1
|
Shi Y, Ran Q, Wang X, Shi L. Seroprevalence of Enterovirus D68 Infection among Humans: A Systematic Review and Meta-Analysis. Intervirology 2023; 66:111-121. [PMID: 37793363 PMCID: PMC10614446 DOI: 10.1159/000531853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/26/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION Human enterovirus D68 (EV-D68), which belongs to enteroviruses of the small RNA family, is a type of enterovirus that can cause acute respiratory tract infection and central nervous system diseases. This study systematically analysed and summarized EV-D68 antibody studies in databases and identified the seropositivity rates of different regions, ages, and sexes. METHODS Meta-analysis was performed using STATA 16.0 software. I2 and Q tests were used to analyse the heterogeneity of the included studies. Meta-regression analysis was performed for different groups, and Egger's linear regression analysis was used to evaluate publication bias. RESULTS The results of multiple studies indicated that the serological prevalence range of EV-D68 antibody was 17.78-96.69%. The results of the meta-analysis showed that the seropositivity rate of EV-D68 antibody was 76% (95% confidence interval [CI]: 67-84%), among which that of the Chinese population was 74% (95% CI: 61-86%) and that of other countries was 79% (95% CI: 65-91%). At the same time, a subgroup analysis was conducted. The seroprevalence of EV-D68 antibody was related to age but not sex or region. CONCLUSION The seropositivity rate was lower in the below 5-year age group; however, it gradually increased with age. The results of this study showed that EV-D68 infection was widespread in the population, and the current clinical infection situation could not reflect the actual epidemic situation of the virus, among which children under 5 years old were vulnerable to infection, which should be given greater attention for epidemic prevention and control.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Qinqin Ran
- Department of Nursing, School of Medicine, Jianghan University, Wuhan, China
| | - Xiaochen Wang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Lu Shi
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
2
|
Fall A, Kenmoe S, Ebogo-Belobo JT, Mbaga DS, Bowo-Ngandji A, Foe-Essomba JR, Tchatchouang S, Amougou Atsama M, Yéngué JF, Kenfack-Momo R, Feudjio AF, Nka AD, Mbongue Mikangue CA, Taya-Fokou JB, Magoudjou-Pekam JN, Noura EA, Zemnou-Tepap C, Meta-Djomsi D, Maïdadi-Foudi M, Kame-Ngasse GI, Nyebe I, Djukouo LG, Kengne Gounmadje L, Tchami Ngongang D, Oyono MG, Demeni Emoh CP, Tazokong HR, Mahamat G, Kengne-Ndé C, Sadeuh-Mba SA, Dia N, La Rosa G, Ndip L, Njouom R. Global prevalence and case fatality rate of Enterovirus D68 infections, a systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010073. [PMID: 35134062 PMCID: PMC8824346 DOI: 10.1371/journal.pntd.0010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
A substantial amount of epidemiological data has been reported on Enterovirus D68 (EV-D68) infections after the 2014 outbreak. Our goal was to map the case fatality rate (CFR) and prevalence of current and past EV-D68 infections. We conducted a systematic review (PROSPERO, CRD42021229255) with published articles on EV-68 infections in PubMed, Embase, Web of Science and Global Index Medicus up to January 2021. We determined prevalences using a model random effect. Of the 4,329 articles retrieved from the databases, 89 studies that met the inclusion criteria were from 39 different countries with apparently healthy individuals and patients with acute respiratory infections, acute flaccid myelitis and asthma-related diseases. The CFR estimate revealed occasional deaths (7/1353) related to EV-D68 infections in patients with severe acute respiratory infections. Analyses showed that the combined prevalence of current and past EV-D68 infections was 4% (95% CI = 3.1-5.0) and 66.3% (95% CI = 40.0-88.2), respectively. The highest prevalences were in hospital outbreaks, developed countries, children under 5, after 2014, and in patients with acute flaccid myelitis and asthma-related diseases. The present study shows sporadic deaths linked to severe respiratory EV-D68 infections. The study also highlights a low prevalence of current EV-D68 infections as opposed to the existence of EV-D68 antibodies in almost all participants of the included studies. These findings therefore highlight the need to implement and/or strengthen continuous surveillance of EV-D68 infections in hospitals and in the community for the anticipation of the response to future epidemics.
Collapse
Affiliation(s)
- Amary Fall
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Sebastien Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Marie Amougou Atsama
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | | | - Alex Durand Nka
- Virology Laboratory, Chantal Biya International Reference Center for Research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
| | | | | | | | - Efietngab Atembeh Noura
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Dowbiss Meta-Djomsi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Martin Maïdadi-Foudi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Inès Nyebe
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | | | - Martin Gael Oyono
- Department of Animals Biology and Physiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Gadji Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | | | - Ndongo Dia
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Lucy Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Richard Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| |
Collapse
|
3
|
Howard W, Savulescu D, Berrie L, Puren AJ. Description of non-polio enteroviruses identified in two national surveillance programmes in South Africa. S Afr J Infect Dis 2021; 35:196. [PMID: 34485481 PMCID: PMC8378180 DOI: 10.4102/sajid.v35i1.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/29/2020] [Indexed: 11/23/2022] Open
Abstract
Background Human enteroviruses (EV) consist of 106 serotypes and four species: EV-A, EV-B, EV-C and EV-D. Enteroviruses cause clinical symptoms varying from severe to mild. Knowledge of EV burden in South Africa is limited, and as non-polio EV are important causes of acute flaccid paralysis (AFP) and meningitis, information on the circulating serotypes is vital. Methods Between 2010 and 2012, a total of 832 stool and viral isolate specimens were obtained from two national surveillance programmes at the National Institute for Communicable Diseases: the Rotavirus Sentinel Surveillance Programme (RSSP) and the AFP surveillance programme. Real-time polymerase chain reaction and Sanger sequencing were performed to detect and serotype EV. Results Non-polio EV were detected in 446 specimens, of which 308 were sequenced. Stool specimens yielded a greater variety of serotypes than viral cultures. EV-B viruses were predominant (58.44%), whilst EV-C viruses were detected in 31% of the specimens tested. South African prevalence for these viruses was higher than other countries, such as France with less than 2%, and Spain and the United States with less than 10%. The most common serotype detected was Enterovirus 99 (EV-C, 8.63%), which has not been reported in other regions. Conclusion Direct sequencing from stool specimens yields a broader, more comprehensive description of EV infections compared to sequencing from viral cultures. Disease-associated serotypes were detected, but only in small numbers. This study provides a baseline for EV strain circulation; however, surveillance needs to be expanded to improve EV knowledge in South Africa.
Collapse
Affiliation(s)
- Wayne Howard
- National Institute for Communicable Diseases, Johannesburg, South Africa.,Faculty of Health, University of Witwatersrand, Johannesburg, South Africa
| | - Dana Savulescu
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Leigh Berrie
- Faculty of Health, University of Witwatersrand, Johannesburg, South Africa.,National Priority Programmes, National Health Laboratory Services, Johannesburg, South Africa
| | - Adrian J Puren
- National Institute for Communicable Diseases, Johannesburg, South Africa.,Faculty of Health, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
The role of conformational epitopes in the evolutionary divergence of enterovirus D68 clades: A bioinformatics-based study. INFECTION GENETICS AND EVOLUTION 2021; 93:104992. [PMID: 34242773 DOI: 10.1016/j.meegid.2021.104992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022]
Abstract
Enterovirus D68 (EV-D68), as one of the major pathogens of paediatric respiratory disease, has been widely spread in the population in recent years. As the basis of virus antigenicity, antigenic epitopes are essential to monitoring the transformation of virus antigenicity. However, there is a lack of systematic studies on the antigenic epitopes of EV-D68. In this study, a bioinformatics-based prediction algorithm for human enteroviruses was used to predict the conformational epitopes of EV-D68. The prediction results showed that the conformational epitopes of EV-D68 were clustered into three sites: site 1, site 2, and site 3. Site 1 was located in the "north rim" region of the canyon near the fivefold axis; site 2 was located in the "puff" region near the twofold axis; and site 3 consisted of two parts, one in the "knob" region on the south rim of the canyon and the other in the threefold axis region. The predicted epitopes overlapped highly with the binding regions of four reported monoclonal antibodies (mAbs), indicating that the predictions were highly reliable. Phylogenetic analysis showed that amino acid mutations in the epitopes of the VP1 BC loop, DE loop, C-terminus, and VP2 EF loop played a crucial role in the evolutionary divergence of EV-D68 clades/subclades and epidemics. This finding indicated that the VP1 BC loop, DE loop, C-terminus, and VP2 EF loop were the most important epitopes of EV-D68. Research on the epitopes of EV-D68 will contribute to outbreak surveillance and to the development of diagnostic reagents and recombinant vaccines.
Collapse
|
5
|
Fall A, Jallow MM, Kebe O, Kiori DE, Sy S, Goudiaby D, Boye CSB, Niang MN, Dia N. Low Circulation of Subclade A1 Enterovirus D68 Strains in Senegal during 2014 North America Outbreak. Emerg Infect Dis 2019; 25:1404-1407. [PMID: 31211670 PMCID: PMC6590772 DOI: 10.3201/eid2507.181441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To retrospectively investigate enterovirus D68 circulation in Senegal during the 2014 US outbreak, we retrieved specimens from 708 persons, mostly children, who had acute respiratory symptoms during September-December 2014. Enterovirus D68 was detected in 14 children (2.1%); most cases occurred in October. Phylogenetic analysis revealed that all strains clustered within subclade A1.
Collapse
|
6
|
Kadji FMN, Nishimura H, Okamoto M, Sato K, Ohmiya S, Ito H, Suzuki A, Nagai Y, Oshitani H. Fluctuations in Antibody Titers against Enterovirus D68 in Pediatric Sera Collected in a Community before, during, and after a Possible Outbreak. Jpn J Infect Dis 2019; 73:55-57. [PMID: 31474700 DOI: 10.7883/yoken.jjid.2019.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We previously reported a hospital-based epidemiological study on enterovirus (EV)-D68 infection among children during the autumn of 2015, which indirectly inferred an outbreak in Sendai, Japan. In this study, stocked sera of children (aged 0-6 years; without symptoms of infectious diseases) in the Sendai community collected during 4 periods (1 year before, 6 months before, immediately after, and 1 year after the possible outbreak period) were analyzed using the neutralization antibody titer assay to determine community children's immunity levels against EV-D68 infection. The immunity levels were confirmed to have increased during the possible outbreak period and to have gradually waned over 1 year without another outbreak. These results provide background information supporting the results of our previous hospital-based surveillance study.
Collapse
Affiliation(s)
- Francois Marie Ngako Kadji
- Virus Research Center, Clinical Research Division, Sendai Medical Center.,Department of Virology, Tohoku University Graduate School of Medicine
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center
| | - Michiko Okamoto
- Department of Virology, Tohoku University Graduate School of Medicine
| | - Ko Sato
- Virus Research Center, Clinical Research Division, Sendai Medical Center
| | - Suguru Ohmiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center
| | - Hiroko Ito
- Virus Research Center, Clinical Research Division, Sendai Medical Center
| | - Akira Suzuki
- Virus Research Center, Clinical Research Division, Sendai Medical Center.,Department of Virology, Tohoku University Graduate School of Medicine.,Miyagi Prefecture Ishinomaki Public Health Center
| | | | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine
| |
Collapse
|
7
|
Caylan E, Weinblatt E, Welter J, Dozor A, Wang G, Nolan SM. Comparison of the Severity of Respiratory Disease in Children Testing Positive for Enterovirus D68 and Human Rhinovirus. J Pediatr 2018; 197:147-153.e1. [PMID: 29655864 DOI: 10.1016/j.jpeds.2018.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To compare the characteristics and severity of respiratory disease in children testing positive for enterovirus D68 (EV-D68) and for human rhinovirus (RhV). STUDY DESIGN A retrospective single center study of children presenting with acute respiratory symptoms and positive polymerase chain reaction for RhV/EV from September 1, 2014 through October 31, 2014 was performed. Specimens were subsequently tested specifically for EV-D68 and specimens identified as RhV were subtyped when possible into RhV-A, RhV-B, and RhV-C species. Clinical manifestations in patients with EV-D68 were compared with those with non-EV-D68, RhV, and RhV-C. RESULTS Of the 173 patients included in the analysis, 72 tested positive for EV-D68, 61 for RhV, and 30 for RhV-C. There were significantly fewer infants in the EV-D68 group. Patients with EV-D68 were more likely than those without EV-D68, and specifically with RhV-C, to have fever and wheezing. Patients with EV-D68 received more magnesium sulfate for respiratory distress not responding adequately to repeated doses of inhaled albuterol. Hospitalized patients with EV-D68 received more bronchodilator therapy than patients with RhV. Patients with EV-D68 were more likely to be admitted to the intensive care unit and were older than patients without EV-D68. There was no difference in length of overall hospitalization or time in the pediatric intensive care unit. CONCLUSIONS Children with EV-D68 appeared to have more severe respiratory disease on admission than children with RhV as evidenced by higher rates of fever, wheezing, bronchodilator use and pediatric intensive care unit admission. Despite the initial difference in severity, no significant difference in length of stay was found suggesting that patients with EV-D68 recovered as quickly as other groups.
Collapse
Affiliation(s)
- Esra Caylan
- Division of Pediatric Pulmonology, Allergy, Immunology, and Sleep Medicine, New York Medical College, Valhalla, NY
| | | | - John Welter
- Division of Pediatric Pulmonology, Allergy, Immunology, and Sleep Medicine, New York Medical College, Valhalla, NY.
| | - Allen Dozor
- Division of Pediatric Pulmonology, Allergy, Immunology, and Sleep Medicine, New York Medical College, Valhalla, NY
| | - Guiqing Wang
- Pathology and Clinical Laboratories, New York Medical College/ Westchester Medical Center, Valhalla, NY
| | - Sheila M Nolan
- Pediatric Infectious Diseases, New York Medical College, Valhalla, NY
| |
Collapse
|
8
|
Dyda A, Stelzer-Braid S, Adam D, Chughtai AA, MacIntyre CR. The association between acute flaccid myelitis (AFM) and Enterovirus D68 (EV-D68) - what is the evidence for causation? Euro Surveill 2018; 23:17-00310. [PMID: 29386095 PMCID: PMC5792700 DOI: 10.2807/1560-7917.es.2018.23.3.17-00310] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BackgroundEnterovirus D68 (EV-D68) has historically been a sporadic disease, causing occasional small outbreaks of generally mild infection. In recent years, there has been evidence of an increase in EV-D68 infections globally. Large outbreaks of EV-D68, with thousands of cases, occurred in the United States, Canada and Europe in 2014. The outbreaks were associated temporally and geographically with an increase in clusters of acute flaccid myelitis (AFM).
Aims: We aimed to evaluate a causal association between EV-D68 and AFM.
Methods: Using data from the published and grey literature, we applied the Bradford Hill criteria, a set of nine principles applied to examine causality, to evaluate the relationship between EV-D68 and AFM. Based on available evidence, we defined the Bradford Hill Criteria as being not met, or met minimally, partially or fully.
Results: Available evidence applied to EV-D68 and AFM showed that six of the Bradford Hill criteria were fully met and two were partially met. The criterion of biological gradient was minimally met. The incidence of EV-D68 infections is increasing world-wide. Phylogenetic epidemiology showed diversification from the original Fermon and Rhyne strains since the year 2000, with evolution of a genetically distinct outbreak strain, clade B1. Clade B1, but not older strains, is associated with AFM and is neuropathic in animal models.
Conclusion: While more research is needed on dose-response relationship, application of the Bradford Hill criteria supported a causal relationship between EV-D68 and AFM.
Collapse
Affiliation(s)
- Amalie Dyda
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia
| | - Sacha Stelzer-Braid
- School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia,Division of Serology and Virology, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, Australia
| | - Dillon Adam
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia
| | - Abrar A Chughtai
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia
| | - C Raina MacIntyre
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia,College of Public Service and Community Solutions and College of Health Solutions, Arizona State University, Tempe, Arizona, United States
| |
Collapse
|
9
|
Itagaki T, Aoki Y, Matoba Y, Tanaka S, Ikeda T, Mizuta K, Matsuzaki Y. Clinical characteristics of children infected with enterovirus D68 in an outpatient clinic and the association with bronchial asthma. Infect Dis (Lond) 2017; 50:303-312. [PMID: 29119851 DOI: 10.1080/23744235.2017.1400176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND All reports of increases in severe respiratory disease associated with human enterovirus D68 (EV-D68) are from hospital settings. However, there are few reports describing clinical characteristics in less severely affected populations. METHODS We conducted a retrospective observational study from January 2010 to December 2015 in Yamagata, Japan. Using regional passive surveillance, 5794 respiratory specimens were collected from children who initially presented to an outpatient clinic with acute respiratory symptoms. The collected samples were tested for EV-D68 by reverse transcription PCR. RESULTS EV-D68 was detected in 79 specimens mainly during the two epidemic periods in August-October 2010 and August-October 2015, when detection rates were 10.2% (31 of 304 specimens) and 16.3% (46 of 282 specimens), respectively. Among the 69 EV-D68-positive children, excluding those with viral coinfection, 39 (57%) had upper respiratory tract infections, 23 (33%) bronchiolitis or asthma attack, 5 (7%) bronchitis, 1 (1%) meningitis and 1 (1%) acute flaccid paralysis. In 23 children with wheezing, retraction was observed in 10 (43%), and six (26%) were diagnosed with asthma exacerbation. Six children required hospital admission, five (83%) because of asthma exacerbation. A history of asthma or wheezing was the most significant risk factor for the development of wheezing (odds ratio, 8.23; 95% CI, 2.65-25.50; p < .001). CONCLUSIONS The low rate of hospitalization (9%, 6 of 69) indicates that most cases with EV-D68 infection were managed as outpatients. A history of asthma or wheezing was a potential risk factor for wheezing, resulting in hospitalization due to a severe asthma attack.
Collapse
Affiliation(s)
| | - Yoko Aoki
- b Department of Microbiology , Yamagata Prefectural Institute of Public Health , Tokamachi , Japan
| | - Yohei Matoba
- b Department of Microbiology , Yamagata Prefectural Institute of Public Health , Tokamachi , Japan
| | - Shizuka Tanaka
- b Department of Microbiology , Yamagata Prefectural Institute of Public Health , Tokamachi , Japan
| | - Tatsuya Ikeda
- b Department of Microbiology , Yamagata Prefectural Institute of Public Health , Tokamachi , Japan
| | - Katsumi Mizuta
- b Department of Microbiology , Yamagata Prefectural Institute of Public Health , Tokamachi , Japan
| | - Yoko Matsuzaki
- c Department of Infectious Diseases , Yamagata University Faculty of Medicine , Iida-Nishi , Japan
| |
Collapse
|
10
|
Hellferscee O, Tempia S, Walaza S, Variava E, Dawood H, Wolter N, Madhi SA, du Plessis M, Cohen C, Treurnicht FK. Enterovirus genotypes among patients with severe acute respiratory illness, influenza-like illness, and asymptomatic individuals in South Africa, 2012-2014. J Med Virol 2017; 89:1759-1767. [PMID: 28574589 PMCID: PMC5714810 DOI: 10.1002/jmv.24869] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/14/2017] [Indexed: 01/26/2023]
Abstract
Enteroviruses can cause outbreaks of severe acute respiratory illness (SARI) and EV-A, -B, -C, and -D species have different pathogenic profiles and circulation patterns. We aimed to characterize and determine the prevalence of enterovirus genotypes among South African patients with respiratory illness and controls during June 2012 to July 2014. Syndromic SARI and influenza-like illness (ILI) surveillance was performed at two sentinel sites. At each site nasopharyngeal/oropharyngeal specimens were collected from SARI and ILI patients as well as controls. Specimens were tested for enterovirus by real-time PCR. Positive specimens were further genotyped by sequencing a region of the VP1 gene. The prevalence of enterovirus was 5.8% (87/1494), 3.4% (103/3079), and 3.4% (46/1367) among SARI, ILI, and controls, respectively (SARI/controls, P = 0.002 and ILI/control, P = 0.973). Among the 101/236 (42.8%) enterovirus-positive specimens that could be genotyped, we observed a high diversity of circulating enterovirus genotypes (a total of 33 genotypes) from all four human enterovirus species with high prevalence of Enterovirus-B (60.4%; 61/101) and Enterovirus-A (21.8%; 22/101) compared to Enterovirus-C (10.9%; 11/101) and Enterovirus-D (6.9%; 7/101) (P = 0.477). Of the enterovirus genotypes identified, Echovirus 30 (9.9%, 10/101), Coxsackie virus B5 (7.9%, 8/101) and Enterovirus-D68 (6.9%, 7/101) were most prevalent. There was no difference in disease severity (SARI or ILI compared to controls) between the different enterovirus species (P = 0.167). We observed a high number of enterovirus genotypes in patients with respiratory illness and in controls from South Africa with no disease association of EV species with disease severity.
Collapse
Affiliation(s)
- Orienka Hellferscee
- National Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- University of the WitwatersrandJohannesburgSouth Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- Centres for Disease Control and PreventionAtlantaGeorgia
| | - Sibongile Walaza
- National Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- University of the WitwatersrandJohannesburgSouth Africa
| | - Ebrahim Variava
- University of the WitwatersrandJohannesburgSouth Africa
- Department of MedicineKlerksdorp‐Tshepong Hospital ComplexKlerksdorpSouth Africa
| | - Halima Dawood
- Pietermaritzburg Metropolitan HospitalPietermaritzburgSouth Africa
- CaprisaUniversity of KwaZulu‐NatalSouth Africa
| | - Nicole Wolter
- National Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- University of the WitwatersrandJohannesburgSouth Africa
| | - Shabir A. Madhi
- National Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- University of the WitwatersrandJohannesburgSouth Africa
| | - Mignon du Plessis
- National Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- University of the WitwatersrandJohannesburgSouth Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
- University of the WitwatersrandJohannesburgSouth Africa
| | - Florette K. Treurnicht
- National Institute for Communicable Diseases of the National Health Laboratory ServiceJohannesburgSouth Africa
| |
Collapse
|
11
|
Bosis S, Esposito S. Enterovirus D68-Associated Community-Acquired Pneumonia in the Pediatric Age Group. Curr Infect Dis Rep 2017; 19:12. [PMID: 28251508 DOI: 10.1007/s11908-017-0567-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the current knowledge regarding the role of Enterovirus D68 (EV-D68) in community-acquired pneumonia (CAP) in children. RECENT FINDINGS EV-D68 is an emergent viral pathogen. Since its first isolation in 1962 in California in four children suffering from CAP and bronchiolitis, EV-D68 has been rarely detected from respiratory specimens. However, recently, EV-D68 infection has raised concerns in the international community because of outbreaks in 2014 in the USA and the increased number of children with EV-D68-associated severe respiratory illnesses, including pneumonia, that have been reported in many other countries around the world. EV-D68 causes severe and life-threatening respiratory diseases in the pediatric population, particularly in children with underlying conditions such as prematurity or chronic diseases. Since no specific treatment or vaccinations are available for EV-D68 infections, greater surveillance as well as the use of sensitive and rapid diagnostic methods are essential to prevent and manage new outbreaks.
Collapse
Affiliation(s)
- Samantha Bosis
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy. .,Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy.
| |
Collapse
|
12
|
Eshaghi A, Duvvuri VR, Isabel S, Banh P, Li A, Peci A, Patel SN, Gubbay JB. Global Distribution and Evolutionary History of Enterovirus D68, with Emphasis on the 2014 Outbreak in Ontario, Canada. Front Microbiol 2017; 8:257. [PMID: 28298902 PMCID: PMC5331033 DOI: 10.3389/fmicb.2017.00257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Despite its first appearance in 1962, human enterovirus D68 (EV-D68) has been recognized as an emerging respiratory pathogen in the last decade when it caused outbreaks and clusters in several countries including Japan, the Philippines, and the Netherlands. The most recent and largest outbreak of EV-D68 associated with severe respiratory illness took place in North America between August 2014 and January 2015. Between September 1 and October 31 2014, EV-D68 infection was laboratory confirmed among 153/907 (16.9%) persons tested for the virus in Ontario, Canada, using real time RT-PCR and subsequent genotyping by sequencing of partial VP1 gene. In order to understand the evolutionary history of the 2014 North American EV-D68 outbreak, we conducted phylogenetic and phylodynamic analyses using available partial VP1 genes (n = 469) and NCBI available whole genome sequences (WGS) (n = 38). The global EV-D68 phylogenetic tree (n = 469) reconfirms the divergence of three distinct clades A, B, and C from the prototype EV-D68 Fermon strain as previously documented. Two sub-clades (B1 and B2) were identified, with most 2014 EV-D68 outbreak strains belonging to sub-cluster B2b2 (one of the two emerging clusters within sub-clade B2), with two signature substitutions T650A and M700V in BC and DE loops of VP1 gene, respectively. The close homology between WGS of strains from Ontario (n = 2) and USA (n = 21) in the recent EV-D68 outbreak suggests genetic relatedness and also a common source for the outbreak. The time of most recent common ancestor of EV-D68 and the 2014 EV-D68 outbreak strain suggest that the viruses possibly emerged during 1960-1961 and 2012-2013, respectively. We observed lower mean evolutionary rates of global EV-D68 using WGS data than estimated with partial VP1 gene sequences. Based on WGS data, the estimated mean rate of evolution of the EV-D68 B2b cluster was 9.75 × 10-3 substitutions/site/year (95% BCI 4.11 × 10-3 to 16 × 10-3).
Collapse
Affiliation(s)
- Alireza Eshaghi
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Venkata R. Duvvuri
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Sandra Isabel
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, TorontoON, Canada
| | - Philip Banh
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Aimin Li
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Adriana Peci
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Samir N. Patel
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, TorontoON, Canada
| | - Jonathan B. Gubbay
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, TorontoON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, TorontoON, Canada
- Department of Microbiology, Mount Sinai Hospital, TorontoON, Canada
| |
Collapse
|
13
|
Knippenberg B, Ferson MJ. Public health impact of the Enteroviruses and Parechoviruses. MICROBIOLOGY AUSTRALIA 2017. [DOI: 10.1071/ma17069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Enteroviruses (EV) comprise viruses originally classified on cell culture replication patterns and clinical manifestations into a number of groups: poliovirus, coxsackievirus A, coxsackievirus B and ECHOvirus. The closely related genus Parechovirus has more recently been associated with human disease. EVs are common commensals of the human gut, often found without any ill effects on the person, but are also associated with a wide range of diseases and syndromes including non-specific rash illnesses, hand, foot and mouth disease (HFMD), conjunctivitis, meningitis and encephalitis, myocarditis and polio. This results in a significant burden of disease worldwide, often due to a particular genotype of EV. An estimated 1 billion people are infected with EV every year.
Collapse
|
14
|
Holm-Hansen CC, Midgley SE, Fischer TK. Global emergence of enterovirus D68: a systematic review. THE LANCET. INFECTIOUS DISEASES 2016; 16:e64-e75. [PMID: 26929196 DOI: 10.1016/s1473-3099(15)00543-5] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023]
Abstract
Since its discovery in California in 1962, reports of enterovirus D68 have been infrequent. Before 2014, infections were confirmed in only 699 people worldwide. In August, 2014, two paediatric hospitals in the USA reported increases in the number of patients with severe respiratory illness, with an over-representation in children with asthma. Shortly after, the authorities recognised a nationwide outbreak, which then spread to Canada, Europe, and Asia. In 2014, more than 2000 cases of enterovirus D68 were reported in 20 countries. Concurrently, clusters of children with acute flaccid paralysis of unknown cause were reported in several US states and in Europe. Enterovirus D68 infection was confirmed in some of the paralysed children, but not all. Complications in patients who were severely neurologically affected resemble those caused by poliomyelitis. In this paper we systematically review reports on enterovirus D68 to estimate its global epidemiology and its ability to cause respiratory infections and neurological damage in children. We extracted data from 70 papers to report on prevalence, symptoms, hospitalisation and mortality, and complications of enterovirus D68, both before and during the large outbreak of 2014. The magnitude and severity of the enterovirus D68 outbreak underscores a need for improved diagnostic work-up of paediatric respiratory illness, not only to prevent unnecessary use of antibiotics, but also to ensure better surveillance of diseases. Existing surveillance systems should be assessed in terms of capacity and ability to detect and report any upsurge of respiratory viruses such as enterovirus D68 in a timely manner, and focus should be paid to development of preventive measures against these emerging enteroviruses that have potential for severe disease.
Collapse
Affiliation(s)
- Charlotte Carina Holm-Hansen
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Sofie Elisabeth Midgley
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Thea Kølsen Fischer
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark; Center for Global Health and Department of Infectious Diseases, Clinical Institute, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|