1
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
2
|
Hihara F, Matsumoto H, Yoshimoto M, Masuko T, Endo Y, Igarashi C, Tachibana T, Shinada M, Zhang MR, Kurosawa G, Sugyo A, Tsuji AB, Higashi T, Kurihara H, Ueno M, Yoshii Y. In Vitro Tumor Cell-Binding Assay to Select High-Binding Antibody and Predict Therapy Response for Personalized 64Cu-Intraperitoneal Radioimmunotherapy against Peritoneal Dissemination of Pancreatic Cancer: A Feasibility Study. Int J Mol Sci 2022; 23:5807. [PMID: 35628616 PMCID: PMC9146758 DOI: 10.3390/ijms23105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Peritoneal dissemination of pancreatic cancer has a poor prognosis. We have reported that intraperitoneal radioimmunotherapy using a 64Cu-labeled antibody (64Cu-ipRIT) is a promising adjuvant therapy option to prevent this complication. To achieve personalized 64Cu-ipRIT, we developed a new in vitro tumor cell-binding assay (64Cu-TuBA) system with a panel containing nine candidate 64Cu-labeled antibodies targeting seven antigens (EGFR, HER2, HER3, TfR, EpCAM, LAT1, and CD98), which are reportedly overexpressed in patients with pancreatic cancer. We investigated the feasibility of 64Cu-TuBA to select the highest-binding antibody for individual cancer cell lines and predict the treatment response in vivo for 64Cu-ipRIT. 64Cu-TuBA was performed using six human pancreatic cancer cell lines. For three cell lines, an in vivo treatment study was performed with 64Cu-ipRIT using high-, middle-, or low-binding antibodies in each peritoneal dissemination mouse model. The high-binding antibodies significantly prolonged survival in each mouse model, while low-and middle-binding antibodies were ineffective. There was a correlation between in vitro cell binding and in vivo therapeutic efficacy. Our findings suggest that 64Cu-TuBA can be used for patient selection to enable personalized 64Cu-ipRIT. Tumor cells isolated from surgically resected tumor tissues would be suitable for analysis with the 64Cu-TuBA system in future clinical studies.
Collapse
Affiliation(s)
- Fukiko Hihara
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Hiroki Matsumoto
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Mitsuyoshi Yoshimoto
- Division of Functional Imaging, National Cancer Center Hospital East, Chiba 277-8577, Japan;
| | - Takashi Masuko
- School of Pharmacy, Kindai University, Osaka 577-8502, Japan; (T.M.); (Y.E.)
| | - Yuichi Endo
- School of Pharmacy, Kindai University, Osaka 577-8502, Japan; (T.M.); (Y.E.)
| | - Chika Igarashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Tomoko Tachibana
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Mitsuhiro Shinada
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
- Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Ming-Rong Zhang
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Gene Kurosawa
- International Center for Cell and Gene Therapy, Fujita Health University, Aichi 470-1192, Japan;
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Atsushi B. Tsuji
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Yukie Yoshii
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| |
Collapse
|
3
|
Altered binding avidities and improved growth inhibitory effects of novel anti-HER3 mAb against human cancers in the presence of HER1-or HER2-targeted drugs. Biochem Biophys Res Commun 2021; 576:59-65. [PMID: 34482024 DOI: 10.1016/j.bbrc.2021.08.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/20/2022]
Abstract
HER1-and HER2-targeted drugs are effective in cancer therapy, especially against lung, breast and colon malignancies; however, resistance of cancer cells to HER1-and HER2-targeted therapies is becoming a serious problem. The avidity/affinity constant (KA) and growth inhibitory effect of anti-HER3 rat monoclonal antibodies (mAb, Ab1∼Ab6) in the presence of therapeutic mAb or low-molecular-weight inhibitors against HER family proteins were analyzed by flow cytometry-based Scatchard plots (Splot) and cell proliferation assay. The KA of Ab3 and Ab6, but not Ab1 or Ab4, split into dual (high and low) modes of KA, and Ab6 exhibited greater anti-proliferative effects against LS-174T colon cancer cells in the presence of Pertuzumab (anti-HER2 mAb). A high KA by Ab6 and Ab6-mediated increased growth inhibition were observed against NCI-H1838 lung or BT474 breast cancer cells, respectively, in the presence of Panitumumab (anti-HER1 mAb) or Perutuzumab. A high KA by Ab6 and Ab6-mediated increased anti-proliferative effects against NCI-H1838 or BT474 were also respectively observed in the presence of Erlotinib (HER1 inhibitor) or Lapatinib (HER1/HER2 inhibitor). In HER1-knockout (KO) NCI-H1838, the reactivity and KA of Ab4 increased compared with in parent NCI-H1838. In HER1-KO or HER3-KO SW1116 colon cancer cells, dual modes of KA with Pertuzumab were noted, and the combination Ab6 and Pertuzumab promoted growth inhibition of HER1-KO, but not of parent SW1116.
Collapse
|
4
|
Radiopharmaceuticals developed for 89Zr-Immuno-PET. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
HER3 PET Imaging: 68Ga-Labeled Affibody Molecules Provide Superior HER3 Contrast to 89Zr-Labeled Antibody and Antibody-Fragment-Based Tracers. Cancers (Basel) 2021; 13:cancers13194791. [PMID: 34638277 PMCID: PMC8508546 DOI: 10.3390/cancers13194791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary HER3 is a known driver for oncogenesis and therapy resistance in solid cancers. PET imaging could be a useful tool to non-invasively detect and monitor HER3 expression and aid in the selection of patients for HER3-targeted therapy. PET tracers based on therapeutic antibodies have thus far shown limited success in reliably imaging HER3-expressing tumors in clinical trials. Smaller-sized tracers specifically designed for imaging might be needed for higher contrast imaging and sufficient sensitivity. Our group has previously studied the use of radiolabeled affibody molecules for imaging of HER3 expression. In the present study, we compared four different types of potential PET tracers for imaging of HER3 expression in a preclinical model. We demonstrated that the affibody-based tracer, [68Ga]Ga-ZHER3, could provide overall superior imaging contrast to antibody- and antibody-fragment-based tracers shortly after injection. Our results indicate that HER3-targeting affibody molecules are promising agents for PET imaging of HER3 expression. Abstract HER3 (human epidermal growth factor receptor type 3) is a challenging target for diagnostic radionuclide molecular imaging due to the relatively modest overexpression in tumors and substantial expression in healthy organs. In this study, we compared four HER3-targeting PET tracers based on different types of targeting molecules in a preclinical model: the 89Zr-labeled therapeutic antibody seribantumab, a seribantumab-derived F(ab)2-fragment labeled with 89Zr and 68Ga, and the 68Ga-labeled affibody molecule [68Ga]Ga-ZHER3. The novel conjugates were radiolabeled and characterized in vitro using HER3-expressing BxPC-3 and DU145 human cancer cells. Biodistribution was studied using Balb/c nu/nu mice bearing BxPC-3 xenografts. HER3-negative RAMOS xenografts were used to demonstrate binding specificity in vivo. Autoradiography was conducted on the excised tumors. nanoPET/CT imaging was performed. New conjugates specifically bound to HER3 in vitro and in vivo. [68Ga]Ga-DFO-seribantumab-F(ab’)2 was considered unsuitable for imaging due to the low stability and high uptake in normal organs. The highest tumor-to-non-tumor contrast with [89Zr]Zr-DFO-seribantumab and [89Zr]Zr-DFO-seribantumab-F(ab’)2 was achieved at 96 h and 48 h pi, respectively. Despite lower tumor uptake, [68Ga]Ga-ZHER3 provided the best imaging contrast due to the fastest clearance from blood and normal organs. The results of our study suggest that affibody-based tracers are more suitable for PET imaging of HER3 expression than antibody- and antibody-fragment-based tracers.
Collapse
|
6
|
Molavipordanjani S, Hosseinimehr SJ. The Radiolabeled HER3 Targeting Molecules for Tumor Imaging. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:141-152. [PMID: 34400948 PMCID: PMC8170765 DOI: 10.22037/ijpr.2021.114677.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The human epidermal growth factor receptor (HER) family plays pivotal roles in physiologic and pathologic conditions (such as tumor growth, proliferation, and progression in multiple epithelial malignancies). All the family members are considered tyrosine kinase, while HER3 as a member of this family shows no intrinsic tyrosine kinase. HER3 is called ‘pseudokinase’ because it undergoes heterodimerization and forms dimers such as HER2-HER3 and HER1 (EGFR)-HER3. The exact role of HER3 in cancer is still unclear; however, the overexpression of this receptor is involved in the poor prognosis of malignancies. To that end, different studies investigated the development of radiotracers for imaging of HER3. The main focus of this review is to gather all the studies on developing new radiotracers for imaging of HER3.
Collapse
Affiliation(s)
- Sajjad Molavipordanjani
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|
8
|
Abstract
Target molecules of existing anti-cancer therapeutic monoclonal antibodies (mAbs) are divided into 1) receptor-type tyrosine kinases, such as human epidermal growth factor receptor (HER) family, 2) differentiation antigens, such as CD20 (Rituxan target), 3) angiogenesis-related molecules, and 4) immune checkpoint molecules (PD-1, etc.). We have recently reported a novel therapy targeting lymphangiogenesis, but not angiogenesis, using an anti-LYVE-1 (lymphatic vessel endothelial hyaluronan receptor 1) mAb. At present, many transporters are not considered to be target molecules for the cancer therapy; however, our study strongly suggested that the inhibition of cancer metabolism by mAbs against amino acid transporters will play a significant role in future cancer therapies. Most anti-cancer therapeutic mAbs bind cell-surface molecules on viable cancer cells: therefore, it is necessary to produce mAbs recognizing epitopes on the extracellular domains of native and non-denatured proteins. We concluded that viable cancer cells or cells transfected with cDNA encoding target proteins are suitable immunogens for the production of anti-cancer therapeutic mAbs. We introduce our efforts to develop seeds for therapeutic mAbs using whole cancer cells and transfectants as the immunogen. As many target candidates in the future are multi-pass membrane proteins, such as 12-pass amino acid transporter proteins belonging to the solute carrier (SLC) family, and their possible immunogenic extracellular regions are small, the production of specific mAbs is highly difficult. In this review, we summarize the successful preparation and characterization of mAbs recognizing the extracellular domain of oncoproteins, including transporters.
Collapse
Affiliation(s)
- Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University
| |
Collapse
|
9
|
Okita K, Okazaki S, Uejima S, Yamada E, Kaminaka H, Kondo M, Ueda S, Tokiwa R, Iwata N, Yamasaki A, Hayashi N, Ogura D, Hirotani K, Yoshioka T, Inoue M, Masuko K, Masuko T. Novel functional anti-HER3 monoclonal antibodies with potent anti-cancer effects on various human epithelial cancers. Oncotarget 2020; 11:31-45. [PMID: 32002122 PMCID: PMC6967776 DOI: 10.18632/oncotarget.27414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Resistance of progressive cancers against chemotherapy is a serious clinical problem. In this context, human epidermal growth factor receptor 3 (HER3) can play important roles in drug resistance to HER1- and HER2- targeted therapies. Since clinical testing of anti-HER3 monoclonal antibodies (mAbs) such as patritumab could not show remarkable effect compared with existing drugs, we generated novel mAbs against anti-HER3. Novel rat mAbs reacted with HEK293 cells expressing HER3, but not with cells expressing HER1, HER2 or HER4. Specificity of mAbs was substantiated by the loss of mAb binding with knockdown by siRNA and knockout of CRISPR/Cas9-based genome-editing. Analyses of CDR sequence and germline segment have revealed that seven mAbs are classified to four groups, and the binding of patritumab was inhibited by one of seven mAbs. Seven mAbs have shown reactivity with various human epithelial cancer cells, strong internalization activity of cell-surface HER3, and inhibition of NRG1 binding, NRG1-dependent HER3 phosphorylation and cell growth. Anti-HER3 mAbs were also reactive with in vivo tumor tissues and cancer tissue-originated spheroid. Ab4 inhibited in vivo tumor growth of human colon cancer cells in nude mice. Present mAbs may be superior to existing anti-HER3 mAbs and support existing anti-cancer therapeutic mAbs.
Collapse
Affiliation(s)
- Kouki Okita
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan.,Production and Manufacturing, Carna Biosciences, Inc., BMA, Chuo-ku, Kobe, Japan
| | - Shogo Okazaki
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan.,Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shinya Uejima
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Erina Yamada
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Hiroki Kaminaka
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Misa Kondo
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Shiho Ueda
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Ryo Tokiwa
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Nami Iwata
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Akitaka Yamasaki
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Natsumi Hayashi
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Dai Ogura
- Link Genomics, Inc., Chuo-ku, Tokyo, Japan
| | - Kenji Hirotani
- Oncology Clinical Development Department, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Toshiaki Yoshioka
- Field of Basic Science, Department of Occupational therapy, Graduate School of Health Sciences, Akita University, Akita, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazue Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Higashiosaka, Osaka, Japan
| |
Collapse
|
10
|
El-Sayed A, Bernhard W, Barreto K, Gonzalez C, Hill W, Pastushok L, Fonge H, Geyer CR. Evaluation of antibody fragment properties for near-infrared fluorescence imaging of HER3-positive cancer xenografts. Am J Cancer Res 2018; 8:4856-4869. [PMID: 30279742 PMCID: PMC6160764 DOI: 10.7150/thno.24252] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/10/2018] [Indexed: 11/24/2022] Open
Abstract
In vivo imaging is influenced by the half-life, tissue penetration, biodistribution, and affinity of the imaging probe. Immunoglobulin G (IgG) is composed of discrete domains with known functions, providing a template for engineering antibody fragments with desired imaging properties. Here, we engineered antibody-based imaging probes, consisting of different combinations of antibody domains, labeled them with the near-infrared fluorescent dye IRDye800CW, and evaluated their in vivo imaging properties. Antibody-based imaging probes were based on an anti-HER3 antigen binding fragment (Fab) isolated using phage display. Methods: We constructed six anti-HER3 antibody-based imaging probes: a single chain variable fragment (scFv), Fab, diabody, scFv-CH3, scFv-Fc, and IgG. IRDye800CW-labeled, antibody-based probes were injected into nude mice bearing FaDu xenografts and their distribution to the xenograft, liver, and kidneys was evaluated. Results: These imaging probes bound to recombinant HER3 and to the HER3-positive cell line, FaDu. Small antibody fragments with molecular weight <60 kDa (scFv, diabody, and Fab) accumulated rapidly in the xenograft (maximum accumulation between 2-4 h post injection (hpi)) and cleared primarily through the kidneys. scFv-CH3 (80 kDa) had fast clearance and peaked in the xenograft between 2-3 hpi and cleared from xenograft in a rate comparable to Fab and diabody. IgG and scFv-Fc persisted in the xenografts for up to 72 hpi and distributed mainly to the xenograft and liver. The highest xenograft fluorescence signals were observed with IgG and scFv-Fc imaging probes and persisted for 2-3 days. Conclusion: These results highlight the utility of using antibody fragments to optimize clearance, tumor labeling, and biodistribution properties for developing anti-HER3 probes for image-guided surgery or PET imaging.
Collapse
|
11
|
Yan Q, Guo K, Feng G, Shan F, Sun L, Zhang K, Shen F, Shen M, Ruan S. Association between the overexpression of Her3 and clinical pathology and prognosis of colorectal cancer: A meta-analysis. Medicine (Baltimore) 2018; 97:e12317. [PMID: 30212974 PMCID: PMC6156033 DOI: 10.1097/md.0000000000012317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study aimed to investigate the association between the overexpression of human epidermal growth factor receptor-3 (Her3) and the clinicopathological parameters and survival of patients with colorectal cancer (CRC). METHODS Relevant studies on the overexpression of Her3 (measured by immunohistochemistry) and overall survival (OS) in patients with CRC were searched for in PubMed, EMBASE, and Cochrane Library. Published data were extracted and computed into odds ratios (ORs) for assessing the association of Her3 overexpression with tumor differentiation, tumor node metastasis (TNM) stage, position of colon cancer, sex, and age. Prognostic data were computed into hazard ratios (HRs) for OS. RESULTS Eight studies including 1716 patients with CRC were included in this meta-analysis. The results revealed a significant association between Her3 overexpression and tumor differentiation [OR = 2.38; 95% confidence interval (95% CI): 1.76-3.22; P < .001], TNM tumor stage (OR = 0.71; 95% CI: 0.53-0.96; P = .03), and position of colon cancer (OR = 1.71; 95% CI: 1.28-2.27; P < .001). While patients with Her3 overexpression demonstrated a worse tumor response (OR = 0.31; 95% CI: 0.16-0.60; P < .001) and OS after treatment with cetuximab (HR = 1.86; 95% CI: 1.24-2.79; P = .003), they demonstrated better OS after symptomatic treatment (HR = 0.65; 95% CI: 0.50-0.85; P = .002). Her3 overexpression was not associated with sex (OR = 1.03; 95% CI: 0.83-1.28; P = .79), age (OR = 0.96; 95% CI: 0.75-1.24; P = .77), colon or rectum site (OR = 0.79; 95% CI: 0.44-1.43; P = .44), and total OS (HR = 1.09; 95% CI: 0.69-1.72; P = .72). CONCLUSION Her3 expression is associated with the clinical pathology and prognosis of CRC, which explains the nonefficacy of cetuximab treatment in patients with CRC.
Collapse
Affiliation(s)
- Qingying Yan
- The First Clinical Medical College of Zhejiang Chinese Medical University
| | - Kaibo Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University
| | - Guan Feng
- The First Clinical Medical College of Zhejiang Chinese Medical University
| | - Feiyu Shan
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Leitao Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University
| | - Kai Zhang
- The First Clinical Medical College of Zhejiang Chinese Medical University
| | - Fengfei Shen
- The First Clinical Medical College of Zhejiang Chinese Medical University
| | - Minhe Shen
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou
| |
Collapse
|
12
|
McKnight BN, Kuda-Wedagedara ANW, Sevak KK, Abdel-Atti D, Wiesend WN, Ku A, Selvakumar D, Carlin SD, Lewis JS, Viola-Villegas NT. Imaging EGFR and HER3 through 89Zr-labeled MEHD7945A (Duligotuzumab). Sci Rep 2018; 8:9043. [PMID: 29899472 PMCID: PMC5998059 DOI: 10.1038/s41598-018-27454-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Tumor resistance to treatment paved the way toward the development of single agent drugs that target multiple molecular signatures amplified within the malignancy. The discovered crosstalk between EGFR and HER3 as well as the role of HER3 in mediating EGFR resistance made these two receptor tyrosine kinases attractive targets. MEHD7945A or duligotuzumab is a single immunotherapy agent that dually targets both molecular signatures. In this study, a positron emission tomography (PET) companion diagnostic to MEHD7945A is reported and evaluated in pancreatic cancer. Tumor accretion and whole body pharmacokinetics of 89Zr-MEHD7945A were established. Specificity of the probe for EGFR and/or HER3 was further examined.
Collapse
Affiliation(s)
- Brooke N McKnight
- Department of Oncology, Karmanos Cancer Institute, 4100 John R. Street, Detroit, MI, 48201, USA
| | | | - Kuntal K Sevak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Wendy N Wiesend
- Department of Anatomic Pathology, Beaumont Hospital, 3601 West 13 Mile Road, Royal Oak, MI, 48073, USA
| | - Anson Ku
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - Sean D Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Nerissa T Viola-Villegas
- Department of Oncology, Karmanos Cancer Institute, 4100 John R. Street, Detroit, MI, 48201, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
13
|
Piulats JM, Kondo J, Endo H, Ono H, Hagihara T, Okuyama H, Nishizawa Y, Tomita Y, Ohue M, Okita K, Oyama H, Bono H, Masuko T, Inoue M. Promotion of malignant phenotype after disruption of the three-dimensional structure of cultured spheroids from colorectal cancer. Oncotarget 2018; 9:15968-15983. [PMID: 29662620 PMCID: PMC5882311 DOI: 10.18632/oncotarget.24641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/26/2018] [Indexed: 02/05/2023] Open
Abstract
Individual and small clusters of cancer cells may detach from the edges of a main tumor and invade vessels, which can act as the origin of metastasis; however, the mechanism for this phenomenon is not well understood. Using cancer tissue-originated spheroids, we studied whether disturbing the 3D architecture of cancer spheroids can provoke the reformation process and progression of malignancy. We developed a mechanical disruption method to achieve homogenous disruption of the spheroids while maintaining cell–cell contact. After the disruption, 9 spheroid lines from 9 patient samples reformed within a few hours, and 3 of the 9 lines exhibited accelerated spheroid growth. Marker expression, spheroid forming capacity, and tumorigenesis indicated that stemness increased after spheroid disruption. In addition, the spheroid forming capacity increased in 6 of 11 spheroid lines. The disruption signature determined by gene expression profiling supported the incidence of remodeling and predicted the prognosis of patients with colorectal cancer. Furthermore, WNT and HER3 signaling were increased in the reformed spheroids, and suppression of these signaling pathways attenuated the increased proliferation and stemness after the disruption. Overall, the disruption and subsequent reformation of cancer spheroids promoted malignancy-related phenotypes through the activation of the WNT and ERBB pathways.
Collapse
Affiliation(s)
- Jose M Piulats
- Department of Biochemistry, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan.,Current Affiliation: Department of Medical Oncology, Institut Català d'Oncologia, Barcelona, Spain
| | - Jumpei Kondo
- Department of Biochemistry, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Hiroko Endo
- Department of Biochemistry, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Hiromasa Ono
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan
| | - Takeshi Hagihara
- Department of Biochemistry, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Hiroaki Okuyama
- Department of Biochemistry, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Yasuko Nishizawa
- Pathology, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Yasuhiko Tomita
- Pathology, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Masayuki Ohue
- Surgery, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Kouki Okita
- Cell Biology Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, Kinki University, Higashiōsaka, Osaka, Japan
| | - Hidejiro Oyama
- Cell Biology Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, Kinki University, Higashiōsaka, Osaka, Japan
| | - Hidemasa Bono
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, Kinki University, Higashiōsaka, Osaka, Japan
| | - Masahiro Inoue
- Department of Biochemistry, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| |
Collapse
|
14
|
Rosestedt M, Andersson KG, Mitran B, Rinne SS, Tolmachev V, Löfblom J, Orlova A, Ståhl S. Evaluation of a radiocobalt-labelled affibody molecule for imaging of human epidermal growth factor receptor 3 expression. Int J Oncol 2017; 51:1765-1774. [PMID: 29039474 DOI: 10.3892/ijo.2017.4152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/25/2017] [Indexed: 11/06/2022] Open
Abstract
The human epidermal growth factor receptor 3 (HER3) is involved in the development of cancer resistance towards tyrosine kinase-targeted therapies. Several HER3‑targeting therapeutics are currently under clinical evaluation. Non-invasive imaging of HER3 expression could improve patient management. Affibody molecules are small engineered scaffold proteins demonstrating superior properties as targeting probes for molecular imaging compared with monoclonal antibodies. Feasibility of in vivo HER3 imaging using affibody molecules has been previously demonstrated. Preclinical studies have shown that the contrast when imaging using anti-HER3 affibody molecules can be improved over time. We aim to develop an agent for PET imaging of HER3 expression using the long-lived positron-emitting radionuclide cobalt-55 (55Co) (T1/2=17.5 h). A long-lived cobalt isotope 57Co was used as a surrogate for 55Co in this study. The anti-HER3 affibody molecule HEHEHE-ZHER3-NOTA was labelled with radiocobalt with high yield, purity and stability. Biodistribution of 57Co-HEHEHE-ZHER3-NOTA was measured in mice bearing DU145 (prostate carcinoma) and LS174T (colorectal carcinoma) xenografts at 3 and 24 h post injection (p.i.). Tumour-to-blood ratios significantly increased between 3 and 24 h p.i. (p<0.05). At 24 h p.i., tumour-to-blood ratios were 6 for DU145 and 8 for LS174T xenografts, respectively. HER3‑expressing xenografts were clearly visualized in a preclinical imaging setting already 3 h p.i., and contrast further improved at 24 h p.i. In conclusion, the radiocobalt-labelled anti-HER3 affibody molecule, HEHEHE-ZHER3-NOTA, is a promising tracer for imaging of HER3 expression in tumours.
Collapse
Affiliation(s)
- Maria Rosestedt
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Ken G Andersson
- Division of Protein Technology, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Bogdan Mitran
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Sara S Rinne
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 83 Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Anna Orlova
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
15
|
Pool M, Kol A, de Jong S, de Vries EGE, Lub-de Hooge MN, Terwisscha van Scheltinga AGT. 89Zr-mAb3481 PET for HER3 tumor status assessment during lapatinib treatment. MAbs 2017; 9:1370-1378. [PMID: 28873009 PMCID: PMC5680796 DOI: 10.1080/19420862.2017.1371382] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Treatment of human epidermal growth factor receptor 2 (HER2)-driven breast cancer with tyrosine kinase inhibitor lapatinib can induce a compensatory HER3 increase, which may attenuate antitumor efficacy. Therefore, we explored in vivo HER3 tumor status assessment after lapatinib treatment with zirconium-89 (89Zr)-labeled anti-HER3 antibody mAb3481 positron emission tomography (PET). Lapatinib effects on HER3 cell surface expression and mAb3481 internalization were evaluated in human breast (BT474, SKBR3) and gastric (N87) cancer cell lines using flow cytometry. Next, in vivo effects of daily lapatinib treatment on89Zr-mAb3481 BT474 and N87 xenograft tumor uptake were studied. PET-scans (BT474 only) were made after daily lapatinib treatment for 9 days, starting 3 days prior to 89Zr-mAb3481 administration. Subsequently, ex vivo 89Zr-mAb3481 organ distribution analysis was performed and HER3 tumor levels were measured with Western blot and immunohistochemistry. In vitro, lapatinib increased membranous HER3 in BT474, SKBR3 and N87 cells, and consequently mAb3481 internalization 1.7-fold (BT474), 1.4-fold (SKBR3) and 1.4-fold (N87). 89Zr-mAb3481 BT474 tumor uptake was remarkably high at SUVmean 5.6±0.6 (51.8±7.7%ID/g) using a 10 μg 89Zr-mAb3481 protein dose in vehicle-treated mice. However, compared to vehicle, lapatinib did not affect 89Zr-mAb3481 ex vivo uptake in BT474 and N87 tumors, while HER3 tumor expression remained unchanged. In conclusion, lapatinib increased in vitro HER3 tumor cell expression, but not when these cells were xenografted. 89Zr-mAb3481 PET accurately reflected HER3 tumor status. 89Zr-mAb3481 PET showed high, HER3-specific tumor uptake, and such an approach might sensitively assess HER3 tumor heterogeneity and treatment response in patients.
Collapse
Affiliation(s)
- Martin Pool
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Arjan Kol
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Steven de Jong
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Elisabeth G E de Vries
- a Departments of Medical Oncology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Marjolijn N Lub-de Hooge
- b Departments of Clinical Pharmacy and Pharmacology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands.,c Departments of Nuclear Medicine and Molecular Imaging , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Anton G T Terwisscha van Scheltinga
- b Departments of Clinical Pharmacy and Pharmacology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
16
|
Sharma SK, Pourat J, Abdel-Atti D, Carlin SD, Piersigilli A, Bankovich AJ, Gardner EE, Hamdy O, Isse K, Bheddah S, Sandoval J, Cunanan KM, Johansen EB, Allaj V, Sisodiya V, Liu D, Zeglis BM, Rudin CM, Dylla SJ, Poirier JT, Lewis JS. Noninvasive Interrogation of DLL3 Expression in Metastatic Small Cell Lung Cancer. Cancer Res 2017; 77:3931-3941. [PMID: 28487384 DOI: 10.1158/0008-5472.can-17-0299] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022]
Abstract
The Notch ligand DLL3 has emerged as a novel therapeutic target expressed in small cell lung cancer (SCLC) and high-grade neuroendocrine carcinomas. Rovalpituzumab teserine (Rova-T; SC16LD6.5) is a first-in-class DLL3-targeted antibody-drug conjugate with encouraging initial safety and efficacy profiles in SCLC in the clinic. Here we demonstrate that tumor expression of DLL3, although orders of magnitude lower in surface protein expression than typical oncology targets of immunoPET, can serve as an imaging biomarker for SCLC. We developed 89Zr-labeled SC16 antibody as a companion diagnostic agent to facilitate selection of patients for treatment with Rova-T based on a noninvasive interrogation of the in vivo status of DLL3 expression using PET imaging. Despite low cell-surface abundance of DLL3, immunoPET imaging with 89Zr-labeled SC16 antibody enabled delineation of subcutaneous and orthotopic SCLC tumor xenografts as well as distant organ metastases with high sensitivity. Uptake of the radiotracer in tumors was concordant with levels of DLL3 expression and, most notably, DLL3 immunoPET yielded rank-order correlation for response to SC16LD6.5 therapy in SCLC patient-derived xenograft models. Cancer Res; 77(14); 3931-41. ©2017 AACR.
Collapse
Affiliation(s)
- Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacob Pourat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean D Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alessandra Piersigilli
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College and The Rockefeller University, New York
| | | | - Eric E Gardner
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Omar Hamdy
- Stemcentrx, Inc., South San Francisco, California
| | - Kumiko Isse
- Stemcentrx, Inc., South San Francisco, California
| | | | | | - Kristen M Cunanan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Viola Allaj
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - David Liu
- Stemcentrx, Inc., South San Francisco, California
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York.,Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, New York, New York.,Ph.D. Program in Chemistry, the Graduate Center of the City University of New York, New York, New York
| | - Charles M Rudin
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | | | - John T Poirier
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York. .,Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| |
Collapse
|
17
|
Alsaid H, Skedzielewski T, Rambo MV, Hunsinger K, Hoang B, Fieles W, Long ER, Tunstead J, Vugts DJ, Cleveland M, Clarke N, Matheny C, Jucker BM. Non invasive imaging assessment of the biodistribution of GSK2849330, an ADCC and CDC optimized anti HER3 mAb, and its role in tumor macrophage recruitment in human tumor-bearing mice. PLoS One 2017; 12:e0176075. [PMID: 28448604 PMCID: PMC5407619 DOI: 10.1371/journal.pone.0176075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/05/2017] [Indexed: 11/23/2022] Open
Abstract
The purpose of this work was to use various molecular imaging techniques to non-invasively assess GSK2849330 (anti HER3 ADCC and CDC enhanced ‘AccretaMab’ monoclonal antibody) pharmacokinetics and pharmacodynamics in human xenograft tumor-bearing mice. Immuno-PET biodistribution imaging of radiolabeled 89Zr-GSK2849330 was assessed in mice with HER3 negative (MIA-PaCa-2) and positive (CHL-1) human xenograft tumors. Dose dependency of GSK2849330 disposition was assessed using varying doses of unlabeled GSK2849330 co-injected with 89Zr-GSK2849330. In-vivo NIRF optical imaging and ex-vivo confocal microscopy were used to assess the biodistribution of GSK2849330 and the HER3 receptor occupancy in HER3 positive xenograft tumors (BxPC3, and CHL-1). Ferumoxytol (USPIO) contrast-enhanced MRI was used to investigate the effects of GSK2849330 on tumor macrophage content in CHL-1 xenograft bearing mice. Immuno-PET imaging was used to monitor the whole body drug biodistribution and CHL-1 xenograft tumor uptake up to 144 hours post injection of 89Zr-GSK2849330. Both hepatic and tumor uptake were dose dependent and saturable. The optical imaging data in the BxPC3 xenograft tumor confirmed the tumor dose response finding in the Immuno-PET study. Confocal microscopy showed a distinguished cytoplasmic punctate staining pattern within individual CHL-1 cells. GSK2849330 inhibited tumor growth and this was associated with a significant decrease in MRI signal to noise ratio after USPIO injection and with a significant increase in tumor macrophages as confirmed by a quantitative immunohistochemistry analysis. By providing both dose response and time course data from both 89Zr and fluorescently labeled GSK2849330, complementary imaging studies were used to characterize GSK2849330 biodistribution and tumor uptake in vivo. Ferumoxytol-enhanced MRI was used to monitor aspects of the immune system response to GSK2849330. Together these approaches potentially provide clinically translatable, non-invasive techniques to support dose optimization, and assess immune activation and anti-tumor responses.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Cell Line, Tumor
- Female
- Ferrosoferric Oxide/chemistry
- Humans
- Immunohistochemistry
- Isotope Labeling
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/pathology
- Mice
- Mice, Nude
- Neoplasms/diagnostic imaging
- Neoplasms/drug therapy
- Radioisotopes
- Radiopharmaceuticals/chemistry
- Radiopharmaceuticals/pharmacokinetics
- Radiopharmaceuticals/therapeutic use
- Receptor, ErbB-3/immunology
- Receptor, ErbB-3/metabolism
- Tissue Distribution
- Transplantation, Heterologous
- Zirconium/chemistry
Collapse
Affiliation(s)
- Hasan Alsaid
- Bioimaging, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
- * E-mail:
| | - Tinamarie Skedzielewski
- Bioimaging, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Mary V. Rambo
- Bioimaging, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Kristen Hunsinger
- Bioimaging, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Bao Hoang
- Target Sciences Target & Pathway, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - William Fieles
- Target Sciences Target & Pathway, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Edward R. Long
- Integrated Biological Platform Sciences, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - James Tunstead
- Target Sciences Target & Pathway, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Danielle J. Vugts
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Matthew Cleveland
- Bioimaging, Platform Technology & Science, GlaxoSmithKline, Stevenage, United Kingdom
| | - Neil Clarke
- Biopharm Molecular Discovery, GlaxoSmithKline, Stevenage, United Kingdom
| | - Christopher Matheny
- Immunoginicity and Biomarkers, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Beat M. Jucker
- Bioimaging, Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| |
Collapse
|