1
|
Sun D, Peyear TA, Bennett WFD, Holcomb M, He S, Zhu F, Lightstone FC, Andersen OS, Ingólfsson HI. Assessing the Perturbing Effects of Drugs on Lipid Bilayers Using Gramicidin Channel-Based In Silico and In Vitro Assays. J Med Chem 2020; 63:11809-11818. [PMID: 32945672 PMCID: PMC7586341 DOI: 10.1021/acs.jmedchem.0c00958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 01/07/2023]
Abstract
Partitioning of bioactive molecules, including drugs, into cell membranes may produce indiscriminate changes in membrane protein function. As a guide to safe drug development, it therefore becomes important to be able to predict the bilayer-perturbing potency of hydrophobic/amphiphilic drugs candidates. Toward this end, we exploited gramicidin channels as molecular force probes and developed in silico and in vitro assays to measure drugs' bilayer-modifying potency. We examined eight drug-like molecules that were found to enhance or suppress gramicidin channel function in a thick 1,2-dierucoyl-sn-glycero-3-phosphocholine (DC22:1PC) but not in thin 1,2-dioleoyl-sn-glycero-3-phosphocholine (DC18:1PC) lipid bilayer. The mechanism underlying this difference was attributable to the changes in gramicidin dimerization free energy by drug-induced perturbations of lipid bilayer physical properties and bilayer-gramicidin interactions. The combined in silico and in vitro approaches, which allow for predicting the perturbing effects of drug candidates on membrane protein function, have implications for preclinical drug safety assessment.
Collapse
Affiliation(s)
- Delin Sun
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Thasin A. Peyear
- Department
of Physiology and Biophysics, Weill Cornell
Medicine, New York, New York 10065, United States
| | - W. F. Drew Bennett
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Matthew Holcomb
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Stewart He
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Fangqiang Zhu
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Felice C. Lightstone
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Olaf S. Andersen
- Department
of Physiology and Biophysics, Weill Cornell
Medicine, New York, New York 10065, United States
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
2
|
Martin KA, Jesudoss Chelladurai JRJ, Bader C, Carreiro E, Long K, Thompson K, Brewer MT. Repurposing the open access malaria box reveals compounds with activity against Tritrichomonas foetus trophozoites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:89-93. [PMID: 32734889 PMCID: PMC7326994 DOI: 10.1016/j.ijpddr.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Abstract
The protozoan parasite Tritrichomonas foetus causes early embryonic death in cattle which results in severe economic loss. In the United States, there are no drugs are approved for treatment of this pathogen. In this study, we evaluated in vitro anti-protozoal effects of compounds from an open access chemical library against T. foetus trophozoites. An initial high-throughput screen identified 16 compounds of interest. Further investigation revealed 12 compounds that inhibited parasite growth and 4 compounds with lethal effects. For lethal compounds, dose-response curves were constructed and the LD50 was calculated for laboratory and field strains of T. foetus. Our experiments revealed chemical scaffolds that were parasiticidal in the micromolar range, and these scaffolds provide a starting point for drug discovery efforts. Further investigation is still needed to investigate suitability of these scaffolds and related compounds in food animals. Importantly, open access chemical libraries can be useful for identifying compounds with activity against protozoan pathogens of veterinary importance. No legal treatments are available for bovine trichomoniasis in the United States. The open access malaria box was screened for compounds with activity against T. foetus trophozoites. Identification of several scaffolds meriting further investigation for suitability in food animals.
Collapse
Affiliation(s)
- Katy A Martin
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | - Christopher Bader
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Elizabeth Carreiro
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Katelyn Long
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kylie Thompson
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Matthew T Brewer
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
3
|
Sun D, Peyear TA, Bennett WFD, Andersen OS, Lightstone FC, Ingólfsson HI. Molecular Mechanism for Gramicidin Dimerization and Dissociation in Bilayers of Different Thickness. Biophys J 2019; 117:1831-1844. [PMID: 31676135 PMCID: PMC7018991 DOI: 10.1016/j.bpj.2019.09.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023] Open
Abstract
Membrane protein functions can be altered by subtle changes in the host lipid bilayer physical properties. Gramicidin channels have emerged as a powerful system for elucidating the underlying mechanisms of membrane protein function regulation through changes in bilayer properties, which are reflected in the thermodynamic equilibrium distribution between nonconducting gramicidin monomers and conducting bilayer-spanning dimers. To improve our understanding of how subtle changes in bilayer thickness alter the gramicidin monomer and dimer distributions, we performed extensive atomistic molecular dynamics simulations and fluorescence-quenching experiments on gramicidin A (gA). The free-energy calculations predicted a nonlinear coupling between the bilayer thickness and channel formation. The energetic barrier inhibiting gA channel formation was sharply increased in the thickest bilayer (1,2-dierucoyl-sn-glycero-3-phosphocholine). This prediction was corroborated by experimental results on gramicidin channel activity in bilayers of different thickness. To further explore the mechanism of channel formation, we performed extensive unbiased molecular dynamics simulations, which allowed us to observe spontaneous gA dimer formation in lipid bilayers. The simulations revealed structural rearrangements in the gA subunits and changes in lipid packing, as well as water reorganization, that occur during the dimerization process. Together, the simulations and experiments provide new, to our knowledge, insights into the process and mechanism of gramicidin channel formation, as a prototypical example of the bilayer regulation of membrane protein function.
Collapse
Affiliation(s)
- Delin Sun
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Thasin A Peyear
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - W F Drew Bennett
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Helgi I Ingólfsson
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California.
| |
Collapse
|
4
|
Biomimetic Membranes with Transmembrane Proteins: State-of-the-Art in Transmembrane Protein Applications. Int J Mol Sci 2019; 20:ijms20061437. [PMID: 30901910 PMCID: PMC6472214 DOI: 10.3390/ijms20061437] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
In biological cells, membrane proteins are the most crucial component for the maintenance of cell physiology and processes, including ion transportation, cell signaling, cell adhesion, and recognition of signal molecules. Therefore, researchers have proposed a number of membrane platforms to mimic the biological cell environment for transmembrane protein incorporation. The performance and selectivity of these transmembrane proteins based biomimetic platforms are far superior to those of traditional material platforms, but their lack of stability and scalability rule out their commercial presence. This review highlights the development of transmembrane protein-based biomimetic platforms for four major applications, which are biosensors, molecular interaction studies, energy harvesting, and water purification. We summarize the fundamental principles and recent progress in transmembrane protein biomimetic platforms for each application, discuss their limitations, and present future outlooks for industrial implementation.
Collapse
|
5
|
Design, synthesis and biological evaluation of 7 H -pyrrolo[2,3- d ]pyrimidin-4-amine derivatives as selective Btk inhibitors with improved pharmacokinetic properties for the treatment of rheumatoid arthritis. Eur J Med Chem 2018; 145:96-112. [DOI: 10.1016/j.ejmech.2017.12.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022]
|
6
|
He L, Li D, Zhang C, Bai P, Chen L. Discovery of (R)-5-(benzo[d][1,3]dioxol-5-yl)-7-((1-(vinylsulfonyl)pyrrolidin-2-yl)methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (B6) as a potent Bmx inhibitor for the treatment of NSCLC. Bioorg Med Chem Lett 2017; 27:4171-4175. [PMID: 28734581 DOI: 10.1016/j.bmcl.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Described as a Btk inhibitor, ibrutinib also potently inhibits Bmx and EGFR, two good targets for lung cancer. Owing to its high CLogP (4.07) and low aqueous solubility (<0.01mg/ml), resulting in unfavorable bioavailability, ibrutinib requires high dosages to achieve good clinical response in the treatment of non-small cell lung cancer (NSCLC). In our effort to improve the CLogP of ibrutinib by structural optimization led to the discovery of a potent anti-cancer agent B6, with beneficial physicochemical parameters (CLogP=2.56, solubility in water≈0.1mg/ml) meeting the principles of oral drugs. B6 exhibited anti-proliferation activities against EGFR-expressing cells, especially the mutant ones, such as H1975 (L858R/T790M, IC50=0.92±0.19μM) and HCC827 (Del119 IC50=0.014±0.01μM). Moreover, B6 significantly slowed down H1975 tumor growth with anti-tumor rate of 73.9% (p<0.01). Enzyme potencies assay demonstrated B6 moderately selectively inhibited Bmx (IC50=35.7±0.1nM) over other kinases. So, as a potent Bmx inhibitor, B6 has the potential to be an efficacious treatment for NSCLC with acquired drug resistance.
Collapse
Affiliation(s)
- Linhong He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Da Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Chufeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Peng Bai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
7
|
Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog 2016; 12:e1005763. [PMID: 27467575 PMCID: PMC4965013 DOI: 10.1371/journal.ppat.1005763] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/21/2016] [Indexed: 01/22/2023] Open
Abstract
A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts. Malaria leads to the loss of over 440,000 lives annually; accelerating research to discover new candidate drugs is a priority. Medicines for Malaria Venture (MMV) has distilled over 25,000 compounds that kill malaria parasites in vitro into a group of 400 representative compounds, called the "Malaria Box". These Malaria Box sets were distributed free-of-charge to research laboratories in 30 different countries that work on a wide variety of pathogens. Fifty-five groups compiled >290 assay results for this paper describing the many activities of the Malaria Box compounds. The collective results suggest a potential mechanism of action for over 130 compounds against malaria and illuminate the most promising compounds for further malaria drug development research. Excitingly some of these compounds also showed outstanding activity against other disease agents including fungi, bacteria, other single-cellular parasites, worms, and even human cancer cells. The results have ignited over 30 drug development programs for a variety of diseases. This open access effort was so successful that MMV has begun to distribute another set of compounds with initial activity against a wider range of infectious agents that are of public health concern, called the Pathogen Box, available now to scientific labs all over the world (www.PathogenBox.org).
Collapse
|