1
|
Ren C, Zhou Y, Liu W, Wang Q. Paradoxical effects of arsenic in the lungs. Environ Health Prev Med 2021; 26:80. [PMID: 34388980 PMCID: PMC8364060 DOI: 10.1186/s12199-021-00998-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
High levels (> 100 ug/L) of arsenic are known to cause lung cancer; however, whether low (≤ 10 ug/L) and medium (10 to 100 ug/L) doses of arsenic will cause lung cancer or other lung diseases, and whether arsenic has dose-dependent or threshold effects, remains unknown. Summarizing the results of previous studies, we infer that low- and medium-concentration arsenic cause lung diseases in a dose-dependent manner. Arsenic trioxide (ATO) is recognized as a chemotherapeutic drug for acute promyelocytic leukemia (APL), also having a significant effect on lung cancer. The anti-lung cancer mechanisms of ATO include inhibition of proliferation, promotion of apoptosis, anti-angiogenesis, and inhibition of tumor metastasis. In this review, we summarized the role of arsenic in lung disease from both pathogenic and therapeutic perspectives. Understanding the paradoxical effects of arsenic in the lungs may provide some ideas for further research on the occurrence and treatment of lung diseases.
Collapse
Affiliation(s)
- Caixia Ren
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yang Zhou
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wenwen Liu
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
2
|
Arsenic methylation - Lessons from three decades of research. Toxicology 2021; 457:152800. [PMID: 33901604 PMCID: PMC10048126 DOI: 10.1016/j.tox.2021.152800] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 01/26/2023]
Abstract
Between 1990 and 2020, our understanding of the significance of arsenic biomethylation changed in remarkable ways. At the beginning of this period, the conversion of inorganic arsenic into mono- and di-methylated metabolites was viewed primarily as a process that altered the kinetic behavior of arsenic. By increasing the rate of clearance of arsenic, the formation of methylated metabolites reduced exposure to this toxin; that is, methylation was detoxification. By 2020, it was clear that at least some of the toxic effects associated with As exposure depended on formation of methylated metabolites containing trivalent arsenic. Because the trivalent oxidation state of arsenic is associated with increased potency as a cytotoxin and clastogen, these findings were consistent with methylation-related changes in the dynamic behavior of arsenic. That is, methylation was activation. Our current understanding of the role of methylation as a modifier of kinetic and dynamic behaviors of arsenic is the product of research at molecular, cellular, organismic, and population levels. This information provides a basis for refining our estimates of risk associated with long term exposure to inorganic arsenic in environmental media, food, and water. This report summarizes the growth of our knowledge of enzymatically catalyzed methylation of arsenic over this period and considers the prospects for new discoveries.
Collapse
|
3
|
Stýblo M, Venkatratnam A, Fry RC, Thomas DJ. Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: progress and prospects. Arch Toxicol 2021; 95:1547-1572. [PMID: 33768354 DOI: 10.1007/s00204-021-03028-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic exposure to iAs from environmental sources has been linked to a variety of human diseases. Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of iAs is catalyzed by arsenic (+ 3 oxidation state) methyltransferase (AS3MT). Conversion of iAs to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. These adverse health effects are in part associated with the production of methylated trivalent arsenic species, methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII), during AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique forms that cause disease initiation and progression. Taken together, the current evidence suggests that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond this general understanding of the consequences of iAs methylation, many questions remain unanswered. Our knowledge of metabolic targets for MAsIII and DMAsIII in human cells and mechanisms for interactions between these arsenicals and targets is incomplete. Development of novel analytical methods for quantitation of MAsIII and DMAsIII in biological samples promises to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis of MAsIII and DMAsIII formation, the toxic actions of these metabolites, and methods available for their detection and quantification in biomatrices. Major knowledge gaps and future research directions are also discussed.
Collapse
Affiliation(s)
- Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David J Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
4
|
Selley L, Schuster L, Marbach H, Forsthuber T, Forbes B, Gant TW, Sandström T, Camiña N, Athersuch TJ, Mudway I, Kumar A. Brake dust exposure exacerbates inflammation and transiently compromises phagocytosis in macrophages. Metallomics 2021; 12:371-386. [PMID: 31915771 DOI: 10.1039/c9mt00253g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Studies have emphasised the importance of combustion-derived particles in eliciting adverse health effects, especially those produced by diesel vehicles. In contrast, few investigations have explored the potential toxicity of particles derived from tyre and brake wear, despite their significant contributions to total roadside particulate mass. The objective of this study was to compare the relative toxicity of compositionally distinct brake abrasion dust (BAD) and diesel exhaust particles (DEP) in a cellular model that is relevant to human airways. Although BAD contained considerably more metals/metalloids than DEP (as determined by inductively coupled plasma mass spectrometry) similar toxicological profiles were observed in U937 monocyte-derived macrophages following 24 h exposures to 4-25 μg ml-1 doses of either particle type. Responses to the particles were characterised by dose-dependent decreases in mitochondrial depolarisation (p ≤ 0.001), increased secretion of IL-8, IL-10 and TNF-α (p ≤ 0.05 to p ≤ 0.001) and decreased phagocytosis of S. aureus (p ≤ 0.001). This phagocytic deficit recovered, and the inflammatory response resolved when challenged cells were incubated for a further 24 h in particle-free media. These responses were abrogated by metal chelation using desferroxamine. At minimally cytotoxic doses both DEP and BAD perturbed bacterial clearance and promoted inflammatory responses in U937 cells with similar potency. These data emphasise the requirement to consider contributions of abrasion particles to traffic-related clinical health effects.
Collapse
Affiliation(s)
- Liza Selley
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Linda Schuster
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK. and German Cancer Research Center (DKFZ) & Bioquant Center, Division of Chromatin Networks, 69120, Heidelberg, Germany.
| | - Helene Marbach
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK.
| | - Theresa Forsthuber
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK.
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK.
| | - Timothy W Gant
- Department of Toxicology, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, OX11 0RQ, UK. and MRC-PHE Centre for Environment and Health, Imperial College, London, W2 1PG, UK.
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden.
| | - Nuria Camiña
- MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK.
| | - Toby J Athersuch
- MRC-PHE Centre for Environment and Health, Imperial College, London, W2 1PG, UK. and Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Ian Mudway
- MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK. and Department of Analytical and Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK
| | - Abhinav Kumar
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9NH, UK.
| |
Collapse
|
5
|
Goodale BC, Rayack EJ, Stanton BA. Arsenic alters transcriptional responses to Pseudomonas aeruginosa infection and decreases antimicrobial defense of human airway epithelial cells. Toxicol Appl Pharmacol 2017. [PMID: 28625800 DOI: 10.1016/j.taap.2017.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic contamination of drinking water and food threatens the health of hundreds of millions of people worldwide by increasing the risk of numerous diseases. Arsenic exposure has been associated with infectious lung disease in epidemiological studies, but it is not yet understood how ingestion of low levels of arsenic increases susceptibility to bacterial infection. Accordingly, the goal of this study was to examine the effect of arsenic on gene expression in primary human bronchial epithelial (HBE) cells and to determine if arsenic altered epithelial cell responses to Pseudomonas aeruginosa, an opportunistic pathogen. Bronchial epithelial cells line the airway surface, providing a physical barrier and serving critical roles in antimicrobial defense and signaling to professional immune cells. We used RNA-seq to define the transcriptional response of HBE cells to Pseudomonas aeruginosa, and investigated how arsenic affected HBE gene networks in the presence and absence of the bacterial challenge. Environmentally relevant levels of arsenic significantly changed the expression of genes involved in cellular redox homeostasis and host defense to bacterial infection, and decreased genes that code for secreted antimicrobial factors such as lysozyme. Using pathway analysis, we identified Sox4 and Nrf2-regulated gene networks that are predicted to mediate the arsenic-induced decrease in lysozyme secretion. In addition, we demonstrated that arsenic decreased lysozyme in the airway surface liquid, resulting in reduced lysis of Microccocus luteus. Thus, arsenic alters the expression of genes and proteins in innate host defense pathways, thereby decreasing the ability of the lung epithelium to fight bacterial infection.
Collapse
Affiliation(s)
- Britton C Goodale
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States.
| | - Erica J Rayack
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States
| |
Collapse
|
6
|
Prasad P, Sinha D. Low-level arsenic causes chronic inflammation and suppresses expression of phagocytic receptors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11708-11721. [PMID: 28332085 DOI: 10.1007/s11356-017-8744-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/01/2017] [Indexed: 05/14/2023]
Abstract
The impact of chronic low-level groundwater arsenic (As) exposure [in the range above the WHO-recommended limit of 10 μg/L but ≤50 μg/L (permissible limit of As for many Asian countries)] was investigated for cross talk of inflammatory changes and expression of phagocytic receptors of exposed rural women (N, 45) from districts of 24 Parganas (south) and in matched control groups (N, 43) [As ≤10 μg/L] from the same district. Systemic inflammation was evident from the upregulated levels of pro-inflammatory mediators like tumor necrosis factor-α (TNF-α); interleukins (ILs) like IL-6, IL-8, and IL-12; and C-reactive protein (CRP) in the sera and upregulated expression of protein kinase B phosphorylated at ser473 (pAKTser473)/nuclear factor-κB (NF-κB)/TNF-α axis in the leukocytes of exposed women with respect to control. We found that low-dose As exposure apart from inflicting inflammation altered the expression of phagocytic receptors-Fcγ receptors (FcγRs) and complement receptors (CRs). The leukocytes of the low-As-exposed women exhibited suppression of CD64, CD35, and CD11b and increased expression of CD16 with respect to control. Groundwater As showed a negative correlation with CD64 expression on monocytes [Pearson's r, -0.8205; 95% confidence interval (CI), -0.8789 to -0.7379] and granulocytes [r, -0.7635; 95% CI, -0.8388 to -0.6595] and a positive correlation with CD16 on granulocytes [r, 0.8363; 95% CI, 0.7599 to 0.8899]. A negative correlation of groundwater As was also observed with expression of CD35 on granulocytes [r, -0.8780; 95% CI, -0.9185 to -0.8192] and monocytes [r, -0.7778; 95% CI, -0.8490 to -0.6790] and CD11b on monocytes [r, -0.6035; 95% CI, -0.7218 to -0.4511]. Therefore, it may be indicated that chronic low-level As exposure (11-50 μg/L) not only evoked chronic inflammatory changes but also suppressed the expression of FcγRs and CRs in the exposed women. This, in turn, may lead to susceptibility towards pathogenic infections or in long run may even contribute towards chronic inflammatory diseases including cancer.
Collapse
Affiliation(s)
- Priyanka Prasad
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700 026, India.
| |
Collapse
|
7
|
Elshenawy OH, Abdelhamid G, Althurwi HN, El-Kadi AOS. Dimethylarsinic acid modulates the aryl hydrocarbon receptor-regulated genes in C57BL/6 mice: in vivo study. Xenobiotica 2017; 48:124-134. [DOI: 10.1080/00498254.2017.1289423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Osama H. Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada,
| | - Ghada Abdelhamid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada,
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Greater Cairo, Egypt, and
| | - Hassan N. Althurwi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada,
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Kingdom of Saudi Arabia
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada,
| |
Collapse
|
8
|
Hsu LI, Cheng YW, Chen CJ, Wu MM, Hsu KH, Chiou HY, Lee CH. Cumulative arsenic exposure is associated with fungal infections: Two cohort studies based on southwestern and northeastern basins in Taiwan. ENVIRONMENT INTERNATIONAL 2016; 96:173-179. [PMID: 27693976 DOI: 10.1016/j.envint.2016.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/16/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Long-term arsenic exposure results in atherosclerosis and cancers, along with aberrant immune responses. Animal-based and epidemiological studies indicate that arsenic exposure increases susceptibility to viral and bacterial infections. This study aimed to assess whether arsenic exposure is associated with the development of fungal infection, which is substantially attributed to as a cause of aberrant immunity. Based on two well-established cohorts from two basins in southwestern (SW; high arsenic area) and northeastern (NE; low arsenic area) Taiwan (n=297 and 2738, respectively), the arsenic exposure in well water was estimated using HPLC-ICP-MS. Fungal infections were defined via clinical and mycological assessments (PCR of fungal 18S rRNA) of nail samples. Individuals in SW cohort with cumulative arsenic exposure >10,000μg/L∗years had a higher risk of developing fungal infections (OR=1.57, 95% CI=1.08-1.92) after adjusting for diabetes and occupation. In NE cohort, female sex, alcohol consumption, and chronic kidney diseases were associated with toenail infections. In contrast, fingernail infections (OR=1.33, 95% CI=1.05-1.68) were highly associated with arsenic exposure in a dose-dependent manner. We are the first to report palmar and plantar hyperkeratosis upon low arsenic exposure in 3.9% and 6.7% individuals, respectively. This is the first large-scale study showing arsenic exposure is associated with fungal infections in a dose-dependent manner.
Collapse
Affiliation(s)
- Ling-I Hsu
- Laboratory for Epidemiology, Department of Health Care Management, and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Wen Cheng
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Jen Chen
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Meei-Maan Wu
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kuang-Hung Hsu
- Laboratory for Epidemiology, Department of Health Care Management, and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hung-Yi Chiou
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|