1
|
Cheng M, Hou X, Huang Z, Chen Z, Ni D, Zhang W, Rao Y, Mu W. Structural Insights into the Catalytic Cycle of Inulin Fructotransferase: From Substrate Anchoring to Product Releasing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17030-17040. [PMID: 39034843 DOI: 10.1021/acs.jafc.4c03615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Carbohydrate degradation is crucial for living organisms due to their essential functions in providing energy and composing various metabolic pathways. Nevertheless, in the catalytic cycle of polysaccharide degradation, the details of how the substrates bind and how the products release need more case studies. Here, we choose an inulin fructotransferase (SpIFTase) as a model system, which can degrade inulin into functionally difructose anhydride I. At first, the crystal structures of SpIFTase in the absence of carbohydrates and complex with fructosyl-nystose (GF4), difructose anhydride I, and fructose are obtained, giving the substrate trajectory and product path of SpIFTase, which are further supported by steered molecular dynamics simulations (MDSs) along with mutagenesis. Furthermore, structural topology variations at the active centers of inulin fructotransferases are suggested as the structural base for product release, subsequently proven by substitution mutagenesis and MDSs. Therefore, this study provides a case in point for a deep understanding of the catalytic cycle with substrate trajectory and product path.
Collapse
Affiliation(s)
- Mei Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Yu S, Wang Z, Li Q, Wang T, Zhao W. Innovative application of a novel di-D-fructofuranose 1,2':2,3'-dianhydride hydrolase (DFA-IIIase) from Duffyella gerundensis A4 to burdock root to improve nutrition. Food Funct 2024; 15:1021-1030. [PMID: 38180053 DOI: 10.1039/d3fo03277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Burdock is native to Europe and Asia and rich in many functional ingredients, including biomacromolecule polysaccharide inulin. The prebiotic fructan inulin can provide energy to organisms via several pathways. One pathway is that inulin fructotransferase (IFTase) first converts inulin to III-type difructose anhydride (DFA-III), which has many beneficial physiological functions. Then, DFA-III is hydrolyzed to inulobiose, which is a Fn-type prebiotic fructo-oligosaccharide, via difructose anhydride hydrolase (DFA-IIIase). However, there has been no study on the application of IFTase or DFA-IIIase to process burdock to increase DFA-III or inulobiose. Moreover, only five DFA-IIIases have been reported to date and all of them are from the Arthrobacter genus. Whether other microbes except for the Arthrobacter genus can utilize DFA-III through DFA-IIIase is unknown. In this work, a DFA-IIIase from Duffyella gerundensis A4 (D. gerundensis A4), abbreviated as DgDFA-IIIase, was identified and characterized in detail. DgDFA-IIIase is a bifunctional enzyme, that is, besides its hydrolytic ability to DFA-III, it has the same catalytic ability as IFTase to inulin. The enzyme was applied to the burdock root aiming at inulin and DFA-III, and inulobiose was produced with an increase in Gn-type fructo-oligosaccharide. The work verifies that microorganisms of the non-Arthrobacter genus also have the potential ability to use DFA-III by DFA-IIIase, and DFA-IIIase is feasible to increase functional substances of burdock root instead of IFTase and endo-inulinase, which paves the way for the production of functional food utilizing the polysaccharide inulin to improve nutrition and health.
Collapse
Affiliation(s)
- Shuhuai Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhenlong Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Qiting Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Tong Wang
- Microsoft Research AI4Science, Beijing 100080, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| |
Collapse
|
3
|
Xu H, Li Q, Zhao W, Yu S. Improving the catalytic activity of difructose anhydride III hydrolase from Arthrobacter chlorophenolicus A6 by modification of two residues. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Phytochemical Composition, Antioxidant, Antiacetylcholinesterase, and Cytotoxic Activities of Rumex crispus L. Int J Anal Chem 2021; 2021:6675436. [PMID: 34306086 PMCID: PMC8272662 DOI: 10.1155/2021/6675436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
Rumex crispus L. (R. crispus) is regarded as an aromatic plant. It was used for its excellent biological properties in traditional medicine. The aerial part was extracted successively by maceration with three solvents increasing polarity (cyclohexane (CYH), dichloromethane (DCM), and methanol (MeOH)) to evaluate their chemical compositions and biological activities. The extracts were rich in phenolic compounds (13.0 to 249.8 mg GAE/g of dry weight (dw)). The MeOH extract has presented remarkable IC50 = 6.2 μg/mL for anti-DPPH and 31.6 μg/mL for anti-AChE. However, the DCM extract has the highest cytotoxic activity against the two cancer cells (HCT-116 and MCF-7) (69.2 and 77.2% inhibition at 50 μg/mL, respectively). Interestingly, GC-MS analysis enabled to identify three new compounds in R. crispus extracts, such as L-(−)-arabitol (5), D-(−) fructopyranose (7) detected only in MeOH extract, and 2, 5-dihydroxyacetophenone (3) detected in all extracts. For HPLC chromatograms, cardamonin (8), 5-hydroxy-3′-methoxyflavone (17), and 3′-hydroxy-b-naphthoflavone (18) showed the highest concentrations of 74.0, 55.5, and 50.4 mg/g of dw, respectively, among others who are identified. Some phenolic compounds were identified and quantified by HPLC in more than one organic extract, such as 4′, 5-dihydroxy-7-methoxyflavone (13), 4′, 5-dihydroxy-7-methoxyflavone (14), 5-hydroxy-3′-methoxyflavone (17), and 3′-hydroxy-b-naphthoflavone (18), were found for the first time in the R. crispus extracts. Our results showed that the biological activities of this plant might be linked to their phenolic compounds and that the polar extracts could be considered as new natural supplements to be used in food and pharmaceuticals.
Collapse
|
5
|
Dietrich J, Schrader S. Towards Lacrimal Gland Regeneration: Current Concepts and Experimental Approaches. Curr Eye Res 2019; 45:230-240. [PMID: 31246108 DOI: 10.1080/02713683.2019.1637438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dry eye disease (DED) is a complex and multifactorial disease resulting in a continual cycle of tear hyperosmolarity and inflammation. Patients suffering from DED experience severe pain and visual impairments leading to a reduced quality of life. Aqueous-deficient dry eye (ADDE), mainly caused through a loss of functional lacrimal gland tissue, results in the most severe forms of DED. Despite a high prevalence, the current treatments remain palliative and may be insufficient to alleviate the symptoms. Consequently, investigations on experimental approaches for in situ lacrimal gland regeneration are of great clinical interest. This article reviews the current knowledge about processes involved in lacrimal gland regeneration, about lacrimal gland resident stem cells, and offers deductions about possible concepts for in situ lacrimal gland regeneration. Promising starting points might be the utilization of therapeutic proteins, such as bone morphogenetic protein 7, mesenchymal stem cells (MSC) or MSC-based treatments such as conditioned medium, lyophilized cell extracts or adult acinar cells. This review further summarizes current experimental approaches for the treatment of ADDE in animal models and patients. Approaches investigating side population stem cells, epithelial progenitor cells and MSC showed that the transplantation of these cells had therapeutic effects on ADDE. However, the most promising and best-studied experimental approach is the use of MSC for induction/enhancement of in situ lacrimal gland regeneration. Their immunomodulatory effects, low immunogenicity, promotion of tissue regeneration and involvement during spontaneous lacrimal regeneration are favorable traits for clinical applications. In addition, the efficacy and safety of allogeneic MSC transplantation have already been demonstrated in a small patient cohort.
Collapse
Affiliation(s)
- Jana Dietrich
- Department of Ophthalmology, Laboratory of Experimental Ophthalmology, PIUS-HOSPITAL, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Stefan Schrader
- Department of Ophthalmology, Laboratory of Experimental Ophthalmology, PIUS-HOSPITAL, Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
6
|
Yu S, Shen H, Cheng Y, Zhu Y, Li X, Mu W. Structural and Functional Basis of Difructose Anhydride III Hydrolase, Which Sequentially Converts Inulin Using the Same Catalytic Residue. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuhuai Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Hui Shen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanyuan Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Audemar M, Atencio-Genes L, Ortiz Mellet C, Jérôme F, Garcia Fernandez JM, De Oliveira Vigier K. Carbon Dioxide as a Traceless Caramelization Promotor: Preparation of Prebiotic Difructose Dianhydrides (DFAs)-Enriched Caramels from d-Fructose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6093-6099. [PMID: 28557424 DOI: 10.1021/acs.jafc.7b01601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Activation of a concentrated solution of d-fructose with carbonic acid, generated from carbon dioxide, induces the formation of difructose dianhydrides (DFAs) and their glycosylated derivatives (glycosyl-DFAs), a family of prebiotic oligosaccharides. Under optimized conditions, up to 70% of the active DFA species were obtained from a highly concentrated solution of fructose, avoiding the filtration step and contamination risk associated with the current procedures that employ heterogeneous catalysis with acid ion-exchange resins. The optimized CO2-promoted preparation of DFA-enriched caramel described here has been already successfully scaled up to 150 kg of d-fructose for nutritional studies, showing that implementation of this process is possible at a larger scale.
Collapse
Affiliation(s)
- Maïté Audemar
- IC2MP UMR CNRS 7285, Université de Poitiers, ENSIP, B1 , 1 rue Marcel Doré TSA 41105, 86073 Poitiers, Cedex 9, France
| | - Loyda Atencio-Genes
- Instituto de Investigaciones Quı́micas (IIQ), CSIC - Universidad de Sevilla , Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Universidad de Sevilla , Profesor Garcı́a González 1, E-41012 Sevilla, Spain
| | - François Jérôme
- IC2MP UMR CNRS 7285, Université de Poitiers, ENSIP, B1 , 1 rue Marcel Doré TSA 41105, 86073 Poitiers, Cedex 9, France
| | - José Manuel Garcia Fernandez
- Instituto de Investigaciones Quı́micas (IIQ), CSIC - Universidad de Sevilla , Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Karine De Oliveira Vigier
- IC2MP UMR CNRS 7285, Université de Poitiers, ENSIP, B1 , 1 rue Marcel Doré TSA 41105, 86073 Poitiers, Cedex 9, France
| |
Collapse
|
8
|
Blin C, Passet V, Touchon M, Rocha EPC, Brisse S. Metabolic diversity of the emerging pathogenic lineages of Klebsiella pneumoniae. Environ Microbiol 2017; 19:1881-1898. [PMID: 28181409 DOI: 10.1111/1462-2920.13689] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 11/30/2022]
Abstract
Multidrug resistant and hypervirulent clones of Klebsiella pneumoniae are emerging pathogens. To understand the association between genotypic and phenotypic diversity in this process, we combined genomic, phylogenomic and phenotypic analysis of a diverse set of K. pneumoniae and closely related species. These species were able to use an unusually large panel of metabolic substrates for growth, many of which were shared between all strains. We analysed the substrates used by only a fraction of the strains, identified some of their genetic basis, and found that many could not be explained by the phylogeny of the strains. Puzzlingly, few traits were associated with the ecological origin of the strains. One noticeable exception was the ability to use D-arabinose, which was much more frequent in hypervirulent strains. The broad carbon and nitrogen core metabolism of K. pneumoniae might contribute to its ability to thrive in diverse environments. Accordingly, even the hypervirulent and multidrug resistant clones have the metabolic signature of ubiquitous bacteria. The apparent few metabolic differences between hypervirulent, multi-resistant and environmental strains may favour the emergence of dual-risk strains that combine resistance and hypervirulence.
Collapse
Affiliation(s)
- Camille Blin
- UPMC Univ Paris06, IFD, 4 Place Jussieu, Sorbonne Universités, 75252 PARIS cedex 05, France.,Institut Pasteur, Microbial Evolutionary Genomics, Paris, France.,UMR3525, Paris, CNRS, France
| | - Virginie Passet
- Institut Pasteur, Microbial Evolutionary Genomics, Paris, France.,UMR3525, Paris, CNRS, France
| | - Marie Touchon
- Institut Pasteur, Microbial Evolutionary Genomics, Paris, France.,UMR3525, Paris, CNRS, France
| | - Eduardo P C Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, Paris, France.,UMR3525, Paris, CNRS, France
| | - Sylvain Brisse
- Institut Pasteur, Microbial Evolutionary Genomics, Paris, France.,UMR3525, Paris, CNRS, France.,Institut Pasteur, Molecular Prevention and Therapy of Human Diseases, Paris, France
| |
Collapse
|