46 Expressing a Novel PHA SYNTHASE (PhaC116) Enzyme. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030242] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Kalia VC, Prakash J, Koul S. Biorefinery for Glycerol Rich Biodiesel Industry Waste. Indian J Microbiol 2016; 56:113-25. [PMID: 27570302 DOI: 10.1007/s12088-016-0583-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022] Open
Abstract
The biodiesel industry has the potential to meet the fuel requirements in the future. A few inherent lacunae of this bioprocess are the effluent, which is 10 % of the actual product, and the fact that it is 85 % glycerol along with a few impurities. Biological treatments of wastes have been known as a dependable and economical direction of overseeing them and bring some value added products as well. A novel eco-biotechnological strategy employs metabolically diverse bacteria, which ensures higher reproducibility and economics. In this article, we have opined, which organisms and what bioproducts should be the focus, while exploiting glycerol as feed.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Jyotsana Prakash
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| |
Collapse
|