1
|
Catapano C, Dietz MS, Kompa J, Jang S, Freund P, Johnsson K, Heilemann M. Long-Term Single-Molecule Tracking in Living Cells using Weak-Affinity Protein Labeling. Angew Chem Int Ed Engl 2025; 64:e202413117. [PMID: 39545345 DOI: 10.1002/anie.202413117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Single-particle tracking (SPT) has become a powerful tool to monitor the dynamics of membrane proteins in living cells. However, permanent labeling strategies for SPT suffer from photobleaching as a major limitation, restricting observation times, and obstructing the study of long-term cellular processes within single living cells. Here, we use exchangeable HaloTag Ligands (xHTLs) as an easy-to-apply labeling approach for live-cell SPT and demonstrate extended observation times of individual living cells of up to 30 minutes. Using the xHTL/HaloTag7 labeling system, we measure the ligand-induced activation kinetics of the epidermal growth factor receptor (EGFR) in single living cells. We generate spatial maps of receptor diffusion in cells, report non-uniform distributions of receptor mobility, and the formation of spatially confined 'hot spots' of EGFR activation. Furthermore, we measured the mobility of an ER-luminal protein in living cells and found diffusion coefficients that correlated with the ER nano-structure. This approach represents a general strategy to monitor protein mobility in a functional context and for extended observation times in single living cells.
Collapse
Affiliation(s)
- Claudia Catapano
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Julian Kompa
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Soohyen Jang
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Institute of Physical and Theoretical Chemistry, IMPRS on Cellular Biophysics, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Petra Freund
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Institute of Physical and Theoretical Chemistry, IMPRS on Cellular Biophysics, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| |
Collapse
|
2
|
Kreplin LZ, Arumugam S. The physical basis of analog-to-digital signal processing in the EGFR system-Delving into the role of the endoplasmic reticulum. Bioessays 2024; 46:e2400026. [PMID: 38991978 DOI: 10.1002/bies.202400026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Receptor tyrosine kinases exhibit ligand-induced activity and uptake into cells via endocytosis. In the case of epidermal growth factor (EGF) receptor (EGFR), the resulting endosomes are trafficked to the perinuclear region, where dephosphorylation of receptors occurs, which are subsequently directed to degradation. Traveling endosomes bearing phosphorylated EGFRs are subjected to the activity of cytoplasmic phosphatases as well as interactions with the endoplasmic reticulum (ER). The peri-nuclear region harbors ER-embedded phosphatases, a component of the EGFR-bearing endosome-ER contact site. The ER is also emerging as a central player in spatiotemporal control of endosomal motility, positioning, tubulation, and fission. Past studies strongly suggest that the physical interaction between the ER and endosomes forms a reaction "unit" for EGFR dephosphorylation. Independently, endosomes have been implicated to enable quantization of EGFR signals by modulation of the phosphorylation levels. Here, we review the distinct mechanisms by which endosomes form the logistical means for signal quantization and speculate on the role of the ER.
Collapse
Affiliation(s)
- Laura Zoe Kreplin
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Victoria, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Victoria, Australia
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Victoria, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Winkelmann H, Richter CP, Eising J, Piehler J, Kurre R. Correlative single-molecule and structured illumination microscopy of fast dynamics at the plasma membrane. Nat Commun 2024; 15:5813. [PMID: 38987559 PMCID: PMC11236984 DOI: 10.1038/s41467-024-49876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Total internal reflection fluorescence (TIRF) microscopy offers powerful means to uncover the functional organization of proteins in the plasma membrane with very high spatial and temporal resolution. Traditional TIRF illumination, however, shows a Gaussian intensity profile, which is typically deteriorated by overlaying interference fringes hampering precise quantification of intensities-an important requisite for quantitative analyses in single-molecule localization microscopy (SMLM). Here, we combine flat-field illumination by using a standard πShaper with multi-angular TIR illumination by incorporating a spatial light modulator compatible with fast super-resolution structured illumination microscopy (SIM). This distinct combination enables quantitative multi-color SMLM with a highly homogenous illumination. By using a dual camera setup with optimized image splitting optics, we achieve a versatile combination of SMLM and SIM with up to three channels. We deploy this setup for establishing robust detection of receptor stoichiometries based on single-molecule intensity analysis and single-molecule Förster resonance energy transfer (smFRET). Homogeneous illumination furthermore enables long-term tracking and localization microscopy (TALM) of cell surface receptors identifying spatial heterogeneity of mobility and accessibility in the plasma membrane. By combination of TALM and SIM, spatially and molecularly heterogenous diffusion properties can be correlated with nanoscale cytoskeletal organization and dynamics.
Collapse
Affiliation(s)
- Hauke Winkelmann
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany
| | - Christian P Richter
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany
| | - Jasper Eising
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany
| | - Jacob Piehler
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
| | - Rainer Kurre
- Division of Biophysics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
- Integrated Bioimaging Facility iBiOs, Department of Biology/Chemistry, Osnabrück University, Barbarastraße 11, D-49076, Osnabrück, Germany.
| |
Collapse
|
4
|
Yu C, Richly M, Hoang TT, El Beheiry M, Türkcan S, Masson JB, Alexandrou A, Bouzigues CI. Confinement energy landscape classification reveals membrane receptor nano-organization mechanisms. Biophys J 2024; 123:1882-1895. [PMID: 38845200 PMCID: PMC11267427 DOI: 10.1016/j.bpj.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
The cell membrane organization has an essential functional role through the control of membrane receptor confinement in micro- or nanodomains. Several mechanisms have been proposed to account for these properties, although some features have remained controversial, notably the nature, size, and stability of cholesterol- and sphingolipid-rich domains or lipid rafts. Here, we probed the effective energy landscape acting on single-nanoparticle-labeled membrane receptors confined in raft nanodomains- epidermal growth factor receptor (EGFR), Clostridium perfringens ε-toxin receptor (CPεTR), and Clostridium septicum α-toxin receptor (CSαTR)-and compared it with hop-diffusing transferrin receptors. By establishing a new analysis pipeline combining Bayesian inference, decision trees, and clustering approaches, we systematically classified single-protein trajectories according to the type of effective confining energy landscape. This revealed the existence of only two distinct organization modalities: confinement in a quadratic energy landscape for EGFR, CPεTR, and CSαTR (A), and free diffusion in confinement domains resulting from the steric hindrance due to F-actin barriers for transferrin receptor (B). The further characterization of effective confinement energy landscapes by Bayesian inference revealed the role of interactions with the domain environment in cholesterol- and sphingolipid-rich domains with (EGFR) or without (CPεTR and CSαTR) interactions with F-actin to regulate the confinement energy depth. These two distinct mechanisms result in the same organization type (A). We revealed that the apparent domain sizes for these receptor trajectories resulted from Brownian exploration of the energy landscape in a steady-state-like regime at a common effective temperature, independently of the underlying molecular mechanisms. These results highlight that confinement domains may be adequately described as interaction hotspots rather than rafts with abrupt domain boundaries. Altogether, these results support a new model for functional receptor confinement in membrane nanodomains and pave the way to the constitution of an atlas of membrane protein organization.
Collapse
Affiliation(s)
- Chao Yu
- Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France
| | - Maximilian Richly
- Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France
| | - Thi Thuy Hoang
- Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France
| | - Mohammed El Beheiry
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Decision and Bayesian Computation, Paris, France; Épiméthée, INRIA, Paris, France
| | - Silvan Türkcan
- Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France
| | - Jean-Baptiste Masson
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Decision and Bayesian Computation, Paris, France; Épiméthée, INRIA, Paris, France
| | - Antigoni Alexandrou
- Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France
| | - Cedric I Bouzigues
- Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France.
| |
Collapse
|
5
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
6
|
Ren EC, Zhuo NZ, Goh ZY, Bonne I, Malleret B, Ko HL. cccDNA-Targeted Drug Screen Reveals a Class of Antihistamines as Suppressors of HBV Genome Levels. Biomolecules 2023; 13:1438. [PMID: 37892121 PMCID: PMC10604930 DOI: 10.3390/biom13101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is incurable, as the current therapeutics cannot eliminate its persistent genomic material, cccDNA. Screening systems for cccDNA-targeting therapeutics are unavailable, as low copies of cccDNA in vitro complicate detection. To address this, cccDNA copies were massively increased to levels detectable via automated plate readers. This was achieved via continuous infection in a contact-free co-culture of an HBV generator (clone F881), which stably produced clinically relevant amounts of HBV, and HBV acceptors selected to carry high cccDNA loads. cccDNA-targeted therapeutics were then identified via reduced cccDNA-specific fluorescence, taking differences in the cell numbers and viability into account. Amongst the drugs tested, the H1 antihistamine Bilastine, HBVCP inhibitors and, surprisingly, current HBV therapeutics downregulated the cccDNA significantly, reflecting the assay's accuracy and sensitivity in identifying drugs that induce subtle changes in cccDNA levels, which take years to manifest in vivo. Bilastine was the only therapeutic that did not reduce HBV production from F881, indicating it to be a novel direct suppressor of cccDNA levels. When further assessed, only the structurally similar antihistamines Pitolisant and Nizatidine suppressed cccDNA levels when other H1 antihistamines could not. Taken together, our rapid fluorescence cccDNA-targeted drug screen successfully identified a class of molecules with the potential to treat hepatitis B.
Collapse
Affiliation(s)
- Ee Chee Ren
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
| | - Nicole Ziyi Zhuo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
| | - Zhi Yi Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
| | - Isabelle Bonne
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, MD1, Tahir Foundation Building, #B1-01, 12 Science Drive 2, Singapore 117549, Singapore
- Immunology Programme, Life Sciences Institute, Center for Life Sciences, National University of Singapore, #05-02, 28 Medical Drive, Singapore 117456, Singapore
| | - Benoît Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, MD1, Tahir Foundation Building, #B1-01, 12 Science Drive 2, Singapore 117549, Singapore
| | - Hui Ling Ko
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
| |
Collapse
|
7
|
Leblanc JA, Sugiyama MG, Antonescu CN, Brown AI. Quantitative modeling of EGF receptor ligand discrimination via internalization proofreading. Phys Biol 2023; 20:056008. [PMID: 37557183 DOI: 10.1088/1478-3975/aceecd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an important aspect of EGFR signaling, with EGFR internalization behavior dependent upon the type of ligand bound. We develop quantitative modeling for EGFR recruitment to and internalization from clathrin domains, focusing on how internalization competes with ligand unbinding from EGFR. We develop two model versions: a kinetic model with EGFR behavior described as transitions between discrete states and a spatial model with EGFR diffusion to circular clathrin domains. We find that a combination of spatial and kinetic proofreading leads to enhanced EGFR internalization ratios in comparison to unbinding differences between ligand types. Various stages of the EGFR internalization process, including recruitment to and internalization from clathrin domains, modulate the internalization differences between receptors bound to different ligands. Our results indicate that following ligand binding, EGFR may encounter multiple clathrin domains before successful recruitment and internalization. The quantitative modeling we have developed describes competition between EGFR internalization and ligand unbinding and the resulting proofreading.
Collapse
Affiliation(s)
- Jaleesa A Leblanc
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Michael G Sugiyama
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Catapano C, Rahm JV, Omer M, Teodori L, Kjems J, Dietz MS, Heilemann M. Biased activation of the receptor tyrosine kinase HER2. Cell Mol Life Sci 2023; 80:158. [PMID: 37208479 DOI: 10.1007/s00018-023-04806-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
HER2 belongs to the ErbB sub-family of receptor tyrosine kinases and regulates cellular proliferation and growth. Different from other ErbB receptors, HER2 has no known ligand. Activation occurs through heterodimerization with other ErbB receptors and their cognate ligands. This suggests several possible activation paths of HER2 with ligand-specific, differential response, which has so far remained unexplored. Using single-molecule tracking and the diffusion profile of HER2 as a proxy for activity, we measured the activation strength and temporal profile in live cells. We found that HER2 is strongly activated by EGFR-targeting ligands EGF and TGFα, yet with a distinguishable temporal fingerprint. The HER4-targeting ligands EREG and NRGβ1 showed weaker activation of HER2, a preference for EREG, and a delayed response to NRGβ1. Our results indicate a selective ligand response of HER2 that may serve as a regulatory element. Our experimental approach is easily transferable to other membrane receptors targeted by multiple ligands.
Collapse
Affiliation(s)
- Claudia Catapano
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-Von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Johanna V Rahm
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-Von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Marjan Omer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Laura Teodori
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-Von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-Von-Laue-Str. 7, 60438, Frankfurt, Germany.
| |
Collapse
|
9
|
Sugiyama MG, Brown AI, Vega-Lugo J, Borges JP, Scott AM, Jaqaman K, Fairn GD, Antonescu CN. Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling. Nat Commun 2023; 14:2681. [PMID: 37160944 PMCID: PMC10170156 DOI: 10.1038/s41467-023-38390-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology. EGFR is activated by ligand binding, triggering receptor dimerization, activation of kinase activity, and intracellular signaling. EGFR is transiently confined within various plasma membrane nanodomains, yet how this may contribute to regulation of EGFR ligand binding is poorly understood. To resolve how EGFR nanoscale compartmentalization gates ligand binding, we developed single-particle tracking methods to track the mobility of ligand-bound and total EGFR, in combination with modeling of EGFR ligand binding. In comparison to unliganded EGFR, ligand-bound EGFR is more confined and distinctly regulated by clathrin and tetraspanin nanodomains. Ligand binding to unliganded EGFR occurs preferentially in tetraspanin nanodomains, and disruption of tetraspanin nanodomains impairs EGFR ligand binding and alters the conformation of the receptor's ectodomain. We thus reveal a mechanism by which EGFR confinement within tetraspanin nanodomains regulates receptor signaling at the level of ligand binding.
Collapse
Affiliation(s)
- Michael G Sugiyama
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Jesus Vega-Lugo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jazlyn P Borges
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, La Trobe University, Melbourne, VIC, Australia
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gregory D Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
| |
Collapse
|
10
|
Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane. Nat Commun 2023; 14:34. [PMID: 36596803 PMCID: PMC9810740 DOI: 10.1038/s41467-022-35708-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
The γ-aminobutyric acid type B (GABAB) receptor is a prototypical family C G protein-coupled receptor (GPCR) that plays a key role in the regulation of synaptic transmission. Although growing evidence suggests that GPCR signaling in neurons might be highly organized in time and space, limited information is available about the mechanisms controlling the nanoscale organization of GABAB receptors and other GPCRs on the neuronal plasma membrane. Using a combination of biochemical assays in vitro, single-particle tracking, and super-resolution microscopy, we provide evidence that the spatial organization and diffusion of GABAB receptors on the plasma membrane are governed by dynamic interactions with filamin A, which tethers the receptors to sub-cortical actin filaments. We further show that GABAB receptors are located together with filamin A in small nanodomains in hippocampal neurons. These interactions are mediated by the first intracellular loop of the GABAB1 subunit and modulate the kinetics of Gαi protein activation in response to GABA stimulation.
Collapse
|
11
|
Effect of St. John's wort extract Ze 117 on the lateral mobility of β 1-adrenergic receptors in C6 cells. Biomed Pharmacother 2023; 157:114006. [PMID: 36395608 DOI: 10.1016/j.biopha.2022.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Depression has been associated with altered signal transduction of serotonergic, dopaminergic and adrenergic neurotransmitter systems in the brain. Signaling relies on receptor-ligand interactions and subsequent regulatory processes, but also on lateral receptor mobility. The aim of this study was to investigate the effect of the St. John's wort extract Ze 117 on the lateral mobility of SNAP-tagged β1-adrenergic receptors (β1AR) in the plasma membrane of C6 cells under both, non-stimulating and isoprenaline-stimulating conditions. Single particle tracking (SPT) was used, whereby the registered trajectories were evaluated by variational Bayesian treatment of a hidden Markov model (vbSPT) and packing coefficient (Pc) analysis with respect to diffusion coefficients, receptor state occupancies and confinement. Three different diffusion states were identified, differing in their diffusion coefficients. Treatment with Ze 117 [25 µg/ml] decreased the mobility of the β1AR, which was manifested by a relative increase in the slow-diffusing state S1 (0.21-0.30) compared to control and by an increase in receptor confinement (79.4-68.1 nm). After isoprenaline stimulation of control cells, the slow-diffusing state was more pronounced, whereas confinement was not affected. In summary, SPT has been shown to be a powerful method to analyze lateral receptor mobility. Furthermore, the present study identified a correlation between Ze 117 treatment and β1AR mobility.
Collapse
|
12
|
Choosing the Probe for Single-Molecule Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms232314949. [PMID: 36499276 PMCID: PMC9735909 DOI: 10.3390/ijms232314949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Indeed, fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for advanced single-molecule applications. There are different reasons for this, linked, e.g., to fluorophore aspecific interactions, brightness, photostability, blinking, and emission and excitation spectra. In particular, these spectra and the excitation source are interdependent, and the latter affects the autofluorescence of sample substrate, medium, and/or biological specimen. Here, we review these and other critical points for fluorophore selection in single-molecule microscopy. We also describe the possible kinds of fluorophores and the microscopy techniques based on single-molecule fluorescence. We explain the importance and impact of the various issues in fluorophore choice, and discuss how this can become more effective and decisive for increasingly demanding experiments in single- and multiple-color applications.
Collapse
|
13
|
Nandan A, Das A, Lott R, Koseska A. Cells use molecular working memory to navigate inchanging chemoattractant fields. eLife 2022; 11:76825. [PMID: 35666122 PMCID: PMC9282860 DOI: 10.7554/elife.76825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
In order to migrate over large distances, cells within tissues and organisms rely on sensing local gradient cues which are irregular, conflicting, and changing over time and space. The mechanism how they generate persistent directional migration when signals are disrupted, while still remaining adaptive to signal's localization changes remain unknown. Here we find that single cells utilize a molecular mechanism akin to a working memory to satisfy these two opposing demands. We derive theoretically that this is characteristic for receptor networks maintained away from steady states. Time-resolved live-cell imaging of Epidermal growth factor receptor (EGFR) phosphorylation dynamics shows that cells transiently memorize position of encountered signals via slow-escaping remnant of the polarized signaling state, a dynamical 'ghost', driving memory-guided persistent directional migration. The metastability of this state further enables migrational adaptation when encountering new signals. We thus identify basic mechanism of real-time computations underlying cellular navigation in changing chemoattractant fields.
Collapse
Affiliation(s)
- Akhilesh Nandan
- Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Abhishek Das
- Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Robert Lott
- Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Aneta Koseska
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
14
|
Dirscherl C, Löchte S, Hein Z, Kopicki JD, Harders AR, Linden N, Karner A, Preiner J, Weghuber J, Garcia-Alai M, Uetrecht C, Zacharias M, Piehler J, Lanzerstorfer P, Springer S. Dissociation of β2m from MHC class I Triggers formation of Noncovalent, transient heavy chain dimers. J Cell Sci 2022; 135:274997. [PMID: 35393611 DOI: 10.1242/jcs.259498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/30/2022] [Indexed: 11/20/2022] Open
Abstract
At the plasma membrane of mammalian cells, major histocompatibility complex class I molecules (MHC-I) present antigenic peptides to cytotoxic T cells. Following the loss of the peptide and the light chain beta-2 microglobulin (β2m), the resulting free heavy chains (FHCs) can associate into homotypic complexes in the plasma membrane. Here, we investigate the stoichiometry and dynamics of MHC-I FHCs assemblies by combining a micropattern assay with fluorescence recovery after photobleaching (FRAP) and with single molecule co-tracking. We identify non-covalent MHC-I FHC dimers mediated by the α3 domain as the prevalent species at the plasma membrane, leading a moderate decrease in the diffusion coefficient. MHC-I FHC dimers show increased tendency to cluster into higher order oligomers as concluded from an increased immobile fraction with higher single molecule co-localization. In vitro studies with isolated proteins in conjunction with molecular docking and dynamics simulations suggest that in the complexes, the α3 domain of one FHC binds to another FHC in a manner similar to the β2m light chain.
Collapse
Affiliation(s)
- Cindy Dirscherl
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Sara Löchte
- Department of Biology and Center for Cellular Nanoanalytics, Osnabrück University, 49076 Osnabrück, Germany
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Janine-Denise Kopicki
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Noemi Linden
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Andreas Karner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Johannes Preiner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Maria Garcia-Alai
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany.,Centre for Structural Systems Biology, Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,European XFEL, Schenefeld, Germany
| | - Martin Zacharias
- Physics Department, Technical University of Munich, Garching, Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics, Osnabrück University, 49076 Osnabrück, Germany
| | | | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| |
Collapse
|
15
|
Alfonzo-Méndez MA, Sochacki KA, Strub MP, Taraska JW. Dual clathrin and integrin signaling systems regulate growth factor receptor activation. Nat Commun 2022; 13:905. [PMID: 35173166 PMCID: PMC8850434 DOI: 10.1038/s41467-022-28373-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
The crosstalk between growth factor and adhesion receptors is key for cell growth and migration. In pathological settings, these receptors are drivers of cancer. Yet, how growth and adhesion signals are spatially organized and integrated is poorly understood. Here we use quantitative fluorescence and electron microscopy to reveal a mechanism where flat clathrin lattices partition and activate growth factor signals via a coordinated response that involves crosstalk between epidermal growth factor receptor (EGFR) and the adhesion receptor β5-integrin. We show that ligand-activated EGFR, Grb2, Src, and β5-integrin are captured by clathrin coated-structures at the plasma membrane. Clathrin structures dramatically grow in response to EGF into large flat plaques and provide a signaling platform that link EGFR and β5-integrin through Src-mediated phosphorylation. Disrupting this EGFR/Src/β5-integrin axis prevents both clathrin plaque growth and dampens receptor signaling. Our study reveals a reciprocal regulation between clathrin lattices and two different receptor systems to coordinate and enhance signaling. These findings have broad implications for the regulation of growth factor signaling, adhesion, and endocytosis.
Collapse
Affiliation(s)
- Marco A Alfonzo-Méndez
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
| | - Marie-Paule Strub
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Martin-Fernandez ML. Fluorescence Imaging of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14030686. [PMID: 35158954 PMCID: PMC8833717 DOI: 10.3390/cancers14030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer-related deaths, with a low (<21%) 5-year survival rate. Lung cancer is often driven by the misfunction of molecules on the surface of cells of the epithelium, which orchestrate mechanisms by which these cells grow and proliferate. Beyond common non-specific treatments, such as chemotherapy or radiotherapy, among molecular-specific treatments, a number of small-molecule drugs that block cancer-driven molecular activity have been developed. These drugs initially have significant success in a subset of patients, but these patients systematically develop resistance within approximately one year of therapy. Substantial efforts towards understanding the mechanisms of resistance have focused on the genomics of cancer progression, the response of cells to the drugs, and the cellular changes that allow resistance to develop. Fluorescence microscopy of many flavours has significantly contributed to the last two areas, and is the subject of this review. Abstract Non-small cell lung cancer (NSCLC) is a complex disease often driven by activating mutations or amplification of the epidermal growth factor receptor (EGFR) gene, which expresses a transmembrane receptor tyrosine kinase. Targeted anti-EGFR treatments include small-molecule tyrosine kinase inhibitors (TKIs), among which gefitinib and erlotinib are the best studied, and their function more often imaged. TKIs block EGFR activation, inducing apoptosis in cancer cells addicted to EGFR signals. It is not understood why TKIs do not work in tumours driven by EGFR overexpression but do so in tumours bearing classical activating EGFR mutations, although the latter develop resistance in about one year. Fluorescence imaging played a crucial part in research efforts to understand pro-survival mechanisms, including the dysregulation of autophagy and endocytosis, by which cells overcome the intendedly lethal TKI-induced EGFR signalling block. At their core, pro-survival mechanisms are facilitated by TKI-induced changes in the function and conformation of EGFR and its interactors. This review brings together some of the main advances from fluorescence imaging in investigating TKI function and places them in the broader context of the TKI resistance field, highlighting some paradoxes and suggesting some areas where super-resolution and other emerging methods could make a further contribution.
Collapse
Affiliation(s)
- Marisa L Martin-Fernandez
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
| |
Collapse
|
17
|
Huebinger J, Grecco H, Masip ME, Christmann J, Fuhr GR, Bastiaens PIH. Ultrarapid cryo-arrest of living cells on a microscope enables multiscale imaging of out-of-equilibrium molecular patterns. SCIENCE ADVANCES 2021; 7:eabk0882. [PMID: 34890224 PMCID: PMC8664253 DOI: 10.1126/sciadv.abk0882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Imaging molecular patterns in cells by fluorescence micro- or nanoscopy has the potential to relate collective molecular behavior to cellular function. However, spatial and spectroscopic resolution is fundamentally limited by motional blur caused by finite photon fluxes and photobleaching. At physiological temperatures, photochemical reactivity does not only limit imaging at multiple scales but is also toxic to biochemical reactions that maintain cellular organization. Here, we present cryoprotectant-free ultrarapid cryo-arrest directly on a multimodal fluorescence microscope that preserves the out-of-equilibrium molecular organization of living cells. This allows the imaging of dynamic processes before cryo-arrest in combination with precise molecular pattern determination at multiple scales within the same cells under cryo-arrest. We both experimentally and theoretically show that ultrarapid cryo-arrest overcomes the fundamental resolution barrier imposed by motional blur and photochemical reactivity, enabling observation of native molecular distributions and reaction patterns that are not resolvable at physiological temperatures.
Collapse
Affiliation(s)
- Jan Huebinger
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Hernan Grecco
- Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina
| | - Martín E. Masip
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Jens Christmann
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Günter R. Fuhr
- Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Philippe I. H. Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
18
|
Rahm JV, Malkusch S, Endesfelder U, Dietz MS, Heilemann M. Diffusion State Transitions in Single-Particle Trajectories of MET Receptor Tyrosine Kinase Measured in Live Cells. FRONTIERS IN COMPUTER SCIENCE 2021. [DOI: 10.3389/fcomp.2021.757653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Single-particle tracking enables the analysis of the dynamics of biomolecules in living cells with nanometer spatial and millisecond temporal resolution. This technique reports on the mobility of membrane proteins and is sensitive to the molecular state of a biomolecule and to interactions with other biomolecules. Trajectories describe the mobility of single particles over time and provide information such as the diffusion coefficient and diffusion state. Changes in particle dynamics within single trajectories lead to segmentation, which allows to extract information on transitions of functional states of a biomolecule. Here, mean-squared displacement analysis is developed to classify trajectory segments into immobile, confined diffusing, and freely diffusing states, and to extract the occurrence of transitions between these modes. We applied this analysis to single-particle tracking data of the membrane receptor MET in live cells and analyzed state transitions in single trajectories of the un-activated receptor and the receptor bound to the ligand internalin B. We found that internalin B-bound MET shows an enhancement of transitions from freely and confined diffusing states into the immobile state as compared to un-activated MET. Confined diffusion acts as an intermediate state between immobile and free, as this state is most likely to change the diffusion state in the following segment. This analysis can be readily applied to single-particle tracking data of other membrane receptors and intracellular proteins under various conditions and contribute to the understanding of molecular states and signaling pathways.
Collapse
|
19
|
Bondar A, Jang W, Sviridova E, Lambert NA. Components of the G s signaling cascade exhibit distinct changes in mobility and membrane domain localization upon β 2 -adrenergic receptor activation. Traffic 2021; 21:324-332. [PMID: 32096320 DOI: 10.1111/tra.12724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
The G protein signaling cascade is a key player in cell signaling. Cascade activation leads to a redistribution of its members in various cellular compartments. These changes are likely related to the "second wave" of signaling from endosomes. Here, we set out to determine whether Gs signaling cascade members expressed at very low levels exhibit altered mobility and localize in clathrin-coated structures (CCSs) or caveolae upon activation by β2 -adrenergic receptors (β2 AR). Activated β2 AR showed decreased mobility and sustained accumulation in CCSs but not in caveolae. Arrestin 3 translocated to the plasma membrane after β2 AR activation and showed very low mobility and pronounced accumulation in CCSs. In contrast, Gαs and Gγ2 exhibited a modest reduction in mobility but no detectable accumulation in or exclusion from CCSs or caveolae. The effector adenylyl cyclase 5 (AC5) showed a slight mobility increase upon β2 AR stimulation, no redistribution to CCSs, and weak activation-independent accumulation in caveolae. Our findings show an overall decrease in the mobility of most activated Gs signaling cascade members and confirm that β2 AR and arrestin 3 accumulate in CCSs, while Gαs , Gγ2 and AC5 can transiently enter CCSs and caveolae but do not accumulate in and are not excluded from these domains.
Collapse
Affiliation(s)
- Alexey Bondar
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA.,Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Prague, Czech Republic.,University of South Bohemia, Czech Republic
| | - Wonjo Jang
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA
| | - Ekaterina Sviridova
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Czech Republic
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
20
|
Rosenkranz AA, Slastnikova TA. Epidermal Growth Factor Receptor: Key to Selective Intracellular Delivery. BIOCHEMISTRY (MOSCOW) 2021; 85:967-1092. [PMID: 33050847 DOI: 10.1134/s0006297920090011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an integral surface protein mediating cellular response to a number of growth factors. Its overexpression and increased activation due to mutations is one of the most common traits of many types of cancer. Development and clinical use of the agents, which block EGFR activation, became a prime example of the personalized targeted medicine. However, despite the obvious success in this area, cancer cure remains unattainable in most cases. Because of that, as well as the result of the search for possible ways to overcome the difficulties of treatment, a huge number of new treatment methods relying on the use of EGFR overexpression and its changes to destroy cancer cells. Modern data on the structure, functioning, and intracellular transport of EGFR, its natural ligands, as well as signaling cascades triggered by the EGFR activation, peculiarities of the EGFR expression and activation in oncological disorders, as well as applied therapeutic approaches aimed at blocking EGFR signaling pathway are summarized and analyzed in this review. Approaches to the targeted delivery of various chemotherapeutic agents, radionuclides, immunotoxins, photosensitizers, as well as the prospects for gene therapy aimed at cancer cells with EGFR overexpression are reviewed in detail. It should be noted that increasing attention is being paid nowadays to the development of multifunctional systems, either carrying several different active agents, or possessing several environment-dependent transport functions. Potentials of the systems based on receptor-mediated endocytosis of EGFR and their possible advantages and limitations are discussed.
Collapse
Affiliation(s)
- A A Rosenkranz
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
21
|
Baldering TN, Karathanasis C, Harwardt MLIE, Freund P, Meurer M, Rahm JV, Knop M, Dietz MS, Heilemann M. CRISPR/Cas12a-mediated labeling of MET receptor enables quantitative single-molecule imaging of endogenous protein organization and dynamics. iScience 2020; 24:101895. [PMID: 33364584 PMCID: PMC7753144 DOI: 10.1016/j.isci.2020.101895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/12/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule localization microscopy (SMLM) reports on protein organization in cells with near-molecular resolution and in combination with stoichiometric labeling enables protein counting. Fluorescent proteins allow stoichiometric labeling of cellular proteins; however, most methods either lead to overexpression or are complex and time demanding. We introduce CRISPR/Cas12a for simple and efficient tagging of endogenous proteins with a photoactivatable protein for quantitative SMLM and single-particle tracking. We constructed a HEK293T cell line with the receptor tyrosine kinase MET tagged with mEos4b and demonstrate full functionality. We determine the oligomeric state of MET with quantitative SMLM and find a reorganization from monomeric to dimeric MET upon ligand stimulation. In addition, we measured the mobility of single MET receptors in vivo in resting and ligand-treated cells. The combination of CRISPR/Cas12a-assisted endogenous protein labeling and super-resolution microscopy represents a powerful tool for cell biological research with molecular resolution. CRISPR/Cas12a enables endogenous protein labeling for super-resolution microscopy HEK293T cells were generated with MET endogenously labeled with mEos4b Quantitative PALM microscopy reports efficient dimerization of MET receptor Single-particle tracking shows increased MET immobilization upon ligand treatment
Collapse
Affiliation(s)
- Tim N Baldering
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Christos Karathanasis
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Marie-Lena I E Harwardt
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Petra Freund
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Matthias Meurer
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - Johanna V Rahm
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina S Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Mike Heilemann
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
22
|
Esteban-Villarrubia J, Soto-Castillo JJ, Pozas J, San Román-Gil M, Orejana-Martín I, Torres-Jiménez J, Carrato A, Alonso-Gordoa T, Molina-Cerrillo J. Tyrosine Kinase Receptors in Oncology. Int J Mol Sci 2020; 21:E8529. [PMID: 33198314 PMCID: PMC7696731 DOI: 10.3390/ijms21228529] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase receptors (TKR) comprise more than 60 molecules that play an essential role in the molecular pathways, leading to cell survival and differentiation. Consequently, genetic alterations of TKRs may lead to tumorigenesis and, therefore, cancer development. The discovery and improvement of tyrosine kinase inhibitors (TKI) against TKRs have entailed an important step in the knowledge-expansion of tumor physiopathology as well as an improvement in the cancer treatment based on molecular alterations over many tumor types. The purpose of this review is to provide a comprehensive review of the different families of TKRs and their role in the expansion of tumor cells and how TKIs can stop these pathways to tumorigenesis, in combination or not with other therapies. The increasing growth of this landscape is driving us to strengthen the development of precision oncology with clinical trials based on molecular-based therapy over a histology-based one, with promising preliminary results.
Collapse
Affiliation(s)
- Jorge Esteban-Villarrubia
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Juan José Soto-Castillo
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Javier Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - María San Román-Gil
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Inmaculada Orejana-Martín
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Javier Torres-Jiménez
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| |
Collapse
|
23
|
Delcanale P, Porciani D, Pujals S, Jurkevich A, Chetrusca A, Tawiah KD, Burke DH, Albertazzi L. Aptamers with Tunable Affinity Enable Single-Molecule Tracking and Localization of Membrane Receptors on Living Cancer Cells. Angew Chem Int Ed Engl 2020; 59:18546-18555. [PMID: 32627326 PMCID: PMC7590183 DOI: 10.1002/anie.202004764] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 12/31/2022]
Abstract
Tumor cell-surface markers are usually overexpressed or mutated protein receptors for which spatiotemporal regulation differs between and within cancers. Single-molecule fluorescence imaging can profile individual markers in different cellular contexts with molecular precision. However, standard single-molecule imaging methods based on overexpressed genetically encoded tags or cumbersome probes can significantly alter the native state of receptors. We introduce a live-cell points accumulation for imaging in nanoscale topography (PAINT) method that exploits aptamers as minimally invasive affinity probes. Localization and tracking of individual receptors are based on stochastic and transient binding between aptamers and their targets. We demonstrated single-molecule imaging of a model tumor marker (EGFR) on a panel of living cancer cells. Affinity to EGFR was finely tuned by rational engineering of aptamer sequences to define receptor motion and/or native receptor density.
Collapse
Affiliation(s)
- Pietro Delcanale
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 15–2108028BarcelonaSpain
| | - David Porciani
- Department of Molecular Microbiology & ImmunologySchool of MedicineUniversity of Missouri-Columbia1 Hospital DrColumbiaMO65212USA
- MU Bond Life Sciences CenterUniversity of Missouri-Columbia1201 Rollins StreetColumbiaMO65211-7310USA
| | - Silvia Pujals
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 15–2108028BarcelonaSpain
- Department of Electronics and Biomedical EngineeringFaculty of PhysicsUniversitat de BarcelonaMartí i Franquès 108028BarcelonaSpain
| | - Alexander Jurkevich
- Molecular Cytology Core at MU Bond Life Sciences CenterUniversity of Missouri-ColumbiaUSA
| | - Andrian Chetrusca
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 15–2108028BarcelonaSpain
| | - Kwaku D. Tawiah
- Department of BiochemistryUniversity of Missouri-Columbia117 Schweitzer HallColumbiaMO65211USA
| | - Donald H. Burke
- Department of Molecular Microbiology & ImmunologySchool of MedicineUniversity of Missouri-Columbia1 Hospital DrColumbiaMO65212USA
- MU Bond Life Sciences CenterUniversity of Missouri-Columbia1201 Rollins StreetColumbiaMO65211-7310USA
- Department of BiochemistryUniversity of Missouri-Columbia117 Schweitzer HallColumbiaMO65211USA
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 15–2108028BarcelonaSpain
- Department of Biomedical EngineeringInstitute for Complex Molecular Systems (ICMS)Eindhoven University of Technology5612AZEindhovenThe Netherlands
| |
Collapse
|
24
|
Koseska A, Bastiaens PI. Processing Temporal Growth Factor Patterns by an Epidermal Growth Factor Receptor Network Dynamically Established in Space. Annu Rev Cell Dev Biol 2020; 36:359-383. [DOI: 10.1146/annurev-cellbio-013020-103810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a tyrosine kinase whose sensitivity and response to growth factor signals that vary over time and space determine cellular behavior within a developing tissue. The molecular reorganization of the receptors on the plasma membrane and the enzyme-kinetic mechanisms of phosphorylation are key determinants that couple growth factor binding to EGFR signaling. To enable signal initiation and termination while simultaneously accounting for suppression of aberrant signaling, a coordinated coupling of EGFR kinase and protein tyrosine phosphatase activity is established through space by vesicular dynamics. The dynamical operation mode of this network enables not only time-varying growth factor sensing but also adaptation of the response depending on cellular context. By connecting spatially coupled enzymatic kinase/phosphatase processes and the corresponding dynamical systems description of the EGFR network, we elaborate on the general principles necessary for processing complex growth factor signals.
Collapse
Affiliation(s)
- Aneta Koseska
- Lise Meitner Group Cellular Computations and Learning, Centre of Advanced European Studies and Research (caesar), D-53175 Bonn, Germany
| | - Philippe I.H. Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
25
|
Lee MF, Trotman LC. PTEN: Bridging Endocytosis and Signaling. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036103. [PMID: 31818848 DOI: 10.1101/cshperspect.a036103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The transduction of signals in the PTEN/PI3-kinase (PI3K) pathway is built around a phosphoinositide (PIP) lipid messenger, phosphatidylinositol trisphosphate, PI(3,4,5)P3 or PIP3 Another, more ancient role of this family of messengers is the control of endocytosis, where a handful of separate PIPs act like postal codes. Prominent among them is PI(3)P, which helps to ensure that endocytic vesicles, their cargo, and membranes themselves reach their correct destinations. Traditionally, the cancer and the endocytic functions of the PI3K signaling pathway have been studied by cancer and membrane biologists, respectively, with some notable but overall minimal overlap. Modern microscopy has enabled monitoring of the PTEN/PI3K pathway in action. Here, we explore the flurry of groundbreaking concepts emerging from those efforts. The discovery that PTEN contains an autonomous PI(3)P reader domain, fused to the catalytic PIP3 eraser domain has prompted us to explore the relationship between PI3K signaling and endocytosis. This revealed how PTEN can achieve signal termination in a precisely controlled fashion, because endocytosis can package the PIP3 signal into discrete units that PTEN will erase. We explore how PTEN can bridge the worlds of endocytosis and PI3K signaling and discuss progress on how PI3K/AKT signaling can be acting from internal membranes. We discuss how the PTEN/PI3K system for growth control may have emerged from principles of endocytosis, and how this development could have affected the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Matthew F Lee
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
26
|
Delcanale P, Porciani D, Pujals S, Jurkevich A, Chetrusca A, Tawiah KD, Burke DH, Albertazzi L. Aptamers with Tunable Affinity Enable Single‐Molecule Tracking and Localization of Membrane Receptors on Living Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pietro Delcanale
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 15–21 08028 Barcelona Spain
| | - David Porciani
- Department of Molecular Microbiology & Immunology School of Medicine University of Missouri-Columbia 1 Hospital Dr Columbia MO 65212 USA
- MU Bond Life Sciences Center University of Missouri-Columbia 1201 Rollins Street Columbia MO 65211-7310 USA
| | - Silvia Pujals
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 15–21 08028 Barcelona Spain
- Department of Electronics and Biomedical Engineering Faculty of Physics Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Alexander Jurkevich
- Molecular Cytology Core at MU Bond Life Sciences Center University of Missouri-Columbia USA
| | - Andrian Chetrusca
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 15–21 08028 Barcelona Spain
| | - Kwaku D. Tawiah
- Department of Biochemistry University of Missouri-Columbia 117 Schweitzer Hall Columbia MO 65211 USA
| | - Donald H. Burke
- Department of Molecular Microbiology & Immunology School of Medicine University of Missouri-Columbia 1 Hospital Dr Columbia MO 65212 USA
- MU Bond Life Sciences Center University of Missouri-Columbia 1201 Rollins Street Columbia MO 65211-7310 USA
- Department of Biochemistry University of Missouri-Columbia 117 Schweitzer Hall Columbia MO 65211 USA
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 15–21 08028 Barcelona Spain
- Department of Biomedical Engineering Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology 5612AZ Eindhoven The Netherlands
| |
Collapse
|
27
|
Harwardt MLI, Schröder MS, Li Y, Malkusch S, Freund P, Gupta S, Janjic N, Strauss S, Jungmann R, Dietz MS, Heilemann M. Single-Molecule Super-Resolution Microscopy Reveals Heteromeric Complexes of MET and EGFR upon Ligand Activation. Int J Mol Sci 2020; 21:ijms21082803. [PMID: 32316583 PMCID: PMC7215329 DOI: 10.3390/ijms21082803] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) orchestrate cell motility and differentiation. Deregulated RTKs may promote cancer and are prime targets for specific inhibitors. Increasing evidence indicates that resistance to inhibitor treatment involves receptor cross-interactions circumventing inhibition of one RTK by activating alternative signaling pathways. Here, we used single-molecule super-resolution microscopy to simultaneously visualize single MET and epidermal growth factor receptor (EGFR) clusters in two cancer cell lines, HeLa and BT-20, in fixed and living cells. We found heteromeric receptor clusters of EGFR and MET in both cell types, promoted by ligand activation. Single-protein tracking experiments in living cells revealed that both MET and EGFR respond to their cognate as well as non-cognate ligands by slower diffusion. In summary, for the first time, we present static as well as dynamic evidence of the presence of heteromeric clusters of MET and EGFR on the cell membrane that correlates with the relative surface expression levels of the two receptors.
Collapse
Affiliation(s)
- Marie-Lena I.E. Harwardt
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Mark S. Schröder
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Yunqing Li
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Sebastian Malkusch
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Petra Freund
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | | | | | - Sebastian Strauss
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
- Max Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Ralf Jungmann
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
- Max Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Marina S. Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
- Correspondence: (M.S.D.); (M.H.)
| | - Mike Heilemann
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
- Correspondence: (M.S.D.); (M.H.)
| |
Collapse
|
28
|
Gupta A, Rivera-Molina F, Xi Z, Toomre D, Schepartz A. Endosome motility defects revealed at super-resolution in live cells using HIDE probes. Nat Chem Biol 2020; 16:408-414. [PMID: 32094922 PMCID: PMC7176048 DOI: 10.1038/s41589-020-0479-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
We report new lipid-based, high-density, environmentally sensitive (HIDE) probes that accurately and selectively image endo-lysosomes and their dynamics at super-resolution for extended times. Treatment of live cells with the small molecules DiIC16TCO or DiIC16’TCO followed by in situ tetrazine ligation reaction with the silicon-rhodamine dye SiR-Tz generates the HIDE probes DiIC16-SiR and DiIC16’-SiR in the endo-lysosomal membrane. These new probes support the acquisition of super-resolution videos of organelle dynamics in primary cells for more than 7 minutes with no detectable change in endosome structure or function. Using DiIC16-SiR and DiIC16’-SiR, we describe the first direct evidence of endosome motility defects in cells from patients with Niemann-Pick Type-C disease. In wild-type fibroblasts, the probes reveal distinct but rare inter-endosome kiss-and-run events that cannot be observed using confocal methods. Our results shed new light on the role of NPC1 in organelle motility and cholesterol trafficking.
Collapse
Affiliation(s)
- Aarushi Gupta
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT, USA. .,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA. .,Department of Chemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
29
|
Regulation of Cancer Immune Checkpoint: Mono- and Poly-Ubiquitination: Tags for Fate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:295-324. [PMID: 32185716 DOI: 10.1007/978-981-15-3266-5_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The antagonism, stalemate and compromise between the immune system and tumor cells is closely associated with tumor development and progression. In recent years, tumor immunotherapy has made continuous breakthroughs. It has become an important approach for cancer treatment, improving the survival and prognosis of more and more tumor patients. Further investigating the mechanism of tumor immune regulation, and exploring tumor immunotherapy targets with high specificity and wide applicability will provide researchers and clinicians with favorable weapons towards cancer. Ubiquitination affects protein fate through influencing the activity, stability and location of target protein. The regulation of substrate protein fate by ubiquitination is involved in cell cycle, apoptosis, transcriptional regulation, DNA repair, immune response, protein degradation and quality control. E3 ubiquitin ligase selectively recruits specific protein substrates through specific protein-protein interactions to determine the specificity of the overall ubiquitin modification reaction. Immune-checkpoint inhibitory pathway is an important mechanism for tumor cells to evade immune killing, which can inhibit T cell activity. Blocking the immune checkpoints and activating T cells through targeting the negative regulatory factors of T cell activation and removing the "brake" of T lymphocytes can enhance T cells immune response against tumors. Therefore, blocking the immune checkpoint is one of the methods to enhance the activity of T cells, and it is also a hot target for the development of anti-tumor drugs in recent years, whose inhibitors have shown good effect in specific tumor treatment. Ubiquitination, as one of the most important posttranslational modification of proteins, also modulates the expression, intracellular trafficking, subcellular and membranous location of immune checkpoints, regulating the immune surveillance of T cells to tumors.
Collapse
|
30
|
Caballero-Díaz D, Bertran E, Peñuelas-Haro I, Moreno-Càceres J, Malfettone A, López-Luque J, Addante A, Herrera B, Sánchez A, Alay A, Solé X, Serrano T, Ramos E, Fabregat I. Clathrin switches transforming growth factor-β role to pro-tumorigenic in liver cancer. J Hepatol 2020; 72:125-134. [PMID: 31562907 DOI: 10.1016/j.jhep.2019.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Upon ligand binding, tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), are recruited into clathrin-coated pits for internalization by endocytosis, which is relevant for signalling and/or receptor degradation. In liver cells, transforming growth factor-β (TGF-β) induces both pro- and anti-apoptotic signals; the latter are mediated by the EGFR pathway. Since EGFR mainly traffics via clathrin-coated vesicles, we aimed to analyse the potential role of clathrin in TGF-β-induced signalling in liver cells and its relevance in liver cancer. METHODS Real-Time PCR and immunohistochemistry were used to analyse clathrin heavy-chain expression in human (CLTC) and mice (Cltc) liver tumours. Transient knockdown (siRNA) or overexpression of CLTC were used to analyse its role on TGF-β and EGFR signalling in vitro. Bioinformatic analysis was used to determine the effect of CLTC and TGFB1 expression on prognosis and overall survival in patients with hepatocellular carcinoma (HCC). RESULTS Clathrin expression increased during liver tumorigenesis in humans and mice. CLTC knockdown cells responded to TGF-β phosphorylating SMADs (canonical signalling) but showed impairment in the anti-apoptotic signals (EGFR transactivation). Experiments of loss or gain of function in HCC cells reveal an essential role for clathrin in inhibiting TGF-β-induced apoptosis and upregulation of its pro-apoptotic target NOX4. Autocrine TGF-β signalling in invasive HCC cells upregulates CLTC expression, switching its role to pro-tumorigenic. A positive correlation between TGFB1 and CLTC was found in HCC cells and patients. Patients expressing high levels of TGFB1 and CLTC had a worse prognosis and lower overall survival. CONCLUSIONS This work describes a novel role for clathrin in liver tumorigenesis, favouring non-canonical pro-tumorigenic TGF-β pathways. CLTC expression in human HCC samples could help select patients that would benefit from TGF-β-targeted therapy. LAY SUMMARY Clathrin heavy-chain expression increases during liver tumorigenesis in humans (CLTC) and mice (Cltc), altering the cellular response to TGF-β in favour of anti-apoptotic/pro-tumorigenic signals. A positive correlation between TGFB1 and CLTC was found in HCC cells and patients. Patients expressing high levels of TGFB1 and CLTC had a worse prognosis and lower overall survival. CLTC expression in HCC human samples could help select patients that would benefit from therapies targeting TGF-β.
Collapse
Affiliation(s)
- Daniel Caballero-Díaz
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain.
| | - Esther Bertran
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Irene Peñuelas-Haro
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Joaquim Moreno-Càceres
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Andrea Malfettone
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Judit López-Luque
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Annalisa Addante
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Blanca Herrera
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Aránzazu Sánchez
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Ania Alay
- Oncology Data Analytics Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBER Epidemiología y Salud Pública (CIBERESP), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Xavier Solé
- Oncology Data Analytics Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBER Epidemiología y Salud Pública (CIBERESP), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Teresa Serrano
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain; Pathological Anatomy Service, University Hospital of Bellvitge, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain
| | - Emilio Ramos
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain; Department of Surgery, Liver Transplant Unit, University Hospital of Bellvitge, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain
| | - Isabel Fabregat
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain.
| |
Collapse
|
31
|
Liu YL, Horning AM, Lieberman B, Kim M, Lin CK, Hung CN, Chou CW, Wang CM, Lin CL, Kirma NB, Liss MA, Vasisht R, Perillo EP, Blocher K, Horng H, Taverna JA, Ruan J, Yankeelov TE, Dunn AK, Huang THM, Yeh HC, Chen CL. Spatial EGFR Dynamics and Metastatic Phenotypes Modulated by Upregulated EphB2 and Src Pathways in Advanced Prostate Cancer. Cancers (Basel) 2019; 11:cancers11121910. [PMID: 31805710 PMCID: PMC6966510 DOI: 10.3390/cancers11121910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Advanced prostate cancer is a very heterogeneous disease reflecting in diverse regulations of oncogenic signaling pathways. Aberrant spatial dynamics of epidermal growth factor receptor (EGFR) promote their dimerization and clustering, leading to constitutive activation in oncogenesis. The EphB2 and Src signaling pathways are associated with the reorganization of the cytoskeleton leading to malignancy, but their roles in regulating EGFR dynamics and activation are scarcely reported. Using single-particle tracking techniques, we found that highly phosphorylated EGFR in the advanced prostate cancer cell line, PC3, was associated with higher EGFR diffusivity, as compared with LNCaP and less aggressive DU145. The increased EGFR activation and biophysical dynamics were consistent with high proliferation, migration, and invasion. After performing single-cell RNA-seq on prostate cancer cell lines and circulating tumor cells from patients, we identified that upregulated gene expression in the EphB2 and Src pathways are associated with advanced malignancy. After dasatinib treatment or siRNA knockdowns of EphB2 or Src, the PC3 cells exhibited significantly lower EGFR dynamics, cell motility, and invasion. Partial inhibitory effects were also found in DU145 cells. The upregulation of parts of the EphB2 and Src pathways also predicts poor prognosis in the prostate cancer patient cohort of The Cancer Genome Atlas. Our results provide evidence that overexpression of the EphB2 and Src signaling pathways regulate EGFR dynamics and cellular aggressiveness in some advanced prostate cancer cells.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Aaron M. Horning
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Brandon Lieberman
- Department of Biology, Trinity University, San Antonio, TX 78212, USA;
| | - Mirae Kim
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Che-Kuang Lin
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chia-Nung Hung
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chih-Wei Chou
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chiou-Miin Wang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chun-Lin Lin
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Nameer B. Kirma
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Michael A. Liss
- Department of Urology, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Rohan Vasisht
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Evan P. Perillo
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Katherine Blocher
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Hannah Horng
- Department of Bioengineering, the University of Maryland, College Park, MD 20742, USA;
| | - Josephine A. Taverna
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712, USA
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Tim H.-M. Huang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
- Texas Materials Institute, University of Texas at Austin, Austin, TX 78712, USA
- Correspondence: (H.-C.Y.); (C.-L.C.); Tel.: +1-512-471-7931 (H.-C.Y.); +1-210-562-4143 (C.-L.C.); Fax: +1-512-471-0616 (H.-C.Y.); +1-210-562-4161 (C.-L.C.)
| | - Chun-Liang Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
- Correspondence: (H.-C.Y.); (C.-L.C.); Tel.: +1-512-471-7931 (H.-C.Y.); +1-210-562-4143 (C.-L.C.); Fax: +1-512-471-0616 (H.-C.Y.); +1-210-562-4161 (C.-L.C.)
| |
Collapse
|
32
|
A mesophilic cysteine-less split intein for protein trans-splicing applications under oxidizing conditions. Proc Natl Acad Sci U S A 2019; 116:22164-22172. [PMID: 31611397 DOI: 10.1073/pnas.1909825116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Split intein-mediated protein trans-splicing has found extensive applications in chemical biology, protein chemistry, and biotechnology. However, an enduring limitation of all well-established split inteins has been the requirement to carry out the reaction in a reducing environment due to the presence of 1 or 2 catalytic cysteines that need to be in a reduced state for splicing to occur. The concomitant exposure of the fused proteins to reducing agents severely limits the scope of protein trans-splicing by excluding proteins sensitive to reducing conditions, such as those containing critical disulfide bonds. Here we report the discovery, characterization, and engineering of a completely cysteine-less split intein (CL intein) that is capable of efficient trans-splicing at ambient temperatures, without a denaturation step, and in the absence of reducing agents. We demonstrate its utility for the site-specific chemical modification of nanobodies and an antibody Fc fragment by N- and C-terminal trans-splicing with short peptide tags (CysTag) that consist of only a few amino acids and have been prelabeled on a single cysteine using classical cysteine bioconjugation. We also synthesized the short N-terminal fragment of the atypically split CL intein by solid-phase peptide synthesis. Furthermore, using the CL intein in combination with a nanobody-epitope pair as a high-affinity mediator, we showed chemical labeling of the extracellular domain of a cell surface receptor on living mammalian cells with a short CysTag containing a synthetic fluorophore. The CL intein thus greatly expands the scope of applications for protein trans-splicing.
Collapse
|
33
|
EGF Receptor Stalls upon Activation as Evidenced by Complementary Fluorescence Correlation Spectroscopy and Fluorescence Recovery after Photobleaching Measurements. Int J Mol Sci 2019; 20:ijms20133370. [PMID: 31323980 PMCID: PMC6650801 DOI: 10.3390/ijms20133370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/28/2022] Open
Abstract
To elucidate the molecular details of the activation-associated clustering of epidermal growth factor receptors (EGFRs), the time course of the mobility and aggregation states of eGFP tagged EGFR in the membranes of Chinese hamster ovary (CHO) cells was assessed by in situ mobility assays. Fluorescence correlation spectroscopy (FCS) was used to probe molecular movements of small ensembles of molecules over short distances and time scales, and to report on the state of aggregation. The diffusion of larger ensembles of molecules over longer distances (and time scales) was investigated by fluorescence recovery after photobleaching (FRAP). Autocorrelation functions could be best fitted by a two-component diffusion model corrected for triplet formation and blinking. The slow, 100–1000 ms component was attributed to membrane localized receptors moving with free Brownian diffusion, whereas the fast, ms component was assigned to cytosolic receptors or their fragments. Upon stimulation with 50 nM EGF, a significant decrease from 0.11 to 0.07 μm2/s in the diffusion coefficient of membrane-localized receptors was observed, followed by recovery to the original value in ~20 min. In contrast, the apparent brightness of diffusing species remained the same. Stripe FRAP experiments yielded a decrease in long-range molecular mobility directly after stimulation, evidenced by an increase in the recovery time of the slow component from 13 to 21.9 s. Our observations are best explained by the transient attachment of ligand-bound EGFRs to immobile or slowly moving structures such as the cytoskeleton or large, previously photobleached receptor aggregates.
Collapse
|
34
|
Zhang S, Reinhard BM. Characterizing Large-Scale Receptor Clustering on the Single Cell Level: A Comparative Plasmon Coupling and Fluorescence Superresolution Microscopy Study. J Phys Chem B 2019; 123:5494-5505. [PMID: 31244098 DOI: 10.1021/acs.jpcb.9b05176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spatial clustering of cell membrane receptors has been indicated to play a regulatory role in signal initiation, and the distribution of receptors on the cell surface may represent a potential biomarker. To realize its potential for diagnostic purposes, scalable assays capable of mapping spatial receptor heterogeneity with high throughput are needed. In this work, we use gold nanoparticle (NP) labels with an average diameter of 72.17 ± 2.16 nm as bright markers for large-scale epidermal growth factor receptor (EGFR) clustering in hyperspectral plasmon coupling microscopy and compare the obtained clustering maps with those obtained through fluorescence superresolution microscopy (direct stochastic optical reconstruction microscopy, dSTORM). Our dSTORM experiments reveal average EGFR cluster sizes of 172 ± 99 and 150 ± 90 nm for MDA-MB-468 and HeLa, respectively. The cluster sizes decrease after EGFR activation. Hyperspectral imaging of the NP labels shows that differences in the EGFR cluster sizes are accompanied by differences in the average separations between electromagnetically coupled NPs. Because of the distance dependence of plasmon coupling, changes in the average interparticle separation result in significant spectral shifts. For the experimental conditions investigated in this work, hyperspectral plasmon coupling microscopy of NP labels identified the same trends in large-scale EGFR clustering as dSTORM, but the NP imaging approach provided the information in a fraction of the time. Both dSTORM and hyperspectral plasmon coupling microscopy confirm the cortical actin network as one structural component that determines the average size of EGFR clusters.
Collapse
Affiliation(s)
- Sandy Zhang
- Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
35
|
Pascolutti R, Algisi V, Conte A, Raimondi A, Pasham M, Upadhyayula S, Gaudin R, Maritzen T, Barbieri E, Caldieri G, Tordonato C, Confalonieri S, Freddi S, Malabarba MG, Maspero E, Polo S, Tacchetti C, Haucke V, Kirchhausen T, Di Fiore PP, Sigismund S. Molecularly Distinct Clathrin-Coated Pits Differentially Impact EGFR Fate and Signaling. Cell Rep 2019; 27:3049-3061.e6. [PMID: 31167147 PMCID: PMC6581797 DOI: 10.1016/j.celrep.2019.05.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
Adaptor protein 2 (AP2) is a major constituent of clathrin-coated pits (CCPs). Whether it is essential for all forms of clathrin-mediated endocytosis (CME) in mammalian cells is an open issue. Here, we demonstrate, by live TIRF microscopy, the existence of a subclass of relatively short-lived CCPs lacking AP2 under physiological, unperturbed conditions. This subclass is retained in AP2-knockout cells and is able to support the internalization of epidermal growth factor receptor (EGFR) but not of transferrin receptor (TfR). The AP2-independent internalization mechanism relies on the endocytic adaptors eps15, eps15L1, and epsin1. The absence of AP2 impairs the recycling of the EGFR to the cell surface, thereby augmenting its degradation. Accordingly, under conditions of AP2 ablation, we detected dampening of EGFR-dependent AKT signaling and cell migration, arguing that distinct classes of CCPs could provide specialized functions in regulating EGFR recycling and signaling.
Collapse
Affiliation(s)
- Roberta Pascolutti
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Veronica Algisi
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Alexia Conte
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Mithun Pasham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Srigokul Upadhyayula
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Raphael Gaudin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Institut de Recherche en Infectiologie de Montpellier, UMR 9004, CNRS/UM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Elisa Barbieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Giusi Caldieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Chiara Tordonato
- Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefano Confalonieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefano Freddi
- Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Maria Grazia Malabarba
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Elena Maspero
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy.
| |
Collapse
|
36
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
37
|
Ghosh RP, Franklin JM, Draper WE, Shi Q, Beltran B, Spakowitz AJ, Liphardt JT. A fluorogenic array for temporally unlimited single-molecule tracking. Nat Chem Biol 2019; 15:401-409. [PMID: 30858596 DOI: 10.1038/s41589-019-0241-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/29/2019] [Indexed: 12/15/2022]
Abstract
We describe three optical tags, ArrayG, ArrayD and ArrayG/N, for intracellular tracking of single molecules over milliseconds to hours. ArrayG is a fluorogenic tag composed of a green fluorescent protein-nanobody array and monomeric wild-type green fluorescent protein binders that are initially dim but brighten ~26-fold on binding with the array. By balancing the rates of binder production, photobleaching and stochastic binder exchange, we achieve temporally unlimited tracking of single molecules. High-speed tracking of ArrayG-tagged kinesins and integrins for thousands of frames reveals novel dynamical features. Tracking of single histones at 0.5 Hz for >1 hour with the import competent ArrayG/N tag shows that chromosomal loci behave as Rouse polymers with visco-elastic memory and exhibit a non-Gaussian displacement distribution. ArrayD, based on a dihydrofolate reductase nanobody array and dihydrofolate reductase-fluorophore binder, enables dual-color imaging. The arrays combine brightness, fluorogenicity, fluorescence replenishment and extended fluorophore choice, opening new avenues for tracking single molecules in living cells.
Collapse
Affiliation(s)
- Rajarshi P Ghosh
- Bioengineering, Stanford University, Stanford, CA, USA.,BioX Institute, Stanford University, Stanford, CA, USA.,ChEM-H, Stanford University, Stanford, CA, USA.,Cell Biology Division, Stanford Cancer Institute, Stanford, CA, USA
| | - J Matthew Franklin
- Bioengineering, Stanford University, Stanford, CA, USA.,BioX Institute, Stanford University, Stanford, CA, USA.,ChEM-H, Stanford University, Stanford, CA, USA.,Cell Biology Division, Stanford Cancer Institute, Stanford, CA, USA.,Biophysics, Stanford University, Stanford, CA, USA
| | - Will E Draper
- Bioengineering, Stanford University, Stanford, CA, USA.,BioX Institute, Stanford University, Stanford, CA, USA.,ChEM-H, Stanford University, Stanford, CA, USA.,Cell Biology Division, Stanford Cancer Institute, Stanford, CA, USA
| | - Quanming Shi
- Bioengineering, Stanford University, Stanford, CA, USA.,BioX Institute, Stanford University, Stanford, CA, USA.,ChEM-H, Stanford University, Stanford, CA, USA.,Cell Biology Division, Stanford Cancer Institute, Stanford, CA, USA
| | | | - Andrew J Spakowitz
- BioX Institute, Stanford University, Stanford, CA, USA.,Chemical Engineering, Stanford University, Stanford, CA, USA.,Applied Physics, Stanford University, Stanford, CA, USA.,Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jan T Liphardt
- Bioengineering, Stanford University, Stanford, CA, USA. .,BioX Institute, Stanford University, Stanford, CA, USA. .,ChEM-H, Stanford University, Stanford, CA, USA. .,Cell Biology Division, Stanford Cancer Institute, Stanford, CA, USA.
| |
Collapse
|
38
|
Liu YL, Chou CK, Kim M, Vasisht R, Kuo YA, Ang P, Liu C, Perillo EP, Chen YA, Blocher K, Horng H, Chen YI, Nguyen DT, Yankeelov TE, Hung MC, Dunn AK, Yeh HC. Assessing metastatic potential of breast cancer cells based on EGFR dynamics. Sci Rep 2019; 9:3395. [PMID: 30833579 PMCID: PMC6399327 DOI: 10.1038/s41598-018-37625-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/22/2018] [Indexed: 01/05/2023] Open
Abstract
Derailed transmembrane receptor trafficking could be a hallmark of tumorigenesis and increased tumor invasiveness, but receptor dynamics have not been used to differentiate metastatic cancer cells from less invasive ones. Using single-particle tracking techniques, we developed a phenotyping asssay named Transmembrane Receptor Dynamics (TReD), studied the dynamics of epidermal growth factor receptor (EGFR) in seven breast epithelial cell lines and developed a phenotyping assay named Transmembrane Receptor Dynamics (TReD). Here we show a clear evidence that increased EGFR diffusivity and enlarged EGFR confinement size in the plasma membrane (PM) are correlated with the enhanced metastatic potential in these cell lines. By comparing the TReD results with the gene expression profiles, we found a clear negative correlation between the EGFR diffusivities and the breast cancer luminal differentiation scores (r = -0.75). Upon the induction of epithelial-mesenchymal transition (EMT), EGFR diffusivity significantly increased for the non-tumorigenic MCF10A (99%) and the non-invasive MCF7 (56%) cells, but not for the highly metastatic MDA-MB-231 cell. We believe that the reorganization of actin filaments during EMT modified the PM structures, causing the receptor dynamics to change. TReD can thus serve as a new biophysical marker to probe the metastatic potential of cancer cells and even to monitor the transition of metastasis.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirae Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Rohan Vasisht
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yu-An Kuo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Phyllis Ang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Cong Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yu-An Chen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Katherine Blocher
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hannah Horng
- Department of Bioengineering, The University of Maryland, College Park, MD, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Duc Trung Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, USA
- Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
39
|
Clarke DT, Martin-Fernandez ML. A Brief History of Single-Particle Tracking of the Epidermal Growth Factor Receptor. Methods Protoc 2019; 2:mps2010012. [PMID: 31164594 PMCID: PMC6481046 DOI: 10.3390/mps2010012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Single-particle tracking (SPT) has been used and developed over the last 25 years as a method to investigate molecular dynamics, structure, interactions, and function in the cellular context. SPT is able to show how fast and how far individual molecules move, identify different dynamic populations, measure the duration and strength of intermolecular interactions, and map out structures on the nanoscale in cells. In combination with other techniques such as macromolecular crystallography and molecular dynamics simulation, it allows us to build models of complex structures, and develop and test hypotheses of how these complexes perform their biological roles in health as well as in disease states. Here, we use the example of the epidermal growth factor receptor (EGFR), which has been studied extensively by SPT, demonstrating how the method has been used to increase our understanding of the receptor’s organization and function, including its interaction with the plasma membrane, its activation, clustering, and oligomerization, and the role of other receptors and endocytosis. The examples shown demonstrate how SPT might be employed in the investigation of other biomolecules and systems.
Collapse
Affiliation(s)
- David T Clarke
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| | - Marisa L Martin-Fernandez
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| |
Collapse
|
40
|
Zhang Q, Reinhard BM. Ligand Density and Nanoparticle Clustering Cooperate in the Multivalent Amplification of Epidermal Growth Factor Receptor Activation. ACS NANO 2018; 12:10473-10485. [PMID: 30289688 PMCID: PMC6252274 DOI: 10.1021/acsnano.8b06141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multivalent presentation of ligands on nanoparticles (NPs) is considered a general strategy for enhancing receptor binding and activation through amplification of ligand-receptor interactions within the footprint of the individual NPs. The spatial clustering of ligand-functionalized NPs represents an additional, less well understood mechanism for increasing local ligand-receptor interactions, especially for receptors that form higher-order assemblies, such as the epidermal growth factor (EGF) receptor (EGFR). To shed light on the interplay between ligand density ( i.e., multivalency) and NP clustering in signal amplification, we apply EGF-functionalized 72 ± 1 nm gold nanoparticles (NP-EGF) with known ligand loading (10-200 EGF/NP) as quantifiable and experimentally tractable units of EGFR activation and characterize the NP-mediated amplification of EGFR phosphorylation as a function of both EGF surface density and NP-EGF clustering for two cancer cell lines (HeLa and MDA-MB-468). The measurements confirm a strong multivalent amplification of EGFR phosphorylation through NP-EGF on the cellular level that results in EGF-loading-dependent maximum EGFR phosphorylation levels. A microscopic analysis of NP-EGF-induced EGFR phosphorylation reveals a heterogeneous spatial distribution of EGFR activation across the cell surface. Clustering of multivalent NP-EGF on sub-diffraction-limited length scales is found to result in a local enhancement of EGFR phosphorylation in signaling "hot spots" from where the signal can spread laterally in an EGF-independent fashion. Increasing EGF loadings of the NP enhances NP-EGF clustering and intensifies EGFR phosphorylation. These observations suggest that NP-EGF clustering and the associated local enhancement of ligand-receptor interactions are intrinsic components of the multivalent amplification of phosphorylation for the heterogeneously distributed EGFR through NP-EGF.
Collapse
Affiliation(s)
- Qianyun Zhang
- Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
41
|
Baumdick M, Gelléri M, Uttamapinant C, Beránek V, Chin JW, Bastiaens PIH. A conformational sensor based on genetic code expansion reveals an autocatalytic component in EGFR activation. Nat Commun 2018; 9:3847. [PMID: 30242154 PMCID: PMC6155120 DOI: 10.1038/s41467-018-06299-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation by growth factors (GFs) relies on dimerization and allosteric activation of its intrinsic kinase activity, resulting in trans-phosphorylation of tyrosines on its C-terminal tail. While structural and biochemical studies identified this EGF-induced allosteric activation, imaging collective EGFR activation in cells and molecular dynamics simulations pointed at additional catalytic EGFR activation mechanisms. To gain more insight into EGFR activation mechanisms in living cells, we develop a Förster resonance energy transfer (FRET)-based conformational EGFR indicator (CONEGI) using genetic code expansion that reports on conformational transitions in the EGFR activation loop. Comparing conformational transitions, self-association and auto-phosphorylation of CONEGI and its Y845F mutant reveals that Y845 phosphorylation induces a catalytically active conformation in EGFR monomers. This conformational transition depends on EGFR kinase activity and auto-phosphorylation on its C-terminal tail, generating a looped causality that leads to autocatalytic amplification of EGFR phosphorylation at low EGF dose. Upon ligand binding epidermal growth factor receptor (EGFR) dimerizes and activates its intrinsic kinase to auto-phosphorylate EGFR. Here, the authors engineer and image a FRET-based conformational EGFR indicator which reveals that activation loop phosphorylation induces a catalytically active conformation in EGFR monomers.
Collapse
Affiliation(s)
- Martin Baumdick
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Márton Gelléri
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Street 11, 44227, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 6, 44227, Dortmund, Germany
| | - Chayasith Uttamapinant
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Václav Beránek
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Street 11, 44227, Dortmund, Germany. .,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 6, 44227, Dortmund, Germany.
| |
Collapse
|
42
|
Treppiedi D, Jobin ML, Peverelli E, Giardino E, Sungkaworn T, Zabel U, Arosio M, Spada A, Mantovani G, Calebiro D. Single-Molecule Microscopy Reveals Dynamic FLNA Interactions Governing SSTR2 Clustering and Internalization. Endocrinology 2018; 159:2953-2965. [PMID: 29931263 DOI: 10.1210/en.2018-00368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/14/2018] [Indexed: 11/19/2022]
Abstract
The cytoskeletal protein filamin A (FLNA) has been suggested to play an important role in the responsiveness of GH-secreting pituitary tumors to somatostatin receptor subtype 2 (SSTR2) agonists by regulating SSTR2 expression and signaling. However, the underlying mechanisms are unknown. In this study, we use fast multicolor single-molecule microscopy to image individual SSTR2 and FLNA molecules at the surface of living cells with unprecedented spatiotemporal resolution. We find that SSTR2 and FLNA undergo transient interactions, which occur preferentially along actin fibers and contribute to restraining SSTR2 diffusion. Agonist stimulation increases the localization of SSTR2 along actin fibers and, subsequently, SSTR2 clustering and recruitment to clathrin-coated pits (CCPs). Interfering with FLNA-SSTR2 binding with a dominant-negative FLNA fragment increases SSTR2 mobility, hampers the formation and alignment of SSTR2 clusters along actin fibers, and impairs both SSTR2 recruitment to CCPs and SSTR2 internalization. These findings indicate that dynamic SSTR2-FLNA interactions critically control the nanoscale localization of SSTR2 at the plasma membrane and are required for coupling SSTR2 clustering to internalization. These mechanisms explain the critical role of FLNA in the control of SSTR2 expression and signaling and suggest the possibility of targeting SSTR2-FLNA interactions for the therapy of pharmacologically resistant GH-secreting pituitary tumors.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marie-Lise Jobin
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Erika Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Titiwat Sungkaworn
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Ulrike Zabel
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| |
Collapse
|
43
|
Sigismund S, Scita G. The 'endocytic matrix reloaded' and its impact on the plasticity of migratory strategies. Curr Opin Cell Biol 2018; 54:9-17. [PMID: 29544103 DOI: 10.1016/j.ceb.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
An explosive growth in knowledge, in the last two decades, has conferred a new dimension to the process of endocytosis. Endocytic circuitries have come into focus as a pervasive system that controls virtual all aspects of cell biology. A few years ago, we proposed the term 'endocytic matrix' to define a cellular network of signalling wiring that is at the core of the cellular blueprint. A primary role of the endocytic matrix is the delivery of space-resolved and time-resolved signals to the cell in an interpretable format, and, as such, it has profound consequences on polarized cellular and supra-cellular functions, first and foremost, cell motility. Here, we describe a set of recent results that expand this notion and illuminate how endocytic matrix dynamically controls the plasticity of migratory strategies. We further highlight the impact of inter-organelle contact sites on motility and the role of organelle positioning in this process. Finally, we illustrate how global perturbation of the endocytic circuitry influences cellular and supra-cellular mechanics, ultimately controlling a solid-to-liquid-like transition in the mode of motility with potential consequences on cancer dissemination.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139 Milan, Italy
| | - Giorgio Scita
- IFOM, The FIRC Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy; University of Milan, School of Medicine, Department of Oncology and Hemato-Oncology-DIPO, Milan, Italy.
| |
Collapse
|
44
|
Caldieri G, Malabarba MG, Di Fiore PP, Sigismund S. EGFR Trafficking in Physiology and Cancer. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:235-272. [PMID: 30097778 DOI: 10.1007/978-3-319-96704-2_9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling from the epidermal growth factor receptor (EGFR) elicits multiple biological responses, including cell proliferation, migration, and survival. Receptor endocytosis and trafficking are critical physiological processes that control the strength, duration, diversification, and spatial restriction of EGFR signaling through multiple mechanisms, which we review in this chapter. These mechanisms include: (i) regulation of receptor density and activation at the cell surface; (ii) concentration of receptors into distinct nascent endocytic structures; (iii) commitment of the receptor to different endocytic routes; (iv) endosomal sorting and postendocytic trafficking of the receptor through distinct pathways, and (v) recycling to restricted regions of the cell surface. We also highlight how communication between organelles controls EGFR activity along the endocytic route. Finally, we illustrate how abnormal trafficking of EGFR oncogenic mutants, as well as alterations of the endocytic machinery, contributes to aberrant EGFR signaling in cancer.
Collapse
Affiliation(s)
- Giusi Caldieri
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy
| | - Maria Grazia Malabarba
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy
| | - Pier Paolo Di Fiore
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy
| | - Sara Sigismund
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Santa Sofia 9/1, 20122, Milan, Italy.
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy.
| |
Collapse
|
45
|
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12:3-20. [PMID: 29124875 PMCID: PMC5748484 DOI: 10.1002/1878-0261.12155] [Citation(s) in RCA: 918] [Impact Index Per Article: 131.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022] Open
Abstract
The physiological function of the epidermal growth factor receptor (EGFR) is to regulate epithelial tissue development and homeostasis. In pathological settings, mostly in lung and breast cancer and in glioblastoma, the EGFR is a driver of tumorigenesis. Inappropriate activation of the EGFR in cancer mainly results from amplification and point mutations at the genomic locus, but transcriptional upregulation or ligand overproduction due to autocrine/paracrine mechanisms has also been described. Moreover, the EGFR is increasingly recognized as a biomarker of resistance in tumors, as its amplification or secondary mutations have been found to arise under drug pressure. This evidence, in addition to the prominent function that this receptor plays in normal epithelia, has prompted intense investigations into the role of the EGFR both at physiological and at pathological level. Despite the large body of knowledge obtained over the last two decades, previously unrecognized (herein defined as 'noncanonical') functions of the EGFR are currently emerging. Here, we will initially review the canonical ligand-induced EGFR signaling pathway, with particular emphasis to its regulation by endocytosis and subversion in human tumors. We will then focus on the most recent advances in uncovering noncanonical EGFR functions in stress-induced trafficking, autophagy, and energy metabolism, with a perspective on future therapeutic applications.
Collapse
Affiliation(s)
- Sara Sigismund
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM)MilanItaly
| | - Daniele Avanzato
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| | - Letizia Lanzetti
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| |
Collapse
|
46
|
Bakker J, Spits M, Neefjes J, Berlin I. The EGFR odyssey - from activation to destruction in space and time. J Cell Sci 2017; 130:4087-4096. [PMID: 29180516 DOI: 10.1242/jcs.209197] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
When cell surface receptors engage their cognate ligands in the extracellular space, they become competent to transmit potent signals to the inside of the cell, thereby instigating growth, differentiation, motility and many other processes. In order to control these signals, activated receptors are endocytosed and thoroughly curated by the endosomal network of intracellular vesicles and proteolytic organelles. In this Review, we follow the epidermal growth factor (EGF) receptor (EGFR) from ligand engagement, through its voyage on endosomes and, ultimately, to its destruction in the lysosome. We focus on the spatial and temporal considerations underlying the molecular decisions that govern this complex journey and discuss how additional cellular organelles - particularly the ER - play active roles in the regulation of receptor lifespan. In summarizing the functions of relevant molecules on the endosomes and the ER, we cover the order of molecular events in receptor activation, trafficking and downregulation, and provide an overview of how signaling is controlled at the interface between these organelles.
Collapse
Affiliation(s)
- Jeroen Bakker
- Department of Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 22, 2333 ZC, Leiden, The Netherlands
| | - Menno Spits
- Department of Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 22, 2333 ZC, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 22, 2333 ZC, Leiden, The Netherlands
| | - Ilana Berlin
- Department of Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 22, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
47
|
Bademosi AT, Lauwers E, Padmanabhan P, Odierna L, Chai YJ, Papadopulos A, Goodhill GJ, Verstreken P, van Swinderen B, Meunier FA. In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters. Nat Commun 2017; 8:13660. [PMID: 28045048 PMCID: PMC5171881 DOI: 10.1038/ncomms13660] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2016] [Indexed: 01/03/2023] Open
Abstract
Syntaxin1A is organized in nanoclusters that are critical for the docking and priming of secretory vesicles from neurosecretory cells. Whether and how these nanoclusters are affected by neurotransmitter release in nerve terminals from a living organism is unknown. Here we imaged photoconvertible syntaxin1A-mEos2 in the motor nerve terminal of Drosophila larvae by single-particle tracking photoactivation localization microscopy. Opto- and thermo-genetic neuronal stimulation increased syntaxin1A-mEos2 mobility, and reduced the size and molecular density of nanoclusters, suggesting an activity-dependent release of syntaxin1A from the confinement of nanoclusters. Syntaxin1A mobility was increased by mutating its polyphosphoinositide-binding site or preventing SNARE complex assembly via co-expression of tetanus toxin light chain. In contrast, syntaxin1A mobility was reduced by preventing SNARE complex disassembly. Our data demonstrate that polyphosphoinositide favours syntaxin1A trapping, and show that SNARE complex disassembly leads to syntaxin1A dissociation from nanoclusters. Lateral diffusion and trapping of syntaxin1A in nanoclusters therefore dynamically regulate neurotransmitter release. Syntaxin1A (Sx1A) is organized in nanoclusters in neurosecretory cells but how these nanoclusters are affected by neurotransmitter release in a living organism is unknown. Here the authors perform single molecule imaging analysis in live fly larvae and show that the lateral diffusion and trapping of Sx1A in nanoclusters are altered by synaptic activity.
Collapse
Affiliation(s)
- Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elsa Lauwers
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Pranesh Padmanabhan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lorenzo Odierna
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ye Jin Chai
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Papadopulos
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Patrik Verstreken
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
48
|
Lucarelli S, Delos Santos RC, Antonescu CN. Measurement of Epidermal Growth Factor Receptor-Derived Signals Within Plasma Membrane Clathrin Structures. Methods Mol Biol 2017; 1652:191-225. [PMID: 28791645 DOI: 10.1007/978-1-4939-7219-7_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The epidermal growth factor (EGF) receptor (EGFR) is an important regulator of cell growth, proliferation, survival, migration, and metabolism. EGF binding to EGFR triggers the activation of the receptor's intrinsic kinase activity, in turn eliciting the recruitment of many secondary signaling proteins and activation of downstream signals, such as the activation of phosphatidylinositol-3-kinase (PI3K) and Akt, a process requiring the phosphorylation of Gab1. While the identity of many signals that can be activated by EGFR has been revealed, how the spatiotemporal organization of EGFR signaling within cells controls receptor outcome remains poorly understood. Upon EGF binding at the plasma membrane, EGFR is internalized by clathrin-mediated endocytosis following recruitment to clathrin-coated pits (CCPs). Further, plasma membrane CCPs, but not EGFR internalization, are required for EGF-stimulated Akt phosphorylation. Signaling intermediates such as phosphorylated Gab1, which lead to Akt phosphorylation, are enriched within CCPs upon EGF stimulation. These findings indicate that some plasma membrane CCPs also serve as signaling microdomains required for certain facets of EGFR signaling and are enriched in key EGFR signaling intermediates. Understanding how the spatiotemporal organization of EGFR signals within CCP microdomains controls receptor signaling outcome requires imaging methods that can systematically resolve and analyze the properties of CCPs, EGFR and key signaling intermediates. Here, we describe methods using total internal reflection fluorescence microscopy imaging and analysis to systematically study the enrichment of EGFR and key EGFR-derived signals within CCPs.
Collapse
Affiliation(s)
- Stefanie Lucarelli
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3.,Graduate Program in Molecular Science, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3
| | - Ralph Christian Delos Santos
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3.,Graduate Program in Molecular Science, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3. .,Graduate Program in Molecular Science, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3. .,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8.
| |
Collapse
|
49
|
Masip ME, Huebinger J, Christmann J, Sabet O, Wehner F, Konitsiotis A, Fuhr GR, Bastiaens PIH. Reversible cryo-arrest for imaging molecules in living cells at high spatial resolution. Nat Methods 2016; 13:665-672. [PMID: 27400419 PMCID: PMC5038880 DOI: 10.1038/nmeth.3921] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
The dynamics of molecules in living cells hampers precise imaging of molecular patterns by functional and super-resolution microscopy. We developed a method that circumvents lethal chemical fixation and allows on-stage cryo-arrest for consecutive imaging of molecular patterns within the same living, but arrested, cells. The reversibility of consecutive cryo-arrests was demonstrated by the high survival rate of different cell lines and by intact growth factor signaling that was not perturbed by stress response. Reversible cryo-arrest was applied to study the evolution of ligand-induced receptor tyrosine kinase activation at different scales. The nanoscale clustering of epidermal growth factor receptor (EGFR) in the plasma membrane was assessed by single-molecule localization microscopy, and endosomal microscale activity patterns of ephrin receptor A2 (EphA2) were assessed by fluorescence lifetime imaging microscopy. Reversible cryo-arrest allows the precise determination of molecular patterns while conserving the dynamic capabilities of living cells.
Collapse
Affiliation(s)
- Martin E Masip
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jan Huebinger
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jens Christmann
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany
| | - Ola Sabet
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Frank Wehner
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Antonios Konitsiotis
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Günther R Fuhr
- Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany
| |
Collapse
|