1
|
Liu F, Li R, Zhong Y, Liu X, Deng W, Huang X, Price M, Li J. Age-related alterations in metabolome and microbiome provide insights in dietary transition in giant pandas. mSystems 2023; 8:e0025223. [PMID: 37273228 PMCID: PMC10308887 DOI: 10.1128/msystems.00252-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 06/06/2023] Open
Abstract
We conducted UPLC-MS-based metabolomics, 16S rRNA, and metagenome sequencing on the fecal samples of 44 captive giant pandas (Ailuropoda melanoleuca) from four age groups (i.e., Cub, Young, Adult, and Old) to comprehensively understand age-related changes in the metabolism and gut microbiota of giant pandas. We characterized the metabolite profiles of giant pandas based on 1,376 identified metabolites, with 152 significantly differential metabolites (SDMs) found across the age groups. We found that the metabolites and the composition/function of the gut microbiota changed in response to the transition from a milk-dominant diet in panda cubs to a bamboo-specific diet in young and adult pandas. Lipid metabolites such as choline and hippuric acid were enriched in the Cub group, and many plant secondary metabolites were significantly higher in the Young and Adult groups, while oxidative stress and inflammatory related metabolites were only found in the Old group. However, there was a decrease in the α-diversity of gut microbiota in adult and old pandas, who exclusively consume bamboo. The abundance of bacteria related to the digestion of cellulose-rich food, such as Firmicutes, Streptococcus, and Clostridium, significantly increased from the Cub to the Adult group, while the abundance of beneficial bacteria such as Faecalibacterium, Sarcina, and Blautia significantly decreased. Notably, several potential pathogenic bacteria had relatively high abundances, especially in the Young group. Metagenomic analysis identified 277 CAZyme genes including cellulose degrading genes, and seven of the CAZymes had abundances that significantly differed between age groups. We also identified 237 antibiotic resistance genes (ARGs) whose number and diversity increased with age. We also found a significant positive correlation between the abundance of bile acids and gut bacteria, especially Lactobacillus and Bifidobacterium. Our results from metabolome, 16S rRNA, and metagenome data highlight the important role of the gut microbiota-bile acid axis in the regulation of age-related metabolism and provide new insights into the lipid metabolism of giant pandas. IMPORTANCE The giant panda is a member of the order Carnivora but is entirely herbivorous. The giant panda's specialized diet and related metabolic mechanisms have not been fully understood. It is therefore crucial to investigate the dynamic changes in metabolites as giant pandas grow and physiologically adapt to their herbivorous diet. This study conducted UPLC-MS-based metabolomics 16S rRNA, and metagenome sequencing on the fecal samples of captive giant pandas from four age groups. We found that metabolites and the composition/function of gut microbiota changed in response to the transition from a milk-dominant diet in cubs to a bamboo-specific diet in young and adult pandas. The metabolome, 16S rRNA, and metagenome results highlight that the gut microbiota-bile acid axis has an important role in the regulation of age-related metabolism, and our study provides new insights into the lipid metabolism of giant pandas.
Collapse
Affiliation(s)
- Fangyuan Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Rengui Li
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Yi Zhong
- China Wildlife Conservation Association, Beijing, China
| | - Xu Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Deng
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Xiaoyu Huang
- China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology for Rare Animals of the Giant Panda State Park, Dujiangyan, Sichuan, China
| | - Megan Price
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Mustafa GR, Li C, Zhao S, Jin L, He X, Shabbir MZ, He Y, Li T, Deng W, Xu L, Xiong Y, Zhang G, Zhang H, Huang Y, Zou L. Metagenomic analysis revealed a wide distribution of antibiotic resistance genes and biosynthesis of antibiotics in the gut of giant pandas. BMC Microbiol 2021; 21:15. [PMID: 33413128 PMCID: PMC7792088 DOI: 10.1186/s12866-020-02078-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The gut microbiome is essential for the host's health and serves as an essential reservoir of antibiotic resistance genes (ARGs). We investigated the effects of different factors, including the dietary shifts and age, on the functional characteristics of the giant panda's gut microbiome (GPs) through shotgun metagenome sequencing. We explored the association between gut bacterial genera and ARGs within the gut based on network analysis. RESULTS Fecal samples (n=60) from captive juvenile, adult, and geriatric GPs were processed, and variations were identified in the gut microbiome according to different ages, the abundance of novel ARGs and the biosynthesis of antibiotics. Among 667 ARGs identified, nine from the top ten ARGs had a higher abundance in juveniles. For 102 ARGs against bacteria, a co-occurrence pattern revealed a positive association for predominant ARGs with Streptococcus. A comparative KEGG pathways analysis revealed an abundant biosynthesis of antibiotics among three different groups of GPs, where it was more significantly observed in the juvenile group. A co-occurrence pattern further revealed a positive association for the top ten ARGs, biosynthesis of antibiotics, and metabolic pathways. CONCLUSION Gut of GPs serve as a reservoir for novel ARGs and biosynthesis of antibiotics. Dietary changes and age may influence the gut microbiome's functional characteristics; however, it needs further studies to ascertain the study outcomes.
Collapse
Affiliation(s)
- Ghulam Raza Mustafa
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Siyue Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Jin
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueping He
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Zubair Shabbir
- Institute of Microbiology, The University of Veterinary and Animal Sciences, Lahore, 54600, Pakistan
| | - Yongguo He
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Ti Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Wenwen Deng
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Lin Xu
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Yaowu Xiong
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Guiquan Zhang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Hemin Zhang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China.
| | - Likou Zou
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
The isolation and culture of giant panda (Ailuropoda melanoleuca) breast milk cells. In Vitro Cell Dev Biol Anim 2020; 56:430-434. [PMID: 32719986 DOI: 10.1007/s11626-020-00475-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 10/23/2022]
|
4
|
Guo M, Chen J, Li Q, Fu Y, Fan G, Ma J, Peng L, Zeng L, Chen J, Wang Y, Lee SMY. Dynamics of Gut Microbiome in Giant Panda Cubs Reveal Transitional Microbes and Pathways in Early Life. Front Microbiol 2018; 9:3138. [PMID: 30619206 PMCID: PMC6305432 DOI: 10.3389/fmicb.2018.03138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Adult giant pandas (Ailuropoda melanoleuca) express transitional characteristics in that they consume bamboos, despite their carnivore-like digestive tracts. Their genome contains no cellulolytic enzymes; therefore, understanding the development of the giant panda gut microbiome, especially in early life, is important for decoding the rules underlying gut microbial formation, inheritance and dietary transitions. With deep metagenomic sequencing, we investigated the gut microbiomes of two newborn giant panda brothers and their parents living in Macao, China, from 2016 to 2017. Both giant panda cubs exhibited progressive increases in gut microbial richness during growth, particularly from the 6th month after birth. Enterobacteriaceae dominated the gut microbial compositions in both adult giant pandas and cubs. A total of 583 co-abundance genes (CAGs) and about 79 metagenomic species (MGS) from bacteria or viruses displayed significant changes with age. Seven genera (Shewanella, Oblitimonas, Helicobacter, Haemophilus, Aeromonas, Listeria, and Fusobacterium) showed great importance with respect to gut microbial structural determination in the nursing stage of giant panda cubs. Furthermore, 10 orthologous gene functions and 44 pathways showed significant changes with age. Of the significant pathways, 16 from Escherichia, Klebsiella, Propionibacterium, Lactobacillus, and Lactococcus displayed marked differences between parents and their cubs at birth, while 29 pathways from Escherichia, Campylobacter and Lactobacillus exhibited significant increase in cubs from 6 to 9 months of age. In addition, oxidoreductases, transferases, and hydrolases dominated the significantly changed gut microbial enzymes during the growth of giant panda cubs, while few of them were involved in cellulose degradation. The findings indicated diet-stimulated gut microbiome transitions and the important role of Enterobacteriaceae in the guts of giant panda in early life.
Collapse
Affiliation(s)
- Min Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | | | | | - Ying Fu
- Faculty of Science and Technology, University of Macau, Macau, China
| | - Guangyi Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,BGI-Shenzhen, Shenzhen, China
| | | | | | - Liyun Zeng
- Realbio Genomics Institute, Shanghai, China
| | - Jing Chen
- Realbio Genomics Institute, Shanghai, China
| | | | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
5
|
Huang X, Li M, Xue F, Wang C, Zhang Z, Wu K, Yang K, Qi D. Rapid milk intake of captive giant panda cubs during the early growth stages. FOLIA ZOOLOGICA 2018. [DOI: 10.25225/fozo.v67.i3-4.a7.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Xiangming Huang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Gia
| | - Mingxi Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Gia
| | - Fei Xue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Gia
| | - Chengdong Wang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Gia
| | - Zhihe Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Gia
| | - Kongju Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Gia
| | - Kuixing Yang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Gia
| | - Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Gia
| |
Collapse
|
6
|
Lowe AD, Bawazeer S, Watson DG, McGill S, Burchmore RJS, Pomeroy PPP, Kennedy MW. Rapid changes in Atlantic grey seal milk from birth to weaning - immune factors and indicators of metabolic strain. Sci Rep 2017; 7:16093. [PMID: 29170469 PMCID: PMC5700954 DOI: 10.1038/s41598-017-16187-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/08/2017] [Indexed: 11/21/2022] Open
Abstract
True seals have the shortest lactation periods of any group of placental mammal. Most are capital breeders that undergo short, intense lactations, during which they fast while transferring substantial proportions of their body reserves to their pups, which they then abruptly wean. Milk was collected from Atlantic grey seals (Halichoerus grypus) periodically from birth until near weaning. Milk protein profiles matured within 24 hours or less, indicating the most rapid transition from colostrum to mature phase lactation yet observed. There was an unexpected persistence of immunoglobulin G almost until weaning, potentially indicating prolonged trans-intestinal transfer of IgG. Among components of innate immune protection were found fucosyllactose and siallylactose that are thought to impede colonisation by pathogens and encourage an appropriate milk-digestive and protective gut microbiome. These oligosaccharides decreased from early lactation to almost undetectable levels by weaning. Taurine levels were initially high, then fell, possibly indicative of taurine dependency in seals, and progressive depletion of maternal reserves. Metabolites that signal changes in the mother’s metabolism of fats, such as nicotinamide and derivatives, rose from virtual absence, and acetylcarnitines fell. It is therefore possible that indicators of maternal metabolic strain exist that signal the imminence of weaning.
Collapse
Affiliation(s)
- Amanda D Lowe
- Institute of Biodiversity, Animal Health & Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Sami Bawazeer
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Suzanne McGill
- Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G12 1QH, Scotland, UK
| | - Richard J S Burchmore
- Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G12 1QH, Scotland, UK
| | - P P Paddy Pomeroy
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Malcolm W Kennedy
- Institute of Biodiversity, Animal Health & Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
7
|
Multivariate statistical analysis of metabolomics profiles in tissues of polar bears (Ursus maritimus) from the Southern and Western Hudson Bay subpopulations. Polar Biol 2017. [DOI: 10.1007/s00300-017-2200-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Zhang T, Watson DG, Zhang R, Hou R, Loeffler IK, Kennedy MW. Changeover from signalling to energy-provisioning lipids during transition from colostrum to mature milk in the giant panda (Ailuropoda melanoleuca). Sci Rep 2016; 6:36141. [PMID: 27808224 PMCID: PMC5093549 DOI: 10.1038/srep36141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023] Open
Abstract
Among the large placental mammals, ursids give birth to the most altricial neonates with the lowest neonatal:maternal body mass ratios. This is particularly exemplified by giant pandas. To examine whether there is compensation for the provision of developmentally important nutrients that other species groups may provide in utero, we examined changes in the lipids of colostrum and milk with time after birth in giant pandas. Lipids that are developmental signals or signal precursors, and those that are fundamental to nervous system construction, such as docosahexaenoic acid (DHA) and phosphatidylserines, appear early and then fall dramatically in concentration to a baseline at 20–30 days. The dynamics of lysophosphatidic acid and eicosanoids display similar patterns, but with progressive differences between mothers. Triglycerides occur at relatively low levels initially and increase in concentration until a plateau is reached at about 30 days. These patterns indicate an early provision of signalling lipids and their precursors, particularly lipids crucial to brain, retinal and central nervous system development, followed by a changeover to lipids for energy metabolism. Thus, in giant pandas, and possibly in all bears, lactation is adapted to provisioning a highly altricial neonate to a degree that suggests equivalence to an extension of gestation.
Collapse
Affiliation(s)
- Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Rong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510405, P.R. China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan Province 610081, P.R. China
| | - I Kati Loeffler
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, Sichuan Province 610081, P.R. China
| | - Malcolm W Kennedy
- Institute of Biodiversity, Animal Health and Comparative Medicine, and Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary, and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| |
Collapse
|