1
|
Cabral AS, Lacerda FDF, Leite VLM, de Miranda FM, da Silva AB, Dos Santos BA, Lima JLDC, Teixeira LM, Neves FPG. CRISPR-Cas systems in enterococci. Braz J Microbiol 2024:10.1007/s42770-024-01549-x. [PMID: 39438415 DOI: 10.1007/s42770-024-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Enterococci are members of the microbiota of humans and other animals. They can also be found in the environment, associated with food, healthcare infections, and hospital settings. Due to their wide distribution, they are inserted in the One Health context. The selective pressure caused by the extensive use of antimicrobial agents in humans, animals, and agriculture has increased the frequency of resistance to various drugs among enterococcal species. CRISPR-Cas system, an important prokaryotic defense mechanism against the entry of mobile genetic elements, may prevent the acquisition of genes involved in antimicrobial resistance and virulence. This system has been increasingly used as a gene editing tool, which can be used as a way to recognize and inactivate genes of interest. Here, we conduct a review on CRISPR systems found in enterococci, considering their occurrence, structure and organization, mechanisms of action and use as a genetic engineering technology. Type II-A CRISPR-Cas systems were shown to be the most frequent among enterococcal species, and the orphan CRISPR2 was the most commonly found system (54.1%) among enterococcal species, especially in Enterococcus faecalis. Distribution of CRISPR systems varied among species. CRISPR systems had 1 to 20 spacers, with size between 23 and 37 bp and direct repeat sequences from 25 to 37 bp. Several applications of the CRISPR-Cas biotechnology have been described in enterococci, mostly in vitro, using this editing tool to target resistance- and virulence-related genes.
Collapse
Affiliation(s)
- Amanda Seabra Cabral
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Fernanda de Freitas Lacerda
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Vitor Luis Macena Leite
- Instituto de Microbiologia, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Filipe Martire de Miranda
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Amanda Beiral da Silva
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Bárbara Araújo Dos Santos
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Jailton Lobo da Costa Lima
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Lúcia Martins Teixeira
- Instituto de Microbiologia, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Felipe Piedade Gonçalves Neves
- Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N, São Domingos, Niterói, RJ, 24020-150, Brazil.
| |
Collapse
|
2
|
Upreti C, Kumar P, Durso LM, Palmer KL. CRISPR-Cas inhibits plasmid transfer and immunizes bacteria against antibiotic resistance acquisition in manure. Appl Environ Microbiol 2024; 90:e0087624. [PMID: 39158272 PMCID: PMC11409644 DOI: 10.1128/aem.00876-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
The horizontal transfer of antibiotic resistance genes among bacteria is a pressing global issue. The bacterial defense system clustered regularly interspaced short palindromic repeats (CRISPR)-Cas acts as a barrier to the spread of antibiotic resistance plasmids, and CRISPR-Cas-based antimicrobials can be effective to selectively deplete antibiotic-resistant bacteria. While significant surveillance efforts monitor the spread of antibiotic-resistant bacteria in the clinical context, a major, often overlooked aspect of the issue is resistance emergence in agriculture. Farm animals are commonly treated with antibiotics, and antibiotic resistance in agriculture is on the rise. Yet, CRISPR-Cas efficacy has not been investigated in this setting. Here, we evaluate the prevalence of CRISPR-Cas in agricultural Enterococcus faecalis strains and its antiplasmid efficacy in an agricultural niche: manure. Analyzing 1,986 E. faecalis genomes from human and animal hosts, we show that the prevalence of CRISPR-Cas subtypes is similar between clinical and agricultural E. faecalis strains. Using plasmid conjugation assays, we found that CRISPR-Cas is a significant barrier against resistance plasmid transfer in manure. Finally, we used a CRISPR-based antimicrobial approach to cure resistant E. faecalis of erythromycin resistance, but this was limited by delivery efficiency of the CRISPR antimicrobial in manure. However, immunization of bacteria against resistance gene acquisition in manure was highly effective. Together, our results show that E. faecalis CRISPR-Cas is prevalent and effective in an agricultural setting and has the potential to be utilized for depleting antibiotic-resistant populations. Our work has broad implications for tackling antibiotic resistance in the increasingly relevant agricultural setting, in line with a One Health approach.IMPORTANCEAntibiotic resistance is a growing global health crisis in human and veterinary medicine. Previous work has shown technologies based on CRISPR-Cas-a bacterial defense system-to be effective in tackling antibiotic resistance. Here we test if CRISPR-Cas is present and effective in agricultural niches, specifically in the ubiquitously present bacterium, Enterococcus faecalis. We show that CRISPR-Cas is both prevalent and functional in manure and has the potential to be used to specifically kill bacteria carrying antibiotic resistance genes. This study demonstrates the utility of CRISPR-Cas-based strategies for control of antibiotic resistance in agricultural settings.
Collapse
Affiliation(s)
- Chahat Upreti
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Pranav Kumar
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Lisa M. Durso
- U.S. Department of Agriculture, Agricultural Research Service, Agroecosystem Management Unit, Lincoln, Nebraska, USA
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
3
|
Costache C, Colosi I, Toc DA, Daian K, Damacus D, Botan A, Toc A, Pana AG, Panaitescu P, Neculicioiu V, Schiopu P, Iordache D, Butiuc-Keul A. CRISPR-Cas System, Antimicrobial Resistance, and Enterococcus Genus-A Complicated Relationship. Biomedicines 2024; 12:1625. [PMID: 39062198 PMCID: PMC11274382 DOI: 10.3390/biomedicines12071625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/07/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: The rise in antibiotic resistant bacteria poses a significant threat to public health worldwide, necessitating innovative solutions. This study explores the role of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in the context of antibiotic resistance among different species from the Enterococcus genus. (2) Methods: The genomes of Enterococcus included in the study were analyzed using CRISPRCasFinder to distinguish between CRISPR-positive (level 4 CRISPR) and CRISPR-negative genomes. Antibiotic resistance genes were identified, and a comparative analysis explored potential associations between CRISPR presence and antibiotic resistance profiles in Enterococcus species. (3) Results: Out of ten antibiotic resistance genes found in Enterococcus species, only one, the efmA gene, showed a strong association with CRISPR-negative isolates, while the others did not significantly differ between CRISPR-positive and CRISPR-negative Enterococcus genomes. (4) Conclusion: These findings indicate that the efmA gene may be more prevalent in CRISPR-negative Enterococcus genomes, and they may contribute to a better understanding of the molecular mechanisms underlying the acquisition of antibiotic resistance genes in Enterococcus species.
Collapse
Affiliation(s)
- Carmen Costache
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.C.)
- Cluj County Emergency Hospital, 400000 Cluj-Napoca, Romania
| | - Ioana Colosi
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.C.)
| | - Dan-Alexandru Toc
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.C.)
- Cluj County Emergency Hospital, 400000 Cluj-Napoca, Romania
| | - Karla Daian
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - David Damacus
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandru Botan
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adelina Toc
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adrian Gabriel Pana
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Paul Panaitescu
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.C.)
| | - Vlad Neculicioiu
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.C.)
| | - Pavel Schiopu
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.C.)
| | - Dumitrana Iordache
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Upreti C, Kumar P, Durso L, Palmer K. CRISPR-Cas inhibits plasmid transfer and immunizes bacteria against antibiotic resistance acquisition in manure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559507. [PMID: 37808752 PMCID: PMC10557689 DOI: 10.1101/2023.09.26.559507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The horizontal transfer of antibiotic resistance genes among bacteria is a pressing global issue. The bacterial defense system CRISPR-Cas acts as a barrier to the spread of antibiotic resistance plasmids, and CRISPR-Cas-based antimicrobials can be effective to selectively deplete antibiotic-resistant bacteria. While significant surveillance efforts monitor the spread of antibiotic-resistant bacteria in the clinical context, a major, often overlooked aspect of the issue is resistance emergence in agriculture. Farm animals are commonly treated with antibiotics, and antibiotic resistance in agriculture is on the rise. Yet, CRISPR-Cas efficacy has not been investigated in this setting. Here, we evaluate the prevalence of CRISPR-Cas in agricultural Enterococcus faecalis strains and its anti-plasmid efficacy in an agricultural niche - manure. Analyzing 1,986 E. faecalis genomes from human and animal hosts, we show that the prevalence of CRISPR-Cas subtypes is similar between clinical and agricultural E. faecalis strains. Using plasmid conjugation assays, we found that CRISPR-Cas is a significant barrier against resistance plasmid transfer in manure. Finally, we used a CRISPR-based antimicrobial approach to cure resistant E. faecalis of erythromycin resistance, but this was limited by delivery efficiency of the CRISPR antimicrobial in manure. However, immunization of bacteria against resistance gene acquisition in manure was highly effective. Together, our results show that E. faecalis CRISPR-Cas is prevalent and effective in an agricultural setting and has the potential to be utilized for depleting antibiotic-resistant populations. Our work has broad implications for tackling antibiotic resistance in the increasingly relevant agricultural setting, in line with a One Health approach.
Collapse
|
5
|
Parra-Sánchez Á, Antequera-Zambrano L, Martínez-Navarrete G, Zorrilla-Muñoz V, Paz JL, Alvarado YJ, González-Paz L, Fernández E. Comparative Analysis of CRISPR-Cas Systems in Pseudomonas Genomes. Genes (Basel) 2023; 14:1337. [PMID: 37510242 PMCID: PMC10379622 DOI: 10.3390/genes14071337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudomonas is a bacterial genus with some saprophytic species from land and others associated with opportunistic infections in humans and animals. Factors such as pathogenicity or metabolic aspects have been related to CRISPR-Cas, and in silico studies into it have focused more on the clinical and non-environmental setting. This work aimed to perform an in silico analysis of the CRISPR-Cas systems present in Pseudomonas genomes. It analyzed 275 complete genomic sequences of Pseudomonas taken from the NCBI database. CRISPR loci were obtained from CRISPRdb. The genes associated with CRISPR (cas) and CAS proteins, and the origin and diversity of spacer sequences, were identified and compared by BLAST. The presence of self-targeting sequences, PAMs, and the conservation of DRs were visualized using WebLogo 3.6. The CRISPR-like RNA secondary structure prediction was analyzed using RNAFold and MFold. CRISPR structures were identified in 19.6% of Pseudomonas species. In all, 113 typical CRISPR arrays with 18 putative cas were found, as were 2050 spacers, of which 52% showed homology to bacteriophages, 26% to chromosomes, and 22% to plasmids. No potential self-targeting was detected within the CRISPR array. All the found DRs can form thermodynamically stable secondary RNA structures. The comparison of the CRISPR/Cas system can help understand the environmental adaptability of each evolutionary lineage of clinically and environmentally relevant species, providing data support for bacterial typing, traceability, analysis, and exploration of unconventional CRISPR.
Collapse
Affiliation(s)
- Ángel Parra-Sánchez
- Genetics and Molecular Biology Laboratory, Biology Department, Faculty of Sciences, University of Zulia, Maracaibo 4001, Venezuela
- Neuroprosthesis and Visual Rehabilitation Laboratory, Bioengineering Institute, University Miguel Hernández of Elche, 03202 Elche, Spain
| | - Laura Antequera-Zambrano
- Genetics and Molecular Biology Laboratory, Biology Department, Faculty of Sciences, University of Zulia, Maracaibo 4001, Venezuela
| | - Gema Martínez-Navarrete
- Neuroprosthesis and Visual Rehabilitation Laboratory, Bioengineering Institute, University Miguel Hernández of Elche, 03202 Elche, Spain
| | - Vanessa Zorrilla-Muñoz
- Bioengineering Institute, University Miguel Hernández of Elche, 03202 Elche, Spain
- University Institute on Gender Studies, University Carlos III of Madrid, Getafe, 28903 Madrid, Spain
| | - José Luis Paz
- Academic Department of Inorganic Chemistry, Faculty of Chemistry and Chemical Engineering, National University of San Marcos, Lima 15081, Peru
| | - Ysaias J Alvarado
- Laboratory of Theoretical and Experimental Biophysical Chemistry (LQBTE), Center for Molecular Biomedicine (CBM), Venezuelan Institute for Scientific Research (IVIC), Maracaibo 4001, Venezuela
| | - Lenin González-Paz
- Genetics and Molecular Biology Laboratory, Biology Department, Faculty of Sciences, University of Zulia, Maracaibo 4001, Venezuela
- Laboratory of Biocomputing (LB), Center for Molecular Biomedicine (CBM), Venezuelan Institute for Scientific Research (IVIC), Maracaibo 4001, Venezuela
| | - Eduardo Fernández
- Neuroprosthesis and Visual Rehabilitation Laboratory, Bioengineering Institute, University Miguel Hernández of Elche, 03202 Elche, Spain
- Biomedical Research Network Center (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
6
|
Tkachev PV, Pchelin IM, Azarov DV, Gorshkov AN, Shamova OV, Dmitriev AV, Goncharov AE. Two Novel Lytic Bacteriophages Infecting Enterococcus spp. Are Promising Candidates for Targeted Antibacterial Therapy. Viruses 2022; 14:831. [PMID: 35458561 PMCID: PMC9030284 DOI: 10.3390/v14040831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
The rapid emergence of antibiotic resistance is of major concern globally. Among the most worrying pathogenic bacteria are vancomycin-resistant enterococci. Phage therapy is a highly promising method for controlling enterococcal infections. In this study, we described two virulent tailed bacteriophages possessing lytic activity against Enterococcus faecalis and E. faecium isolates. The SSsP-1 bacteriophage belonged to the Saphexavirus genus of the Siphoviridae family, and the GVEsP-1 bacteriophage belonged to the Schiekvirus genus of Herelleviridae. The genomes of both viruses carried putative components of anti-CRISPR systems and did not contain known genes coding for antibiotic-resistance determinants and virulence factors. The conservative arrangement of protein-coding sequences in Saphexavirus and Schiekvirus genomes taken together with positive results of treating enterococcal peritonitis in an animal infection model imply the potential suitability of GVEsP-1 and SSsP-1 bacteriophages for clinical applications.
Collapse
Affiliation(s)
- Pavel V. Tkachev
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.M.P.); (D.V.A.); (O.V.S.); (A.V.D.)
| | - Ivan M. Pchelin
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.M.P.); (D.V.A.); (O.V.S.); (A.V.D.)
| | - Daniil V. Azarov
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.M.P.); (D.V.A.); (O.V.S.); (A.V.D.)
| | - Andrey N. Gorshkov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia;
- Laboratory of Pathomorphology, Almazov National Research Centre, 197341 Saint Petersburg, Russia
| | - Olga V. Shamova
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.M.P.); (D.V.A.); (O.V.S.); (A.V.D.)
| | - Alexander V. Dmitriev
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.M.P.); (D.V.A.); (O.V.S.); (A.V.D.)
| | - Artemiy E. Goncharov
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.M.P.); (D.V.A.); (O.V.S.); (A.V.D.)
| |
Collapse
|
7
|
Alduhaidhawi AHM, AlHuchaimi SN, Al- Mayah TA, Al-Ouqaili MTS, Alkafaas SS, Muthupandian S, Saki M. Prevalence of CRISPR-Cas Systems and Their Possible Association with Antibiotic Resistance in Enterococcus faecalis and Enterococcus faecium Collected from Hospital Wastewater. Infect Drug Resist 2022; 15:1143-1154. [PMID: 35340673 PMCID: PMC8942119 DOI: 10.2147/idr.s358248] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/12/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose This study aimed to evaluate the presence of CRISPR-Cas system genes and their possible association with antibiotic resistance patterns of Enterococcus faecalis and Enterococcus faecium species isolated from hospital wastewater (HWW) samples of several hospitals. Methods HWW samples (200 mL) were collected from wastewater discharged from different hospitals from October 2020 to March 2021. The isolation and identification of enterococci species were performed by standard bacteriology tests and polymerase chain reaction (PCR). Antibiotic resistance was determined using the disc diffusion. The presence of various CRISPR-Cas systems was investigated by PCR. The association of the occurrence of CRISPR-Cas systems with antibiotic resistance was analyzed with appropriate statistical tests. Results In total, 85 different enterococci species were isolated and identified using phenotypic methods. The results of PCR confirmed the prevalence of 50 (58.8%) E. faecalis and 35 (41.2%) E. faecium, respectively. In total, 54 (63.5%) of 85 isolates showed the presence of CRISPR-Cas loci. The incidence of CRISPR-Cas was more common in E. faecalis. CRISPR1, CRISPR2, and CRISPR3 were present in 35 (41.2%), 47 (55.3%), and 30 (35.3%) enterococci isolates, respectively. The CRISPR-Cas positive isolates showed significant lower resistance rates against vancomycin, ampicillin, chloramphenicol, erythromycin, rifampin, teicoplanin, tetracycline, imipenem, tigecycline, and trimethoprim-sulfamethoxazole in comparison with CRISPR-Cas negative isolates. The results showed that the presence of CRISPR-Cas genes was lower in multidrug-resistant (MDR) isolates (53.1%, n = 26/49) compared to the non-MDR enterococci isolates (77.8%, n = 28/36) (P = 0.023). Conclusion This study revealed the higher prevalence of E. faecalis than E. faecium in HWWs. Also, the lack of CRISPR-Cas genes was associated with more antibiotic resistance rates and multidrug resistance in E. faecalis and E. faecium isolates with HWW origin.
Collapse
Affiliation(s)
| | | | | | - Mushtak T S Al-Ouqaili
- Department of Microbiology, College of Medicine, University of Anbar, Ramadi, Al-Anbar Governorate, Iraq
| | - Samar Sami Alkafaas
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Saravanan Muthupandian
- Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Sciences, Mekelle University, Mekelle, 1871, Ethiopia
- Department of Pharmacology, AMR and Nanomedicine Laboratory, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 60007, India
- Correspondence: Saravanan Muthupandian, Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Sciences, Mekelle University, Mekelle, 1871, Ethiopia, Tel +919443077097, Email
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Morteza Saki, Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Tel +989364221187, Email
| |
Collapse
|
8
|
Tarek N, El-Gendy AO, Khairalla AS, Abdel-Fattah M, Tawfik E, Azmy AF. Genomic analysis of Enterococcus durans NT21, a putative bacteriocin-producing isolate. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2022; 11:143-153. [PMID: 36718242 PMCID: PMC9661671 DOI: 10.22099/mbrc.2022.44088.1760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Enterococcus species are a long-standing and non-pathogenic commensal bacterium, representing an important part of the normal. Enterococcus durans is a rarely isolated species from animals and humans, and it was a tiny constituent of human oral cavity and animal intestinal flora, as well as animal-derived foods, particularly dairy products. This study evaluated the security of our strain E. durans NT21 by using whole-genome sequencing (WGS), physicochemical features, and antimicrobial activity. The complete genomic of our strain Enterococcus durans NT21was sequenced and analyzed by using several bioinformatics tools to identify bacteriocin genes, virulence genes, antibiotic resistance genes, Crispr-Cas and pathogenicity islands. The results showed that our strain NT21 lacks the presence of virulence genes, pathogenicity islands, plasmids and has only two antibiotic resistance genes. On the other hand, it produces three bacteriocin-like inhibitory substances (Enterolysin A, P and L50a). It has six gene-encoded Crisper-Cas and one cluster Crispr-Cas gene. According to our findings, E. durans NT21 is a possible probiotic strain that is safe for both human and animal use.
Collapse
Affiliation(s)
- Nashwa Tarek
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Egypt,Basic Science Department, Faculty of Oral and Dental medicine, Nahda University Beni-Suef (NUB), Beni
| | - Ahmed O. El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University
| | - Ahmed S. Khairalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University ,Department of Biology, University of Regina, Saskatchewan, Canada
| | - Medhat Abdel-Fattah
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Egypt
| | - Eman Tawfik
- Department of Botany and Microbiology,Faculty of Science, Helwan University, Egypt, Eman Tawfik and Ahmed F. Azmy contributed equally to the project.,Corresponding Author: Lecturer of Genetics and Genetic Engineering, Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt, Tel: +2 01119383526; Fax: +2 0225552468; E. mail:
| | - Ahmed F. Azmy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University , Eman Tawfik and Ahmed F. Azmy contributed equally to the project.,Corresponding Author: Lecturer of Genetics and Genetic Engineering, Botany and Microbiology Department, Faculty of Science, Helwan University, Egypt, Tel: +2 01119383526; Fax: +2 0225552468; E. mail:
| |
Collapse
|
9
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
10
|
Gholizadeh P, Aghazadeh M, Ghotaslou R, Rezaee MA, Pirzadeh T, Cui L, Watanabe S, Feizi H, Kadkhoda H, Kafil HS. Role of CRISPR-Cas system on antibiotic resistance patterns of Enterococcus faecalis. Ann Clin Microbiol Antimicrob 2021; 20:49. [PMID: 34321002 PMCID: PMC8317297 DOI: 10.1186/s12941-021-00455-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are one of the factors which can contribute to limiting the development and evolution of antibiotic resistance in bacteria. There are three genomic loci of CRISPR-Cas in Enterococcus faecalis. In this study, we aimed to assess correlation of the CRISPR-Cas system distribution with the acquisition of antibiotic resistance among E. faecalis isolates. A total of 151 isolates of E. faecalis were collected from urinary tract infections (UTI) and dental-root canal (DRC). All isolates were screened for phenotypic antibiotic resistance. In addition, antibiotic resistance genes and CRISPR loci were screened by using polymerase chain reaction. Genomic background of the isolates was identified by random amplified polymorphic DNA (RAPD)-PCR. The number of multidrug-resistant E. faecalis strains were higher in UTI isolates than in DRC isolates. RAPD-PCR confirmed that genomic background was diverse in UTI and DRC isolates used in this study. CRISPR loci were highly accumulated in gentamycin-, teicoplanin-, erythromycin-, and tetracycline-susceptible strains. In concordance with drug susceptibility, smaller number of CRISPR loci were identified in vanA, tetM, ermB, aac6’-aph(2”), aadE, and ant(6) positive strains. These data indicate a negative correlation between CRISPR-cas loci and antibiotic resistance, as well as, carriage of antibiotic resistant genes in both of UTI and DRC isolates.
Collapse
Affiliation(s)
- Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tahereh Pirzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hadi Feizi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hiva Kadkhoda
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Mulkerrins KB, Lyons C, Shiaris MP. Draft Genome Sequence of Enterococcus faecalis AS003, a Strain Possessing All Three Type II-a CRISPR Loci. Microbiol Resour Announc 2021; 10:e01449-20. [PMID: 33737370 PMCID: PMC7975888 DOI: 10.1128/mra.01449-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/26/2021] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis is a clinically significant member of the human microbiome. Three CRISPR-Cas loci are located in conserved locations. Previous studies provide evidence that E. faecalis strains with functional CRISPR-Cas genes are negatively correlated with antibiotic resistance. Here, we report the genome sequence of an unusual strain possessing all three CRISPR-Cas loci.
Collapse
Affiliation(s)
- Kevin B Mulkerrins
- Shiaris Laboratory, Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Casandra Lyons
- Shiaris Laboratory, Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Michael P Shiaris
- Shiaris Laboratory, Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Mancilla-Rojano J, Ochoa SA, Reyes-Grajeda JP, Flores V, Medina-Contreras O, Espinosa-Mazariego K, Parra-Ortega I, Rosa-Zamboni DDL, Castellanos-Cruz MDC, Arellano-Galindo J, Cevallos MA, Hernández-Castro R, Xicohtencatl-Cortes J, Cruz-Córdova A. Molecular Epidemiology of Acinetobacter calcoaceticus- Acinetobacter baumannii Complex Isolated From Children at the Hospital Infantil de México Federico Gómez. Front Microbiol 2020; 11:576673. [PMID: 33178158 PMCID: PMC7593844 DOI: 10.3389/fmicb.2020.576673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
The Acinetobacter calcoaceticus-baumannii (Acb) complex is regarded as a group of phenotypically indistinguishable opportunistic pathogens responsible for mainly causing hospital-acquired pneumonia and bacteremia. The aim of this study was to determine the frequency of isolation of the species that constitute the Acb complex, as well as their susceptibility to antibiotics, and their distribution at the Hospital Infantil de Mexico Federico Gomez (HIMFG). A total of 88 strains previously identified by Vitek 2®, 40 as Acinetobacter baumannii and 48 as Acb complex were isolated from 52 children from 07, January 2015 to 28, September 2017. A. baumannii accounted for 89.77% (79/88) of the strains; Acinetobacter pittii, 6.82% (6/88); and Acinetobacter nosocomialis, 3.40% (3/88). Most strains were recovered mainly from patients in the intensive care unit (ICU) and emergency wards. Blood cultures (BC) provided 44.32% (39/88) of strains. The 13.63% (12/88) of strains were associated with primary bacteremia, 3.4% (3/88) with secondary bacteremia, and 2.3% (2/88) with pneumonia. In addition, 44.32% (39/88) were multidrug-resistant (MDR) strains and, 11.36% (10/88) were extensively drug-resistant (XDR). All strains amplified the blaOXA-51 gene; 51.13% (45/88), the blaOXA-23 gene; 4.54% (4/88), the blaOXA-24 gene; and 2.27% (2/88), the blaOXA-58 gene. Plasmid profiles showed that the strains had 1–6 plasmids. The strains were distributed in 52 pulsotypes, and 24 showed identical restriction patterns, with a correlation coefficient of 1.0. Notably, some strains with the same pulsotype were isolated from different patients, wards, or years, suggesting the persistence of more than one clone. Twenty-seven sequence types (STs) were determined for the strains based on a Pasteur multilocus sequence typing (MLST) scheme using massive sequencing; the most prevalent was ST 156 (27.27%, 24/88). The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas I-Fb system provided amplification in A. baumannii and A. pittii strains (22.73%, 20/88). This study identified an increased number of MDR strains and the relationship among strains through molecular typing. The data suggest that more than one strain could be causing an infection in some patient. The implementation of molecular epidemiology allowed the characterization of a set of strains and identification of different attributes associated with its distribution in a specific environment.
Collapse
Affiliation(s)
- Jetsi Mancilla-Rojano
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico.,Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Juan Pablo Reyes-Grajeda
- Subdirección de Desarrollo de Aplicaciones Clínicas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Víctor Flores
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Irapuato, Mexico
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Karina Espinosa-Mazariego
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Israel Parra-Ortega
- Departamento de Laboratorio Clínico, Laboratorio Central, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | | | | | - José Arellano-Galindo
- Unidad de investigación en Enfermedades Infecciosas, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Miguel A Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| |
Collapse
|
13
|
Dos Santos BA, de Oliveira JDS, Parmanhani-da-Silva BM, Ribeiro RL, Teixeira LM, Neves FPG. CRISPR elements and their association with antimicrobial resistance and virulence genes among vancomycin-resistant and vancomycin-susceptible enterococci recovered from human and food sources. INFECTION GENETICS AND EVOLUTION 2020; 80:104183. [PMID: 31923727 DOI: 10.1016/j.meegid.2020.104183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022]
Abstract
We aimed to investigate the occurrence of CRISPR elements in the genomes of vancomycin-resistant (VRE) and vancomycin-susceptible (VSE) enterococci and their association with the presence of antimicrobial resistance and virulence genes. We analyzed 180 isolates, including 91 VRE and 89 VSE. Isolates were identified by PCR or MALDI-TOF. Antimicrobial susceptibility and MICs for vancomycin were determined by the disk-diffusion method and E-test®, respectively. The presence of resistance and virulence genes, as well as CRISPR elements, was investigated by PCR. We identified 95 (53%) E. faecalis, 78 (43%) E. faecium, five (2.8%) E. gallinarum, and one (0.6% each) E. casseliflavus and E. durans. The highest and the lowest non-susceptibility frequencies were observed for erythromycin (n = 152; 84.4%) and fosfomycin (n = 5; 2.8%), respectively. Most erythromycin-resistant isolates had the erm(B) gene (106/152; 69.7%). Of 118 (65.6%) isolates with high-level resistance to aminoglycoside, 69 (58.5%) had at least one aminoglycoside resistance gene, mostly ant(6)-Ia and aac(6')-Ie + aph(2″)-Ia. We found at least one virulence gene among 135 (75%) isolates, mostly gelE (79/180; 43.9%). Ninety-two (51.1%) isolates had at least one CRISPR element, especially CRISPR3 (62/92; 67.4%). CRISPR elements were more common among E. faecalis, in which we observed a relationship between the absence of CRISPR and the presence of the vanA resistance gene, and the hyl and esp virulence genes. Among VRE. faecium, a relationship was found between the absence of CRISPR and the hyl gene. In conclusion, we found evident associations between the lack of CRISPR elements with species, multidrug resistance, and major resistance- and virulence-associated genes.
Collapse
Affiliation(s)
- Barbara Araújo Dos Santos
- Instituto Biomédico, Universidade Federal Fluminense. Rua Professor Hernani Melo, 101. São Domingos, Niterói, RJ 24210-130, Brazil
| | - Jessica da Silva de Oliveira
- Instituto Biomédico, Universidade Federal Fluminense. Rua Professor Hernani Melo, 101. São Domingos, Niterói, RJ 24210-130, Brazil
| | | | - Rachel Leite Ribeiro
- Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Av. Marquês do Paraná, 303. Centro, Niterói, RJ 24033-900, Brazil.
| | - Lúcia Martins Teixeira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373. Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Felipe Piedade Gonçalves Neves
- Instituto Biomédico, Universidade Federal Fluminense. Rua Professor Hernani Melo, 101. São Domingos, Niterói, RJ 24210-130, Brazil.
| |
Collapse
|
14
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
|
15
|
Huescas CGY, Pereira RI, Prichula J, Azevedo PA, Frazzon J, Frazzon APG. Frequency of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in non-clinical Enterococcus faecalis and Enterococcus faecium strains. BRAZ J BIOL 2018; 79:460-465. [PMID: 30304253 DOI: 10.1590/1519-6984.183375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/16/2018] [Indexed: 11/21/2022] Open
Abstract
The fidelity of the genomes is defended by mechanism known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems. Three Type II CRISPR systems (CRISPR1- cas, CRISPR2 and CRISPR3-cas) have been identified in enterococci isolates from clinical and environmental samples. The aim of this study was to observe the distribution of CRISPR1-cas, CRISPR2 and CRISPR3-cas in non-clinical strains of Enterococcus faecalis and Enterococcus faecium isolates from food and fecal samples, including wild marine animals. The presence of CRISPRs was evaluated by PCR in 120 enterococci strains, 67 E. faecalis and 53 E. faecium. It is the first report of the presence of the CRISPRs system in E. faecalis and E. faecium strains isolated from wild marine animal fecal samples. The results showed that in non-clinical strains, the CRISPRs were more frequently detected in E. faecalis than in E. faecium. And the frequencies of CRISPR1-cas and CRISPR2 were higher (60%) in E. faecalis strains isolated from animal feces, compared to food samples. Both strains showed low frequencies of CRISPR3-cas (8.95% and 1.88%). In conclusion, the differences in the habitats of enterococcal species may be related with the results observe in distribution of CRISPRs systems.
Collapse
Affiliation(s)
- C G Y Huescas
- Programa de Pós-graduacao em Microbiologia Agricola e do Ambiente, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul - UFRGS, Sarmento Leite, 500, sala 216, CEP 90050-170, Porto Alegre, RS, Brasil
| | - R I Pereira
- Laboraorio de Gram-positive, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Sarmento Leite, 245, sala 204, CEP 90050-170, Porto Alegre, RS, Brasil
| | - J Prichula
- Laboraorio de Gram-positive, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Sarmento Leite, 245, sala 204, CEP 90050-170, Porto Alegre, RS, Brasil
| | - P A Azevedo
- Laboraorio de Gram-positive, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Sarmento Leite, 245, sala 204, CEP 90050-170, Porto Alegre, RS, Brasil
| | - J Frazzon
- Instituto de Ciencias e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Prédio 443.212, Campus do Vale, CEP 91501-970, Porto Alegre, RS, Brasil
| | - A P G Frazzon
- Programa de Pós-graduacao em Microbiologia Agricola e do Ambiente, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul - UFRGS, Sarmento Leite, 500, sala 216, CEP 90050-170, Porto Alegre, RS, Brasil
| |
Collapse
|
16
|
Karimi Z, Ahmadi A, Najafi A, Ranjbar R. Bacterial CRISPR Regions: General Features and their Potential for Epidemiological Molecular Typing Studies. Open Microbiol J 2018; 12:59-70. [PMID: 29755603 PMCID: PMC5925864 DOI: 10.2174/1874285801812010059] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023] Open
Abstract
Introduction CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci as novel and applicable regions in prokaryotic genomes have gained great attraction in the post genomics era. Methods These unique regions are diverse in number and sequence composition in different pathogenic bacteria and thereby can be a suitable candidate for molecular epidemiology and genotyping studies. Results:Furthermore, the arrayed structure of CRISPR loci (several unique repeats spaced with the variable sequence) and associated cas genes act as an active prokaryotic immune system against viral replication and conjugative elements. This property can be used as a tool for RNA editing in bioengineering studies. Conclusion The aim of this review was to survey some details about the history, nature, and potential applications of CRISPR arrays in both genetic engineering and bacterial genotyping studies.
Collapse
Affiliation(s)
- Zahra Karimi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|