1
|
Stavridou E, Karamichali I, Siskas E, Bosmali I, Osanthanunkul M, Madesis P. Identification of Sex-Associated Genetic Markers in Pistacia lentiscus var. chia for Early Male Detection. Genes (Basel) 2024; 15:632. [PMID: 38790261 PMCID: PMC11120708 DOI: 10.3390/genes15050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Pistacia lentiscus var. chia is a valuable crop for its high-added-value mastic, a resin with proven pharmaceutical and cosmeceutical properties harvested from the male tree trunk. To achieve the maximum economic benefits from the cultivation of male mastic trees, it is important to develop early sex diagnosis molecular tools for distinguishing the sex type. Thus far, the work on sex identification has focused on Pistacia vera with promising results; however, the low transferability rates of these markers in P. lentiscus necessitates the development of species-specific sex-linked markers for P. lentiscus var. chia. To our knowledge, this is the first report regarding: (i) the development of species-specific novel transcriptome-based markers for P. lentiscus var. chia and their assessment on male, female and monoecious individuals using PCR-HRM analysis, thus, introducing a cost-effective method for sex identification with high accuracy that can be applied with minimum infrastructure, (ii) the effective sex identification in mastic tree using a combination of different sex-linked ISSR and SCAR markers with 100% accuracy, and (iii) the impact evaluation of sex type on the genetic diversity of different P. lentiscus var. chia cultivars. The results of this study are expected to provide species-specific markers for accurate sex identification that could contribute to the selection process of male mastic trees at an early stage for mass propagation systems and to facilitate future breeding efforts related to sex-linked productivity and quality of mastic resin.
Collapse
Affiliation(s)
- Evangelia Stavridou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (E.S.)
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece; (I.K.); (I.B.)
| | - Ioanna Karamichali
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece; (I.K.); (I.B.)
| | - Evangelos Siskas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (E.S.)
| | - Irini Bosmali
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece; (I.K.); (I.B.)
| | - Maslin Osanthanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Centre in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panagiotis Madesis
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece; (I.K.); (I.B.)
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
2
|
Charlesworth D, Harkess A. Why should we study plant sex chromosomes? THE PLANT CELL 2024; 36:1242-1256. [PMID: 38163640 PMCID: PMC11062472 DOI: 10.1093/plcell/koad278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024]
Abstract
Understanding plant sex chromosomes involves studying interactions between developmental and physiological genetics, genome evolution, and evolutionary ecology. We focus on areas of overlap between these. Ideas about how species with separate sexes (dioecious species, in plant terminology) can evolve are even more relevant to plants than to most animal taxa because dioecy has evolved many times from ancestral functionally hermaphroditic populations, often recently. One aim of studying plant sex chromosomes is to discover how separate males and females evolved from ancestors with no such genetic sex-determining polymorphism, and the diversity in the genetic control of maleness vs femaleness. Different systems share some interesting features, and their differences help to understand why completely sex-linked regions may evolve. In some dioecious plants, the sex-determining genome regions are physically small. In others, regions without crossing over have evolved sometimes extensive regions with properties very similar to those of the familiar animal sex chromosomes. The differences also affect the evolutionary changes possible when the environment (or pollination environment, for angiosperms) changes, as dioecy is an ecologically risky strategy for sessile organisms. Dioecious plants have repeatedly reverted to cosexuality, and hermaphroditic strains of fruit crops such as papaya and grapes are desired by plant breeders. Sex-linked regions are predicted to become enriched in genes with sex differences in expression, especially when higher expression benefits one sex function but harms the other. Such trade-offs may be important for understanding other plant developmental and physiological processes and have direct applications in plant breeding.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
3
|
Kafkas S, Ma X, Zhang X, Topçu H, Navajas-Pérez R, Wai CM, Tang H, Xu X, Khodaeiaminjan M, Güney M, Paizila A, Karcı H, Zhang X, Lin J, Lin H, Herrán RDL, Rejón CR, García-Zea JA, Robles F, Muñoz CDV, Hotz-Wagenblatt A, Min XJ, Özkan H, Motalebipour EZ, Gozel H, Çoban N, Kafkas NE, Kilian A, Huang H, Lv X, Liu K, Hu Q, Jacygrad E, Palmer W, Michelmore R, Ming R. Pistachio genomes provide insights into nut tree domestication and ZW sex chromosome evolution. PLANT COMMUNICATIONS 2023; 4:100497. [PMID: 36435969 DOI: 10.1016/j.xplc.2022.100497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 05/11/2023]
Abstract
Pistachio is a nut crop domesticated in the Fertile Crescent and a dioecious species with ZW sex chromosomes. We sequenced the genomes of Pistacia vera cultivar (cv.) Siirt, the female parent, and P. vera cv. Bagyolu, the male parent. Two chromosome-level reference genomes of pistachio were generated, and Z and W chromosomes were assembled. The ZW chromosomes originated from an autosome following the first inversion, which occurred approximately 8.18 Mya. Three inversion events in the W chromosome led to the formation of a 12.7-Mb (22.8% of the W chromosome) non-recombining region. These W-specific sequences contain several genes of interest that may have played a pivotal role in sex determination and contributed to the initiation and evolution of a ZW sex chromosome system in pistachio. The W-specific genes, including defA, defA-like, DYT1, two PTEN1, and two tandem duplications of six VPS13A paralogs, are strong candidates for sex determination or differentiation. Demographic history analysis of resequenced genomes suggest that cultivated pistachio underwent severe domestication bottlenecks approximately 7640 years ago, dating the domestication event close to the archeological record of pistachio domestication in Iran. We identified 390, 211, and 290 potential selective sweeps in 3 cultivar subgroups that underlie agronomic traits such as nut development and quality, grafting success, flowering time shift, and drought tolerance. These findings have improved our understanding of the genomic basis of sex determination/differentiation and horticulturally important traits and will accelerate the improvement of pistachio cultivars and rootstocks.
Collapse
Affiliation(s)
- Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey.
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hayat Topçu
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Rafael Navajas-Pérez
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Ching Man Wai
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haibao Tang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuming Xu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mortaza Khodaeiaminjan
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Murat Güney
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Aibibula Paizila
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Harun Karcı
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jing Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Roberto de la Herrán
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Carmelo Ruiz Rejón
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | | | - Francisca Robles
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Coral Del Val Muñoz
- Department of Computer Science, University of Granada, Granada, Spain; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center, Omics IT and Data Management Core Facility, Heidelberg, Germany
| | - Xiangjia Jack Min
- Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555, USA
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | | | - Hatice Gozel
- Pistachio Research Institute, Şahinbey, Gaziantep 27060, Turkey
| | - Nergiz Çoban
- Pistachio Research Institute, Şahinbey, Gaziantep 27060, Turkey
| | - Nesibe Ebru Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Andrej Kilian
- Diversity Arrays Technology, University of Canberra, Canberra, ACT, Australia
| | - HuaXing Huang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanrui Lv
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kunpeng Liu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qilin Hu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ewelina Jacygrad
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - William Palmer
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Richard Michelmore
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Palmer W, Jacygrad E, Sagayaradj S, Cavanaugh K, Han R, Bertier L, Beede B, Kafkas S, Golino D, Preece J, Michelmore R. Genome assembly and association tests identify interacting loci associated with vigor, precocity, and sex in interspecific pistachio rootstocks. G3 (BETHESDA, MD.) 2022; 13:6861913. [PMID: 36454230 PMCID: PMC9911073 DOI: 10.1093/g3journal/jkac317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
Understanding the basis of hybrid vigor remains a key question in crop breeding and improvement, especially for rootstock development where F1 hybrids are extensively utilized. Full-sibling UCB-1 F1 seedling rootstocks are widely planted in commercial pistachio orchards that are generated by crossing 2 highly heterozygous outbreeding parental trees of Pistacia atlantica (female) and P. integerrima (male). This results in extensive phenotypic variability, prompting costly removal of low-yielding small trees. To identify the genetic basis of this variability, we assembled chromosome-scale genome assemblies of the parental trees of UCB-1. We genotyped 960 UCB-1 trees in an experimental orchard for which we also collected multiyear phenotypes. We genotyped an additional 1,358 rootstocks in 6 commercial pistachio orchards and collected single-year tree-size data. Genome-wide single marker association tests identified loci associated with tree size and shape, sex, and precocity. In the experimental orchard, we identified multiple trait-associated loci and a strong candidate for ZZ/ZW sex chromosomes. We found significant marker associations unique to different traits and to early vs late phenotypic measures of the same trait. We detected 2 loci strongly associated with rootstock size in commercial orchards. Pseudo-testcross classification of markers demonstrated that the trait-associated alleles for each locus were segregating in the gametes of opposite parents. These 2 loci interact epistatically to generate the bimodal distribution of tree size with undesirable small trees observed by growers. We identified candidate genes within these regions. These findings provide a foundational resource for marker development and genetic selection of vigorous pistachio UCB-1 rootstock.
Collapse
Affiliation(s)
- William Palmer
- Genome Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA,Present address: Gencove, 30-02 48th Avenue, Suite 370, Long Island City, NY 11101, USA
| | - Ewelina Jacygrad
- Genome Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Sagayamary Sagayaradj
- Genome Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Keri Cavanaugh
- Genome Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Rongkui Han
- Genome Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Lien Bertier
- Genome Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA,Present address: Ohalo Genetics, 9565 Soquel Dr. Suite 101, Aptos, CA 95003, USA
| | - Bob Beede
- UC Cooperative Extension, 680 North Campus Dr., Hanford, CA 93230, USA
| | - Salih Kafkas
- Department of Horticulture, University of Çukurova, 01330 Adana, Turkey
| | - Deborah Golino
- Foundation Plant Services, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - John Preece
- National Clonal Germplasm Repository, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Richard Michelmore
- Corresponding author: Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology and Immunology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Neishabouri S, Rezaei M, Heidari P, Hokmabadi H. Variability of male and female pistachio genotypes with morphological and dominant DNA markers. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
6
|
Bai Q, Ma Z, Zhang Y, Su S, Leng P. The sex expression and sex determining mechanism in Pistacia species. BREEDING SCIENCE 2019; 69:205-214. [PMID: 31481829 PMCID: PMC6711734 DOI: 10.1270/jsbbs.18167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/07/2019] [Indexed: 05/31/2023]
Abstract
Generally, Pistacia species are dioecious, but monoecious strains in several populations have been found, providing excellent models for studying sex differentiation and sex determination mechanisms. Although the mechanisms of sex determination and sex evolution have been extensively studied, related research on heterozygous woody plants is limited. Here, we discuss the expressions of various sex types, which showed broad diversity and complex instability. We have also reviewed the sex determination systems in the plant kingdom and the morphological, cytological, physiological, and molecular aspects of the sex-linked markers in Pistacia trees. Moreover, hypotheses to explain the origin of monoecy are discussed, which is more likely to be the interaction between sex-related genes and environment factors in female plants. Besides, further prospects for the utilization of monoecious resources and the research directions of sex determination mechanism are proposed. This study provides important information on sex expression and provides more insights into sex differentiation and determination.
Collapse
Affiliation(s)
- Qian Bai
- Ministry of Education Key Laboratory of Silviculture and Conservation, College of Forestry, Beijing Forestry University,
35 East Qinghua Road, Beijing, 100083,
China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University,
35 East Qinghua Road, Beijing, 100083,
China
| | - Zhong Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, College of Forestry, Beijing Forestry University,
35 East Qinghua Road, Beijing, 100083,
China
| | - Yunqi Zhang
- Ministry of Education Key Laboratory of Silviculture and Conservation, College of Forestry, Beijing Forestry University,
35 East Qinghua Road, Beijing, 100083,
China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University,
35 East Qinghua Road, Beijing, 100083,
China
| | - Shuchai Su
- Ministry of Education Key Laboratory of Silviculture and Conservation, College of Forestry, Beijing Forestry University,
35 East Qinghua Road, Beijing, 100083,
China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University,
35 East Qinghua Road, Beijing, 100083,
China
| | - Pingsheng Leng
- College of Landscape Architecture, Beijing University of Agriculture,
Beijing, 102206,
China
| |
Collapse
|
7
|
Rauf A, Patel S, Uddin G, Siddiqui BS, Ahmad B, Muhammad N, Mabkhot YN, Hadda TB. Phytochemical, ethnomedicinal uses and pharmacological profile of genus Pistacia. Biomed Pharmacother 2016; 86:393-404. [PMID: 28012394 DOI: 10.1016/j.biopha.2016.12.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 12/19/2022] Open
Abstract
Pistacia genus belong to family Anacardiaceae and it is versatile in that its member species have food (P. vera), medicinal (P. lentiscus) and ornamental (P. chinensis) values. Various species of this genus have folkloric uses with credible mention in diverse pharmacopeia. As a trove of phenolic compounds, terpenoids, monoterpenes, flavonoids, alkaloids, saponins, fatty acids, and sterols, this genus has garnered pharmaceutical attention in recent times. With adequate clinical studies, this genus might be exploited for therapy of a multitude of inflammatory diseases, as promised by preliminary studies. In this regard, the ethnomedicinal, phytochemistry, biological potencies, risks, and scopes of Pistacia genus have been reviewed here.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of chemistry, University of Swabi Anbar-23430, Khyber Pakhtunkhwa, Pakistan.
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego-92182, USA.
| | - Ghias Uddin
- Institute of Chemical Sciences, University of Peshawar, Peshawar-25120, Pakistan
| | - Bina S Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-KPK-25120, KPK, Pakistan
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan-23200, Pakistan
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Taibi Ben Hadda
- Laboratoire Chimie Matériaux, FSO, Université Mohammed Ier, Oujda-60000, Morocco
| |
Collapse
|