1
|
Purakkel U, Praveena G, Madabhushi VY, Jadav SS, Prakasham RS, Dasugari Varakala SG, Sriram D, Blanch EW, Maniam S. Thiazolotriazoles As Anti-infectives: Design, Synthesis, Biological Evaluation and In Silico Studies. ACS OMEGA 2024; 9:8846-8861. [PMID: 38434818 PMCID: PMC10905600 DOI: 10.1021/acsomega.3c06324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024]
Abstract
The rational design of novel thiazolo[2,3-c][1,2,4]triazole derivatives was carried out based on previously identified antitubercular hit molecule H127 for discovering potent compounds showing antimicrobial activity. The designed compounds were screened for their binding efficacies against the antibacterial drug target enoyl-[acyl-carrier-protein] reductase, followed by prediction of drug-likeness and ADME properties. The designed analogues were chemically synthesized, characterized by spectroscopic techniques, followed by evaluation of antimicrobial activity against bacterial and fungal strains, as well as antitubercular activity against M. tuberculosis and M. bovis strains. Among the synthesized compounds, five compounds, 10, 11, 35, 37 and 38, revealed antimicrobial activity, albeit with differential potency against various microbial strains. Compounds 10 and 37 were the most active against S. mutans (MIC: 8 μg/mL), while compounds 11 and 37 showed the highest activity against B. subtillis (MIC: 16 μg/mL), whereas compounds 10, 11 and 37 displayed activities against E. coli (MIC: 16 μg/mL). Meanwhile, compounds 10 and 35 depicted activities against S. typhi (MIC: 16 μg/mL) and compound 10 showed antifungal activity against C. albicans (MIC: 32 μg/mL). The current study has identified two broad-spectrum antibacterial hit compounds (10 and 37). Further structural investigation on these molecules is underway to enhance their potency.
Collapse
Affiliation(s)
- Umadevi
Kizhakke Purakkel
- Applied
Chemistry and Environmental Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Organic
Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Ganji Praveena
- Organic
Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Valli Y. Madabhushi
- Organic
Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Surender Singh Jadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reddy Shetty Prakasham
- Organic
Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | | | - Dharmarajan Sriram
- Department
of Pharmacy, Birla Institute of Technology
& Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Ewan W. Blanch
- Applied
Chemistry and Environmental Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Subashani Maniam
- Applied
Chemistry and Environmental Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
2
|
Ayon NJ. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023; 13:625. [PMID: 37233666 PMCID: PMC10220967 DOI: 10.3390/metabo13050625] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the continued emergence of resistance and a lack of new and promising antibiotics, bacterial infection has become a major public threat. High-throughput screening (HTS) allows rapid screening of a large collection of molecules for bioactivity testing and holds promise in antibacterial drug discovery. More than 50% of the antibiotics that are currently available on the market are derived from natural products. However, with the easily discoverable antibiotics being found, finding new antibiotics from natural sources has seen limited success. Finding new natural sources for antibacterial activity testing has also proven to be challenging. In addition to exploring new sources of natural products and synthetic biology, omics technology helped to study the biosynthetic machinery of existing natural sources enabling the construction of unnatural synthesizers of bioactive molecules and the identification of molecular targets of antibacterial agents. On the other hand, newer and smarter strategies have been continuously pursued to screen synthetic molecule libraries for new antibiotics and new druggable targets. Biomimetic conditions are explored to mimic the real infection model to better study the ligand-target interaction to enable the designing of more effective antibacterial drugs. This narrative review describes various traditional and contemporaneous approaches of high-throughput screening of natural products and synthetic molecule libraries for antibacterial drug discovery. It further discusses critical factors for HTS assay design, makes a general recommendation, and discusses possible alternatives to traditional HTS of natural products and synthetic molecule libraries for antibacterial drug discovery.
Collapse
Affiliation(s)
- Navid J Ayon
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
3
|
Tandi M, Sundriyal S. Recent trends in the design of antimicrobial agents using Ugi-multicomponent reaction. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Karale UB, Shinde AU, Babar DA, Sangu KG, Vagolu SK, Eruva VK, Jadav SS, Misra S, Dharmarajan S, Rode HB. 3-Aryl-substituted imidazo[1,2-a]pyridines as antituberculosis agents. Arch Pharm (Weinheim) 2021; 354:e2000419. [PMID: 34185337 DOI: 10.1002/ardp.202000419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/24/2021] [Accepted: 06/08/2021] [Indexed: 11/10/2022]
Abstract
Novel inhibitors are needed to tackle tuberculosis. Herein, we report the 3-aryl-substituted imidazo[1,2-a]pyridines as potent antituberculosis agents. A small library of 3-aryl-substituted imidazo[1,2-a]pyridines was synthesized using direct arylation, followed by nitro reduction and finally Pd-catalyzed C-N coupling reactions. The compounds thus obtained were evaluated against Mycobacterium tuberculosis H37Rv. Compound 26 was identified as an antituberculosis lead with a minimum inhibitory concentration of 2.3 μg/ml against M. tuberculosis H37Rv. This compound showed a selectivity index of 35. The docking of 26 in the active site of the M. tuberculosis cytochrome bc1 complex cytochrome b subunit (Mtb QcrB) revealed key π-π interactions of compound 26 with the Tyr389 and Trp312 residues of Mtb QcrB.
Collapse
Affiliation(s)
- Uttam B Karale
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Akash U Shinde
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Dattatraya A Babar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Komal G Sangu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Siva Krishna Vagolu
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Vamshi K Eruva
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.,Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Surender S Jadav
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sunil Misra
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.,Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sriram Dharmarajan
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, India
| | - Haridas B Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
5
|
Dueke-Eze CU, Fasina TM, Oluwalana AE, Familoni OB, Mphalele JM, Onubuogu C. Synthesis and biological evaluation of copper and cobalt complexes of (5-substituted-salicylidene) isonicotinichydrazide derivatives as antitubercular agents. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Makane VB, Vamshi Krishna E, Karale UB, Babar DA, Kalari S, Rekha EM, Shukla M, Kaul G, Sriram D, Chopra S, Misra S, Rode HB. Synthesis of novel 4,5-dihydropyrrolo[1,2-a]quinoxalines, pyrrolo[1,2-a]quinoxalin]-2-ones and their antituberculosis and anticancer activity. Arch Pharm (Weinheim) 2020; 353:e2000192. [PMID: 32786042 DOI: 10.1002/ardp.202000192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 01/25/2023]
Abstract
A facile strategy was developed for the synthesis of biologically important 4,5-dihydropyrrolo[1,2-a]quinoxalines and pyrrolo[1,2-a]quinoxalin]-2-ones by treating 2-(1H-pyrrol-1-yl)anilines with imidazo[1,2-a]pyridine-3-carbaldehyde or isatin, using amidosulfonic acid (NH3 SO3 ) as a solid catalyst in water at room temperature. The protocol has been extended to electrophile ninhydrin. The catalyst could be recycled for six times without the loss of activity. The compounds were evaluated for their antituberculosis, antibacterial, and anticancer activities. It is worth noting that compounds 3d and 3e demonstrated a minimum inhibitory concentration value of 6.25 µM against Mycobacterium tuberculosis H37Rv, whereas compounds 3d, 3g, 5d, 5e, and 5i showed a remarkable inhibition of A549, DU145, HeLa, HepG2, MCF-7, and B16-F10 cell lines, respectively. Staphylococcus aureus was inhibited by compounds 5b, 5e, 5d, 5g, and 5l at 32 µg/ml.
Collapse
Affiliation(s)
- Vitthal B Makane
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Eruva Vamshi Krishna
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Uattam B Karale
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Dattatraya A Babar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Saradhi Kalari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Estharla M Rekha
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, India
| | - Manjulika Shukla
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sunil Misra
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Haridas B Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
7
|
Gaikwad VR, Karale UB, Govindarajalu G, Adhikari N, Krishna EV, Krishna VS, Misra S, Sriram D, Sijwali PS, Rode HB. Synthesis and efficacy of pyrvinium-inspired analogs against tuberculosis and malaria pathogens. Bioorg Med Chem Lett 2020; 30:127037. [DOI: 10.1016/j.bmcl.2020.127037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/25/2022]
|
8
|
Kami Reddy KR, Dasari C, Vandavasi S, Natani S, Supriya B, Jadav SS, Sai Ram N, Kumar JM, Ummanni R. Novel Cellularly Active Inhibitor Regresses DDAH1 Induced Prostate Tumor Growth by Restraining Tumor Angiogenesis through Targeting DDAH1/ADMA/NOS Pathway. ACS COMBINATORIAL SCIENCE 2019; 21:241-256. [PMID: 30673277 DOI: 10.1021/acscombsci.8b00133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dimethylarginine dimethylaminohydrolase1 (DDAH1) inhibitors are important therapeutics by virtue of their ability to control nitric oxide (NO) production by elevating asymmetric dimethylarginine (ADMA) levels. In a screening campaign, we identified that DD1E5 (3-amino-6- tert-butyl-N-(1,3-thiazol-2-yl)-4-(trifluoromethyl)thieno[2,3- b]pyridine-2- carboxamide) inhibits the DDAH1 activity both in vitro and in cultured cells. Mechanistic studies found that DD1E5 is a competitive inhibitor (dissociation constant ( Ki) of 2.05 ± 0.15 μM). Enzyme kinetic assays showed time and concentration dependent inhibition of DDAH1 with DD1E5, which shows tight binding with an inactivation rate constant of 0.2756 ± 0.015 M-1 S-1. Treatment of cancer cells with DDAH1 inhibitors shows inhibition of cell proliferation and a subsequent decrease in NO production with ADMA accumulation. DD1E5 reversed the elevated VEGF, c-Myc, HIF-1α, and iNOS levels induced by exogenous DDAH1 overexpression in PCa cells. Moreover, DD1E5 significantly increased intracellular levels of ADMA and reduced NO production, suggesting its therapeutic potential for cancers in which DDAH1 is upregulated. In in vitro assays, DD1E5 abrogated the secretion of angiogenic factors (bFGF and IL-8) into conditional media, indicating its antiangiogenic potential. DD1E5 inhibited in vivo growth of xenograft tumors derived from PCa cells with DDAH1 overexpression, by reducing tumor endothelial content represented with low CD31 expression. VEGF, HIF-1α, and iNOS expression were reversed in DD1E5 treated tumors compared to respective control tumors. In this work, integrating multiple approaches shows DD1E5 is a promising tool for the study of methylarginine-mediated NO control and a potential therapeutic lead compound against pathological conditions with elevated NO production such as cancers and other diseases.
Collapse
Affiliation(s)
- Karthik Reddy Kami Reddy
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Chandrashekhar Dasari
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Shalini Vandavasi
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Sirisha Natani
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Bhukya Supriya
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Surender Singh Jadav
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - N. Sai Ram
- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | | | - Ramesh Ummanni
- Applied Biology, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Centre for Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
9
|
Synthesis and evaluation of α-aminoacyl amides as antitubercular agents effective on drug resistant tuberculosis. Eur J Med Chem 2019; 164:665-677. [DOI: 10.1016/j.ejmech.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 11/20/2022]
|
10
|
Kumar Baba N, Ashok D, Rao BA, Madderla S, Murthy N. Microwave-assisted synthesis and biological evaluation of thiazole-substituted dibenzofurans. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2017-0247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractNew thiazole-substituted dibenzofurans 7a–j were synthesized from dibenzofuran derivatives 5a–b and substituted thiosemicarbazones 6a–h under conventional and microwave irradiation conditions. The structures of all products were established on the basis of analytical and spectral data. The synthesized compounds were evaluated for their in vitro antibacterial activity against Gram-positive and Gram-negative strains. Compounds 7b, 7d and 7h are active against Bacillus subtilis (+ve), and compound 7i displays good activity against Pseudomonas aeruginosa (-ve) strain. Compounds 7a–j were also evaluated for their in vitro antimycobacterial activity, and compound 7b shows antimycobacterial activity against Mycobacterium bovis strain.
Collapse
Affiliation(s)
- N.H. Kumar Baba
- Department of Chemistry, Jawaharlal Nehru Technological University, Hyderabad 500085, Telangana, India
- Chemveda Life Sciences India Pvt Ltd., I.D.A. Uppal, Hyderabad 500039, Telangana, India
| | - D. Ashok
- Green and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad 500007, India
| | - Boddu Ananda Rao
- Green and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad 500007, India
| | - Sarasija Madderla
- Department of Chemistry, Satavahana University, Karimnagar 505001, Telangana, India
| | - N.Y.S. Murthy
- Department of Chemistry, Anurag Group of Institutions, Hyderabad 501301, Telangana, India
| |
Collapse
|
11
|
Microwave-assisted synthesis of novel benzodifuran-based bis(N-(het)arylthiazol-2-amine) derivatives and their antibacterial and antimycobacterial activities. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Wang X, Wang GC, Rong J, Wang SW, Ng TB, Zhang YB, Lee KF, Zheng L, Wong HK, Yung KKL, Sze SCW. Identification of Steroidogenic Components Derived From Gardenia jasminoides Ellis Potentially Useful for Treating Postmenopausal Syndrome. Front Pharmacol 2018; 9:390. [PMID: 29899696 PMCID: PMC5989419 DOI: 10.3389/fphar.2018.00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Estrogen-stimulating principles have been demonstrated to relieve postmenopausal syndrome effectively. Gardenia jasminoides Ellis (GJE) is an herbal medicine possessing multiple pharmacological effects on human health with low toxicity. However, the therapeutic effects of GJE on the management of postmenopausal syndrome and its mechanism of action have not been fully elucidated. In this study, network pharmacology-based approaches were employed to examine steroidogenesis under the influence of GJE. In addition, the possibility of toxicity of GJE was ruled out and four probable active compounds were predicted. In parallel, a chromatographic fraction of GJE with estrogen-stimulating effect was identified and nine major compounds were isolated from this active fraction. Among the nine compounds, four of them were identified by network pharmacology, validating the use of network pharmacology to predict active compounds. Then the phenotypic approaches were utilized to verify that rutin, chlorogenic acid (CGA) and geniposidic acid (GA) exerted an estrogen-stimulating effect on ovarian granulosa cells. Furthermore, the results of target-based approaches indicated that rutin, CGA, and GA could up-regulate the FSHR-aromatase pathway in ovarian granulosa cells. The stimulation of estrogen production by rat ovarian granulosa cells under the influence of the three compounds underwent a decline when the follicle-stimulating hormone receptor (FSHR) was blocked by antibodies against the receptor, indicating the involvement of FSHR in the estradiol-stimulating activity of the three compounds. The effects of the three compounds on estrogen biosynthesis- related gene expression level were further confirmed by Western blot assay. Importantly, the MTT results showed that exposure of breast cancer cells to the three compounds resulted in reduction of cell viability, demonstrating the cytotoxicity of the three compounds. Collectively, rutin, chlorogenic acid and geniposidic acid may contribute to the therapeutic potential of GJE for the treatment of postmenopausal syndrome.
Collapse
Affiliation(s)
- Xueyu Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jianhui Rong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shi Wei Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Bo Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kai Fai Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Zheng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hei-Kiu Wong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ken Kin Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Stephen Cho Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
13
|
Kumar Baba NH, Ashok D, Rao BA, Sarasija M, Murthy NYS. Microwave Assisted Synthesis and Biological Activity of Novel Bis{2-[2-(substituted benzylidene)hydrazinyl]thiazole} Derivatives. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218030301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Baba NK, Ashok D, Rao BA, Sarasija M, Murthy N, Srinivasarao V, Parthasarathy T. Microwave-assisted synthesis of bis(N-substituted thiazol-2-amine) derivatives and their biological activities. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2017-0129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractNew 4,4′-(4,6-dimethoxy-1,3-phenylene)-bis(
Collapse
|
15
|
Dalton JP, Uy B, Okuda KS, Hall CJ, Denny WA, Crosier PS, Swift S, Wiles S. Screening of anti-mycobacterial compounds in a naturally infected zebrafish larvae model. J Antimicrob Chemother 2016; 72:421-427. [PMID: 27798206 DOI: 10.1093/jac/dkw421] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/28/2016] [Accepted: 09/07/2016] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Mycobacterium tuberculosis is a deadly human pathogen that causes the lung disease TB. M. tuberculosis latently infects a third of the world's population, resulting in ∼1.5 million deaths per year. Due to the difficulties and expense of carrying out animal drug trials using M. tuberculosis and rodents, infections of the zebrafish Danio rerio with Mycobacterium marinum have become a useful surrogate. However, the infection methods described to date require specialized equipment and a high level of operator expertise. METHODS We investigated whether zebrafish larvae could be naturally infected with bioluminescently labelled M. marinum by immersion, and whether infected larvae could be used for rapid screening of anti-mycobacterial compounds using bioluminescence. We used rifampicin and a variety of nitroimidazole-based next-generation and experimental anti-mycobacterial drugs, selected for their wide range of potencies against M. tuberculosis, to validate this model for anti-mycobacterial drug discovery. RESULTS We observed that five of the six treatments (rifampicin, pretomanid, delamanid, SN30488 and SN30527) significantly reduced the bioluminescent signal from M. marinum within naturally infected zebrafish larvae. Importantly, these same five treatments also retarded the growth of M. tuberculosis in vitro. In contrast, only three of the six treatments tested (rifampicin, delamanid and SN30527) retarded the growth of M. marinum in vitro. CONCLUSIONS We have demonstrated that zebrafish larvae naturally infected with bioluminescent M. marinum M can be used for the rapid screening of anti-mycobacterial compounds with readily available equipment and limited expertise. The result is an assay that can be carried out by a wide variety of laboratories for minimal cost and without high levels of zebrafish expertise.
Collapse
Affiliation(s)
- J P Dalton
- Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - B Uy
- Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - K S Okuda
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - C J Hall
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - W A Denny
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - P S Crosier
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - S Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - S Wiles
- Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand .,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
16
|
Fraietta I, Gasparri F. The development of high-content screening (HCS) technology and its importance to drug discovery. Expert Opin Drug Discov 2016; 11:501-14. [PMID: 26971542 DOI: 10.1517/17460441.2016.1165203] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION High-content screening (HCS) was introduced about twenty years ago as a promising analytical approach to facilitate some critical aspects of drug discovery. Its application has spread progressively within the pharmaceutical industry and academia to the point that it today represents a fundamental tool in supporting drug discovery and development. AREAS COVERED Here, the authors review some of significant progress in the HCS field in terms of biological models and assay readouts. They highlight the importance of high-content screening in drug discovery, as testified by its numerous applications in a variety of therapeutic areas: oncology, infective diseases, cardiovascular and neurodegenerative diseases. They also dissect the role of HCS technology in different phases of the drug discovery pipeline: target identification, primary compound screening, secondary assays, mechanism of action studies and in vitro toxicology. EXPERT OPINION Recent advances in cellular assay technologies, such as the introduction of three-dimensional (3D) cultures, induced pluripotent stem cells (iPSCs) and genome editing technologies (e.g., CRISPR/Cas9), have tremendously expanded the potential of high-content assays to contribute to the drug discovery process. Increasingly predictive cellular models and readouts, together with the development of more sophisticated and affordable HCS readers, will further consolidate the role of HCS technology in drug discovery.
Collapse
Affiliation(s)
- Ivan Fraietta
- a Department of Biology , Nerviano Medical Sciences S.r.l ., Nerviano , Milano , Italy
| | - Fabio Gasparri
- a Department of Biology , Nerviano Medical Sciences S.r.l ., Nerviano , Milano , Italy
| |
Collapse
|