1
|
Silva JR, Souza-Fabjan JMG, Bento TFM, Silva RC, Moura CRF, Bartlewski PM, Batista RITP. The effects of heat stress on intrauterine development, reproductive function, and ovarian gene expression of F1 female mice as well as gene expression of F2 embryos†. Biol Reprod 2024; 110:33-47. [PMID: 37812452 DOI: 10.1093/biolre/ioad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/30/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023] Open
Abstract
Exposure to heat stress (HS) in utero was postulated to trigger an adaptive molecular response that can be transmitted to the next generation. Hence, this study assessed the impact of HS exposure at different stages of the gestational period of mice on the female F1 population and their offspring. Heat stress exposure (41°C and 65% relative humidity-RH) occurred during the first half (FP), the second half (SP), or the entire pregnancy (TP). A control group (C) was maintained in normothermic conditions (25°C, 45% RH) throughout the experiment. Heat stress had a significant negative effect on intrauterine development, mainly when HS exposure occurred in the first half of pregnancy (FP and TP groups). Postnatal growth of FP and TP mice was hindered until 4 weeks of age. The total number of follicles per ovary did not vary (P > 0.05) between the control and HS-exposed groups. Mean numbers of primordial follicles were lower (P < 0.05) in the sexually mature FP than those in SP and TP F1 females. However, the mean number of viable embryos after superovulation was lower (P < 0.05) in TP compared with C group. The expression of genes associated with physiological and cellular response to HS, autophagy, and apoptosis was significantly affected in the ovarian tissue of F1 females and F2 in vivo-derived blastocysts in all HS-exposed groups. In conclusion, exposure to HS during pregnancy compromised somatic development and reproductive parameters as well as altered gene expression profile that was then transmitted to the next generation of mice.
Collapse
Affiliation(s)
- José R Silva
- Programa de Pós-Graduação em Ciência e Biotecnologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Joanna M G Souza-Fabjan
- Programa de Pós-Graduação em Ciência e Biotecnologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Tays F M Bento
- Programa de Pós-Graduação em Ciência e Biotecnologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Robson Campos Silva
- Departamento de Ciências Básicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Cristiane R F Moura
- Departamento de Ciências Básicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Pawel M Bartlewski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ribrio I T P Batista
- Programa de Pós-Graduação em Ciência e Biotecnologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Faculdade de Veterinária, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
2
|
Kashi O, Meirow D. Overactivation or Apoptosis: Which Mechanisms Affect Chemotherapy-Induced Ovarian Reserve Depletion? Int J Mol Sci 2023; 24:16291. [PMID: 38003481 PMCID: PMC10671775 DOI: 10.3390/ijms242216291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dormant primordial follicles (PMF), which constitute the ovarian reserve, are recruited continuously into the cohort of growing follicles in the ovary throughout female reproductive life. Gonadotoxic chemotherapy was shown to diminish the ovarian reserve pool, to destroy growing follicle population, and to cause premature ovarian insufficiency (POI). Three primary mechanisms have been proposed to account for this chemotherapy-induced PMF depletion: either indirectly via over-recruitment of PMF, by stromal damage, or through direct toxicity effects on PMF. Preventative pharmacological agents intervening in these ovotoxic mechanisms may be ideal candidates for fertility preservation (FP). This manuscript reviews the mechanisms that disrupt follicle dormancy causing depletion of the ovarian reserve. It describes the most widely studied experimental inhibitors that have been deployed in attempts to counteract these affects and prevent follicle depletion.
Collapse
Affiliation(s)
- Oren Kashi
- The Morris Kahn Fertility Preservation Center, Sheba Medical Center, Ramat Gan 5262000, Israel;
| | - Dror Meirow
- The Morris Kahn Fertility Preservation Center, Sheba Medical Center, Ramat Gan 5262000, Israel;
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Hyde KA, Aguiar FLN, Alvarenga PB, Rezende AL, Alves BG, Alves KA, Gastal GDA, Gastal MO, Gastal EL. Characterization of preantral follicle clustering and neighborhood patterns in the equine ovary. PLoS One 2022; 17:e0275396. [PMID: 36194590 PMCID: PMC9531796 DOI: 10.1371/journal.pone.0275396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding the transition from quiescent primordial follicles to activated primary follicles is vital for characterizing ovarian folliculogenesis and improving assisted reproductive techniques. To date, no study has investigated preantral follicle crowding in the ovaries of livestock or characterized these crowds according to follicular morphology and ovarian location (portions and regions) in any species. Therefore, the present study aimed to assess the crowding (clustering and neighborhood) patterns of preantral follicles in the equine ovary according to mare age, follicular morphology and developmental stage, and spatial location in the ovary. Ovaries from mares (n = 8) were collected at an abattoir and processed histologically for evaluation of follicular clustering using the Morisita Index and follicular neighborhoods in ovarian sections. Young mares were found to have a large number of preantral follicles with neighbors (n = 2,626), while old mares had a small number (n = 305). Moreover, young mares had a higher number of neighbors per follicle (2.6 ± 0.0) than old mares (1.2 ± 0.1). Follicle clustering was shown to be present in all areas of the ovary, with young mares having more clustering overall than old mares and a tendency for higher clustering in the ventral region when ages were combined. Furthermore, follicles with neighbors were more likely to be morphologically normal (76.5 ± 6.5%) than abnormal (23.5 ± 6.5%). Additionally, morphologically normal activated follicles had increased odds of having neighbors than normal resting follicles, and these normal activated follicles had more neighbors (2.6 ± 0.1) than normal resting follicles (2.3 ± 0.1 neighbors). In the present study, it was demonstrated that preantral follicles do crowd in the mare ovary and that clustering/neighborhood patterns are dynamic and differ depending on mare age, follicular morphology, and follicular developmental stage.
Collapse
Affiliation(s)
- Kendall A. Hyde
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Francisco L. N. Aguiar
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
- Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraíba, Sousa, Paraíba, Brazil
| | - Paula B. Alvarenga
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Amanda L. Rezende
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Benner G. Alves
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Kele A. Alves
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Gustavo D. A. Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental INIA La Estanzuela, Colonia, Uruguay
| | - Melba O. Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Eduardo L. Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, United States of America
- * E-mail:
| |
Collapse
|
5
|
Wang L, Mei Q, Xie Q, Li H, Su P, Zhang L, Li K, Ma D, Chen G, Li J, Xiang W. A comparative study of Mesenchymal Stem Cells transplantation approach to antagonize age-associated ovarian hypofunction with consideration of safety and efficiency. J Adv Res 2022; 38:245-259. [PMID: 35572405 PMCID: PMC9091735 DOI: 10.1016/j.jare.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cells transplantation (MSCs’) to the ovaries of POF patients could lead to effective clinical outcomes. Assessment of MSCs’ effect for single transplantation was performed using 3 transplantation methods. MSCs into ovaries by ovarian local injection was determined as the most effective route. This technique exerted marked effect on antagonizing age-associated ovarian hypofunction. Histopathological data showed that no neoplasms and obvious prosoplasia were found after MSCs transplantation.
Introduction The transplantation of mesenchymal stem cells (MSCs) in patients with premature ovarian failure (POF) could lead to clinical improvement. The transplantation to the ovaries among other transplantation methods have been reported in various animal models, however, there is little evidence regarding the optimal method, including the clinical safety and the efficiency for the treatment of age associated ovarian hypofunction. Objectives To establish the most effective transplantation route of MSCs, explore the resistance to therapy, its safety and role in the natural aging process of the ovaries. Methods Highly purified MSCs were injected intraperitoneally, directly into the ovaries or tail-intravenously in mice animal model. The ovarian function, quantity and quality of oocytes, cell viability/apoptosis, were evaluated, applying chemiluminescence analysis (CLIA), western blotting, immunofluorescence staining, transmission electron microscope (TEM), TdT mediated dUTP Nick End Labeling (TUNEL) assay and other techniques. The organ tumorigenicity was also evaluated by long-term observation and histopathological examination. The efficiency of MSCs was further verified in non-human primates by the most effective transplantation route. Results The 32nd week was ultimately determined as the time point of MSCs transplantation. Our results showed that the intra-ovarian injection was the best transplantation method with a more conspicuous effect. With deeper investigations, we found that the transplanted MSCs showed an effective influence on the follicular number, promoted follicle maturation and inhibited cell apoptosis, which was further verified in non-human primates. In addition, the long-term observation and the histopathological examinations ruled out neoplasms or obvious prosoplasia after MSCs transplantation. Conclusion MSCs transplantation by intra-ovarian injection could within a month exert the most conspicuous anti-age-associated ovarian hypofunction effects, which may improve the quantity and quality of oocytes by changing the mitochondrial structure, regulating mitochondrial function and attenuating cell apoptosis to increase the storage of the follicle pool without a remarkable potential of tumorigenicity.
Collapse
Affiliation(s)
- Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiaojuan Mei
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Xie
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiying Li
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Su
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Zhang
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Corresponding authors.
| | - Jing Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Corresponding authors.
| | - Wenpei Xiang
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Corresponding authors.
| |
Collapse
|
6
|
Ruohonen ST, Gaytan F, Usseglio Gaudi A, Velasco I, Kukoricza K, Perdices-Lopez C, Franssen D, Guler I, Mehmood A, Elo LL, Ohlsson C, Poutanen M, Tena-Sempere M. Selective loss of kisspeptin signaling in oocytes causes progressive premature ovulatory failure. Hum Reprod 2022; 37:806-821. [PMID: 35037941 PMCID: PMC8971646 DOI: 10.1093/humrep/deab287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does direct kisspeptin signaling in the oocyte have a role in the control of follicular dynamics and ovulation? SUMMARY ANSWER Kisspeptin signaling in the oocyte plays a relevant physiological role in the direct control of ovulation; oocyte-specific ablation of kisspeptin receptor, Gpr54, induces a state of premature ovulatory failure in mice that recapitulates some features of premature ovarian insufficiency (POI). WHAT IS KNOWN ALREADY Kisspeptins, encoded by the Kiss1 gene, are essential for the control of ovulation and fertility, acting primarily on hypothalamic GnRH neurons to stimulate gonadotropin secretion. However, kisspeptins and their receptor, Gpr54, are also expressed in the ovary of different mammalian species, including humans, where their physiological roles remain contentious and poorly characterized. STUDY DESIGN, SIZE, DURATION A novel mouse line with conditional ablation of Gpr54 in oocytes, named OoGpr54−/−, was generated and studied in terms of follicular and ovulatory dynamics at different age-points of postnatal maturation. A total of 59 OoGpr54−/− mice and 47 corresponding controls were analyzed. In addition, direct RNA sequencing was applied to ovarian samples from 8 OoGpr54−/− and 7 control mice at 6 months of age, and gonadotropin priming for ovulatory induction was conducted in mice (N = 7) from both genotypes. PARTICIPANTS/MATERIALS, SETTING, METHODS Oocyte-selective ablation of Gpr54 in the oocyte was achieved in vivo by crossing a Gdf9-driven Cre-expressing transgenic mouse line with a Gpr54 LoxP mouse line. The resulting OoGpr54−/− mouse line was subjected to phenotypic, histological, hormonal and molecular analyses at different age-points of postnatal maturation (Day 45, and 2, 4, 6 and 10–11 months of age), in order to characterize the timing of puberty, ovarian follicular dynamics and ovulation, with particular attention to identification of features reminiscent of POI. The molecular signature of ovaries from OoGpr54−/− mice was defined by direct RNA sequencing. Ovulatory responses to gonadotropin priming were also assessed in OoGpr54−/− mice. MAIN RESULTS AND THE ROLE OF CHANCE Oocyte-specific ablation of Gpr54 caused premature ovulatory failure, with some POI-like features. OoGpr54−/− mice had preserved puberty onset, without signs of hypogonadism. However, already at 2 months of age, 40% of OoGpr54−/− females showed histological features reminiscent of ovarian failure and anovulation. Penetrance of the phenotype progressed with age, with >80% and 100% of OoGpr54−/− females displaying complete ovulatory failure by 6- and 10 months, respectively. This occurred despite unaltered hypothalamic Gpr54 expression and gonadotropin levels. Yet, OoGpr54−/− mice had decreased sex steroid levels. While the RNA signature of OoGpr54−/− ovaries was dominated by the anovulatory state, oocyte-specific ablation of Gpr54 significantly up- or downregulated of a set of 21 genes, including those encoding pituitary adenylate cyclase-activating polypeptide, Wnt-10B, matrix-metalloprotease-12, vitamin A-related factors and calcium-activated chloride channel-2, which might contribute to the POI-like state. Notably, the anovulatory state of young OoGpr54−/− mice could be rescued by gonadotropin priming. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Conditional ablation of Gpr54 in oocytes unambiguously caused premature ovulatory failure in mice; yet, the ultimate molecular mechanisms for such state of POI can be only inferred on the basis of RNAseq data and need further elucidation, since some of the molecular changes observed in OoGpr54−/− ovaries were secondary to the anovulatory state. Direct translation of mouse findings to human disease should be made with caution since, despite the conserved expression of Kiss1/kisspeptin and Gpr54 in rodents and humans, our mouse model does not recapitulate all features of common forms of POI. WIDER IMPLICATIONS OF THE FINDINGS Deregulation of kisspeptin signaling in the oocyte might be an underlying, and previously unnoticed, cause for some forms of POI in women. STUDY FUNDING/COMPETING INTEREST(S) This work was primarily supported by a grant to M.P. and M.T.-S. from the FiDiPro (Finnish Distinguished Professor) Program of the Academy of Finland. Additional financial support came from grant BFU2017-83934-P (M.T.-S.; Ministerio de Economía y Competitividad, Spain; co-funded with EU funds/FEDER Program), research funds from the IVIRMA International Award in Reproductive Medicine (M.T.-S.), and EFSD Albert Renold Fellowship Programme (S.T.R.). The authors have no conflicts of interest to declare in relation to the contents of this work. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Suvi T Ruohonen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland
| | - Francisco Gaytan
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Andrea Usseglio Gaudi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Inmaculada Velasco
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Krisztina Kukoricza
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland.,Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Cecilia Perdices-Lopez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Delphine Franssen
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Ipek Guler
- Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Arfa Mehmood
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland.,Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Manuel Tena-Sempere
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain
| |
Collapse
|
7
|
Dolmans MM, Taylor HS, Rodriguez-Wallberg KA, Blumenfeld Z, Lambertini M, von Wolff M, Donnez J. Utility of gonadotropin-releasing hormone agonists for fertility preservation in women receiving chemotherapy: pros and cons. Fertil Steril 2021; 114:725-738. [PMID: 33040981 DOI: 10.1016/j.fertnstert.2020.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Marie-Madeleine Dolmans
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium; Gynecology Department, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden
| | - Zeev Blumenfeld
- Department of Reproductive Endocrinology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | | | - Jacques Donnez
- Société de Recherche pour l'Infertilité, Brussels, Belgium; Catholic University of Louvain, Brussels, Belgium.
| |
Collapse
|
8
|
Ji X, Mo Y, Li H, Zhao W, Zhong A, Li S, Wang Q, Duan X, Xiao J. Gender-dependent reproductive toxicity of copper metal-organic frameworks and attenuation by surface modification. NANOSCALE 2021; 13:7389-7402. [PMID: 33889904 DOI: 10.1039/d1nr01008e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) as promising materials have been widely used in drug delivery, disease diagnosis and therapy; however, their effects on the reproductive system remain unknown, which hinders their further clinical applications. Here we show that repeated subcutaneous injections of copper MOFs (HKUST-1) induce higher toxicity into the male reproductive system relative to the female reproductive system, with disrupted seminiferous tubule histology, sperm generation disorder, irreversible sperm morphological abnormities and reduced pregnancy rate but only slight follicle dysfunction and pregnancy complications in female mice. Interestingly, the modification of HKUST-1 with folic acid attenuates the reproductive toxicity and even improves pregnancy and fetus development. This study confirms the gender-dependent toxicity of HKUST-1 to the reproductive system, and that folic acid modification could relieve the reproductive toxicity, thus providing us a deep understanding of reproductive toxicity of copper MOFs, and also a guideline and feasible way to improve the biocompatibility of copper MOFs for potential medical use.
Collapse
Affiliation(s)
- Xiaotian Ji
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Polycystic Ovary Syndrome: Pathophysiology, Presentation and Treatment a Mini-Review Article. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2020-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Polycystic ovary syndrome (PCOS) is a common heterogeneous disorder which is known as syndrome. The term ‘syndrome’ refers to a collection of clinical features or a phenotype. The specific features of the PCOS phenotype include clinical signs of androgen excess, elevated serum androgen concentrations, irregular menses, and infertility. It is common heterogenous disorder which affects women with different clinical presentations. In the basis of this disease is hormonal imbalance, such as insulin resistance and hyperinsulinemia. This review was based on searching all the available literature in the next databases: Pubmed, ClinicalTrials, Embase, Medline Complete, Web of Science, Cochrane Library, the Chinese Science and Technology Periodical Database (VIP), WanFang Database (Chinese Ministry of Science & Technology). The search terms included hormonal and metabolic aspects, therapy of PCOS, polycystic ovary syndrome, PCOS.We included only randomized clinical intervention trials in young women published in last five years and included 12 articles in our review analysis. More research is needed to clarify the complex pathophysiology of PCOS. No single test is currently available for its diagnosis. Additionally, once diagnosis is established, the options for treatment are of limited number and effectiveness because they target only the symptoms of PCOS. Finally, patients with PCOS have higher rates of metabolic complications, such as cardiovascular disease, but their impact on mortality is not clear. Therefore, more prospective epidemiologic studies on the topic are necessary.
Collapse
|
10
|
Sarma UC, Winship AL, Hutt KJ. Comparison of methods for quantifying primordial follicles in the mouse ovary. J Ovarian Res 2020; 13:121. [PMID: 33054849 PMCID: PMC7560236 DOI: 10.1186/s13048-020-00724-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022] Open
Abstract
Background Accurate evaluation of primordial follicle numbers in mouse ovaries is an essential endpoint for studies investigating how endogenous and exogenous insults, such as maternal aging and chemotherapy, impact the ovarian reserve. In this study, we compared and contrasted two methods for counting healthy primordial follicles following exposure to cyclophosphamide (75 mg/kg), a well-established model of follicle depletion. The first was the fractionator/optical dissector technique, an unbiased, assumption-free stereological approach for quantification of primordial follicle numbers. While accurate, highly reproducible and sensitive, this method relies on specialist microscopy equipment and software, requires specific fixation, embedding and sectioning parameters to be followed, and is largely a manual process that is tedious and time-consuming. The second method was the more widely used serial section and direct count approach, which is relatively quick and easy. We also compared the impacts of different fixatives, embedding material and section thickness on the overall results for each method. Results Direct counts resulted in primordial follicle numbers that were significantly lower than those obtained by stereology, irrespective of fixation and embedding material. When applied to formalin fixed tissue, the direct count method did not detect differences in follicle numbers between saline and cyclophosphamide treated groups to the same degree of sensitivity as the gold standard stereology method (referred to as the Reference standard). However, when Bouin’s fixative was used, direct counts and stereology were comparable in their ability to detect follicle depletion caused by cyclophosphamide. Conclusions This work indicates that the direct count method can produce similar results to stereology when Bouin’s fixative is used instead of formalin. The findings presented here will assist others to select the most appropriate experimental approach for accurate follicle enumeration, depending on whether the primary objective of the study is to determine absolute primordial follicle numbers or relative differences between groups.
Collapse
Affiliation(s)
- Urooza C Sarma
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia
| | - Amy L Winship
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia
| | - Karla J Hutt
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia. .,Department of Anatomy and Developmental Biology, Monash University, Level 3, Building 76, 19 Innovation walk, Clayton, VIC, 3800, Australia.
| |
Collapse
|
11
|
Quan N, Mara JN, Grover AR, Pavone ME, Duncan FE. Spatial Analysis of Growing Follicles in the Human Ovary to Inform Tissue Engineering Strategies. Tissue Eng Part A 2020; 26:733-746. [PMID: 32598235 DOI: 10.1089/ten.tea.2020.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer survivorship has increased considerably, but common cancer treatments may threaten female reproductive health and fertility. In females, standard fertility preservation techniques include egg and embryo banking and ovarian tissue cryopreservation, but these methods are not suitable for all individuals. Emerging fertility preservation technologies include in vitro follicle growth and ovarian bioprosthetics. Although these platforms hold tremendous promise, they remain in the preclinical phase likely because of our inability to adequately phenocopy the complexity of the in vivo ovarian environment. The goal of this study was to use an established research archive of fixed human ovarian tissue established through the Oncofertility Consortium to better understand the dynamics and milieu of growing follicles within the human ovary. We performed a histological analysis of the immediate surroundings of primary and secondary stage follicles. We evaluated oocyte and follicle diameters of these growing follicles, analyzed their growth trajectories, and mapped their precise relationships to other stage follicles within a defined area. We also stratified our findings according to participant age and previous treatment history. Our results serve as in vivo benchmarks for follicles grown in vitro and provide insight into how follicles should be seeded spatially within bioprosthetic ovaries, potentially improving the efficacy and clinical translation of these emerging technologies. Impact statement Life-preserving cancer treatments have greatly increased survivorship. However, treatments often have off-target health consequences that threaten female reproductive health and fertility. Although several standard fertility preservation options exist, there is a constant need to explore and expand options for all populations. In vitro follicle growth and ovarian bioprosthetics are new experimental procedures, which are currently limited to proof of concept. In this study, we analyzed human ovarian tissue from a deidentified biospecimen repository to characterize the growing follicle landscape with the ultimate goal of informing bioengineering practices. This spatial analysis pinpoints the geometry of growing follicles within the human ovary and provides a framework for paralleling this environment in ex vivo platforms.
Collapse
Affiliation(s)
- Natalie Quan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jamie N Mara
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Allison R Grover
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Lunding SA, Andersen AN, Hardardottir L, Olesen HØ, Kristensen SG, Andersen CY, Pors SE. Hippo signaling, actin polymerization, and follicle activation in fragmented human ovarian cortex. Mol Reprod Dev 2020; 87:711-719. [PMID: 32506789 DOI: 10.1002/mrd.23353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
The Hippo pathway has been associated with regulation of early follicle growth. Studies of murine ovaries suggest that changes in the actin cytoskeleton, caused by fragmentation, result in inhibition of the Hippo pathway, and in turn, may activate follicle growth. In humans, the connections between fragmentation, the actin cytoskeleton, and follicle activation are yet to be confirmed. In this study, we investigated the impact in vitro fragmentation of a human ovarian cortex on (a) actin polymerization, (b) components of the Hippo pathway, and (c) follicle growth in vivo. The results showed that the ratio between globular and filamentous actin remained unchanged at all timepoints (0, 10, 30, 60, 120, and 240 min) following tissue fragmentation. Neither was the Hippo pathway effector protein YES-associated protein upregulated nor was gene expression of the downstream growth factors CCN2, CCN3, or CCN5 increased at any timepoint in the fragmented cortex. Furthermore, the number of growing follicles was similar in fragmented and intact cortex pieces after 6 weeks' xenotransplantation. However, the total number of surviving follicles was considerably lower in the fragmented cortex compared with intact tissue, suggesting detrimental effects of fragmentation on tissue grafting. These results indicate that fragmentation is likely to be ineffective to activate follicle growth in the human ovarian cortex.
Collapse
Affiliation(s)
- Stine A Lunding
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anders N Andersen
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lilja Hardardottir
- The Fertility Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hanna Ø Olesen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stine G Kristensen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Claus Y Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susanne E Pors
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
13
|
Spears N, Lopes F, Stefansdottir A, Rossi V, De Felici M, Anderson RA, Klinger FG. Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update 2020; 25:673-693. [PMID: 31600388 PMCID: PMC6847836 DOI: 10.1093/humupd/dmz027] [Citation(s) in RCA: 323] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Anti-cancer therapy is often a cause of premature ovarian insufficiency and infertility since the ovarian follicle reserve is extremely sensitive to the effects of chemotherapy and radiotherapy. While oocyte, embryo and ovarian cortex cryopreservation can help some women with cancer-induced infertility achieve pregnancy, the development of effective methods to protect ovarian function during chemotherapy would be a significant advantage. OBJECTIVE AND RATIONALE This paper critically discusses the different damaging effects of the most common chemotherapeutic compounds on the ovary, in particular, the ovarian follicles and the molecular pathways that lead to that damage. The mechanisms through which fertility-protective agents might prevent chemotherapy drug-induced follicle loss are then reviewed. SEARCH METHODS Articles published in English were searched on PubMed up to March 2019 using the following terms: ovary, fertility preservation, chemotherapy, follicle death, adjuvant therapy, cyclophosphamide, cisplatin, doxorubicin. Inclusion and exclusion criteria were applied to the analysis of the protective agents. OUTCOMES Recent studies reveal how chemotherapeutic drugs can affect the different cellular components of the ovary, causing rapid depletion of the ovarian follicular reserve. The three most commonly used drugs, cyclophosphamide, cisplatin and doxorubicin, cause premature ovarian insufficiency by inducing death and/or accelerated activation of primordial follicles and increased atresia of growing follicles. They also cause an increase in damage to blood vessels and the stromal compartment and increment inflammation. In the past 20 years, many compounds have been investigated as potential protective agents to counteract these adverse effects. The interactions of recently described fertility-protective agents with these damage pathways are discussed. WIDER IMPLICATIONS Understanding the mechanisms underlying the action of chemotherapy compounds on the various components of the ovary is essential for the development of efficient and targeted pharmacological therapies that could protect and prolong female fertility. While there are increasing preclinical investigations of potential fertility preserving adjuvants, there remains a lack of approaches that are being developed and tested clinically.
Collapse
Affiliation(s)
- N Spears
- Biomedical Sciences, University of Edinburgh, Edinburgh UK
| | - F Lopes
- Biomedical Sciences, University of Edinburgh, Edinburgh UK
| | | | - V Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - M De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - R A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh UK
| | - F G Klinger
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
14
|
Witchel SF, Oberfield SE, Peña AS. Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment With Emphasis on Adolescent Girls. J Endocr Soc 2019; 3:1545-1573. [PMID: 31384717 PMCID: PMC6676075 DOI: 10.1210/js.2019-00078] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous disorder characterized by hyperandrogenism and chronic anovulation. Depending on diagnostic criteria, 6% to 20% of reproductive aged women are affected. Symptoms of PCOS arise during the early pubertal years. Both normal female pubertal development and PCOS are characterized by irregular menstrual cycles, anovulation, and acne. Owing to the complicated interwoven pathophysiology, discerning the inciting causes is challenging. Most available clinical data communicate findings and outcomes in adult women. Whereas the Rotterdam criteria are accepted for adult women, different diagnostic criteria for PCOS in adolescent girls have been delineated. Diagnostic features for adolescent girls are menstrual irregularity, clinical hyperandrogenism, and/or hyperandrogenemia. Pelvic ultrasound findings are not needed for the diagnosis of PCOS in adolescent girls. Even before definitive diagnosis of PCOS, adolescents with clinical signs of androgen excess and oligomenorrhea/amenorrhea, features of PCOS, can be regarded as being "at risk for PCOS." Management of both those at risk for PCOS and those with a confirmed PCOS diagnosis includes education, healthy lifestyle interventions, and therapeutic interventions targeting their symptoms. Interventions can include metformin, combined oral contraceptive pills, spironolactone, and local treatments for hirsutism and acne. In addition to ascertaining for associated comorbidities, management should also include regular follow-up visits and planned transition to adult care providers. Comprehensive knowledge regarding the pathogenesis of PCOS will enable earlier identification of girls with high propensity to develop PCOS. Timely implementation of individualized therapeutic interventions will improve overall management of PCOS during adolescence, prevent associated comorbidities, and improve quality of life.
Collapse
Affiliation(s)
- Selma Feldman Witchel
- UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, Columbia University Medical Center, New York–Presbyterian Morgan Stanley Children’s Hospital, New York, New York
| | - Alexia S Peña
- Robinson Research Institute, University of Adelaide, North Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Gaytan F, Morales C, Roa J, Tena-Sempere M. Changes in keratin 8/18 expression in human granulosa cell lineage are associated to cell death/survival events: potential implications for the maintenance of the ovarian reserve. Hum Reprod 2019; 33:680-689. [PMID: 29401296 DOI: 10.1093/humrep/dey010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Is keratin 8/18 (K8/K18) expression linked to cell death/survival events in the human granulosa cell lineage? SUMMARY ANSWER A close association exists between changes in K8/K18 expression and cell death/survival events along the human granulosa cell lineage lifespan. WHAT IS KNOWN ALREADY In addition to their structural and mechanical functions, K8/K18 play essential roles regulating cell death, survival and differentiation in several non-gonadal epithelial tissues. Transfection of the granulosa-like tumor KGN cells with siRNA to interfere KRT8 and KRT18 expression increases FAS-mediated apoptosis, while an inverse association between K8/K18 expression and cell death has been found in the bovine antral follicles and corpus luteum. Yet, only fragmentary and inconclusive information exists regarding K8/K18 expression in the human ovary. STUDY DESIGN, SIZE, DURATION Expression of K8/K18 was assessed by immunohistochemistry at different stages of the granulosa cell lineage, from flattened granulosa cells in primordial follicles to fully luteinized granulosa-lutein cells in the corpus luteum (including corpus luteum of pregnancy). PARTICIPANTS/MATERIALS, SETTING, METHODS Immunohistochemical detection of K8/K18 was conducted in 40 archival ovarian samples from women aged 17-39 years. K8/K18 expression was analyzed at the different stages of follicle development and corpus luteum lifespan. The proportions of primordial follicles showing all K8/K18-positive, all K8/K18 negative, or a mixture of K8/K18 negative and positive granulosa cells were quantified in 18 ovaries, divided into three age groups: ≤ 25 years (N = 6), 26-30 (N = 6) and 31-36 (N = 6) years. A total number of 1793 primordial, 750 transitional and 140 primary follicles were scored. MAIN RESULTS AND THE ROLE OF CHANCE A close association was found between changes in K8/K18 expression and cell death/cell survival events in the human granulosa cell lineage. Large secondary and early antral follicles (most of them undergoing atresia) and regressing corpora lutea displayed low/absent K8/K18 expression. Conversely, early growing and some large antral follicles, functional menstrual corpora lutea, as well as life-extended corpus luteum of pregnancy, in which cell death was scarce, showed high K8/K18 expression. Three sub-populations of primordial follicles were observed with respect to the presence of K8/K18 in their flattened granulosa cells, ranging from primordial follicles showing only positive granulosa cells [P0(+)], to others with a mixture of positive and negative cells [P0(+/-)] or follicles with only negative cells [P0(-)]. Significant age-related changes were found in the proportions of the different primordial follicle types. In relation to age, a positive correlation was found for P0(+) primordial follicles (R2= 0.7883, N = 18; P < 0.001), while negative correlations were found for P0(+/-) (R2 = 0.6853, N = 18; P < 0.001) and P0(-) (R2 = 0.6725, N = 18; P < 0.001) follicles. Furthermore, an age-related shift towards greater keratin expression was found in P0(+/-) follicles (χ2 = 19.07, P < 0.05). LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION This is a descriptive study. Hence, a cause-and-effect relationship between K8/K18 expression and cell death/survival cannot be directly established. WIDER IMPLICATIONS OF THE FINDINGS This study describes, for the first time, the existence of sub-populations of primordial follicles on the basis of K8/K18 expression in granulosa cells, and that their proportions change with age. While a progressive increase in K8/K18 expression cannot be ruled out, our data are consistent with the hypothesis that primordial follicles expressing low levels of K8/K18 are preferentially ablated by follicle attrition, while primordial follicles showing high K8/K18 levels are those predominantly recruited into the growing pool. This suggests that K8/K18 expression could constitute a novel factor regulating primordial follicle death/survival, and raises the possibility that alterations of K8/K18 expression could be involved in the accelerated depletion of the ovarian reserve leading to premature ovarian insufficiency. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Grants BFU2011-025021 and BFU2014-57581-P (Ministerio de Economía y Competitividad, Spain; co-funded with EU funds from FEDER Program); project PIE14-00005 (Flexi-Met, Instituto de Salud Carlos III, Ministerio de Sanidad, Spain); Projects P08-CVI-03788 and P12-FQM-01943 (Junta de Andalucía, Spain); and EU research contract DEER FP7-ENV-2007-1. CIBER Fisiopatología de la Obesidad y Nutrición is an initiative of Instituto de Salud Carlos III. The authors have nothing to disclose in relation to the contents of this study.
Collapse
Affiliation(s)
- F Gaytan
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda. Menendez Pidal s/n, 14004 Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menendez Pidal s/n, 14004 Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Avda. Menendez Pidal s/n, 14004 Cordoba, Spain
| | - C Morales
- Department of Pathology, University of Cordoba, Avda. Menendez Pidal s/n, 14004 Cordoba, Spain
| | - J Roa
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda. Menendez Pidal s/n, 14004 Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menendez Pidal s/n, 14004 Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Avda. Menendez Pidal s/n, 14004 Cordoba, Spain
| | - M Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda. Menendez Pidal s/n, 14004 Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menendez Pidal s/n, 14004 Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Avda. Menendez Pidal s/n, 14004 Cordoba, Spain.,FiDiPro Program, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| |
Collapse
|
16
|
Zhou Y, Hong F, Wu N, Ji J, Cui Y, Li J, Zhuang J, Wang L. Suppression of ovarian follicle development by nano TiO2is associated with TGF-β-mediated signaling pathways. J Biomed Mater Res A 2018; 107:414-422. [DOI: 10.1002/jbm.a.36558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Nan Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Yonghua Cui
- Medical College, Soochow University; Suzhou 215123 China
| | - Jinyan Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Juan Zhuang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation; Huaiyin Normal University; Huaian 223300 China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake; Huaiyin Normal University; Huaian 223300 China
- School of Life Sciences; Huaiyin Normal University; Huaian 223300 China
| | - Ling Wang
- Library, Soochow University; Suzhou 215123 China
| |
Collapse
|
17
|
Alves BG, Alves KA, Gastal GDA, Gastal MO, Figueiredo JR, Gastal EL. Spatial distribution of preantral follicles in the equine ovary. PLoS One 2018; 13:e0198108. [PMID: 29897931 PMCID: PMC5999074 DOI: 10.1371/journal.pone.0198108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/14/2018] [Indexed: 11/19/2022] Open
Abstract
Comprehensive studies on spatial distribution of preantral follicles in the ovary are scarce. Considering that preantral follicles represent the main ovarian reserve, harvesting of these follicles is crucial for the development/use of assisted reproductive techniques. Therefore, knowledge on follicle spatial distribution can be helpful for targeting areas with richer number of preantral follicles through biopsy procedures. The aim of this study was to assess the distribution and localization of equine preantral follicles according to: (i) age, (ii) ovarian portion (lateral and intermediary) and region (dorsal and ventral), (iii) distance from the geometric center, and (iv) follicular class. Ovaries from young and old mares (n = 8) were harvested in a slaughterhouse and submitted to histological processing for further evaluation. For data analyses, a novel methodology was developed according to the geometric center of each histological section for a precise determination of preantral follicle distribution. Results indicated that (i) equine preantral follicles are clustered and located near to the ovarian geometric center, and that aging induced their dispersion through the ovarian cortex; (ii) the distance from the geometric center was shorter for developing follicles than primordial; and (iii) secondary follicles were more distant from the geometric center but closer to the ovulation fossa. In conclusion, the spatial distribution of preantral follicles was successfully determined in the equine ovary and was affected by age, region, and portion.
Collapse
Affiliation(s)
- Benner G. Alves
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Kele A. Alves
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Gustavo D. A. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Melba O. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
| | - José R. Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Eduardo L. Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, United States of America
- * E-mail:
| |
Collapse
|
18
|
Chiti MC, Dolmans MM, Lucci CM, Paulini F, Donnez J, Amorim CA. Further insights into the impact of mouse follicle stage on graft outcome in an artificial ovary environment. Mol Hum Reprod 2018; 23:381-392. [PMID: 28333304 DOI: 10.1093/molehr/gax016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Are mouse preantral follicles differently affected by isolation, encapsulation and/or grafting procedures according to stage? SUMMARY ANSWER Isolated secondary follicles showed superior ability to survive and grow after transplantation, which was not related to a particular effect of the isolation and/or grafting procedure, but rather to their own ability to induce neoangiogenesis. WHAT IS KNOWN ALREADY Isolated and encapsulated mouse preantral follicles can survive (6-27%) and grow (80-100%) in a fibrin matrix with a low concentration of fibrinogen and thrombin (F12.5/T1) after short-term transplantation. STUDY DESIGN, SIZE, DURATION An in vivo experimental model using 20 donor Naval Medical Research Institute (NMRI) mice (6-25 weeks of age) and 14 recipient severe combined immunodeficient (SCID) mice (11-39 weeks of age) was applied. Each NMRI mouse underwent mechanical disruption of both ovaries and isolation of primordial-primary and secondary follicles with ovarian stromal cells, in order to encapsulate them in an F12.5/T1 matrix. Twelve out of 40 fibrin clots were immediately fixed as controls (D0) (10 for histology and 2 for scanning electron microscopy [SEM]) and the others (n = 28) were grafted to the inner part of the peritoneum for 2 (16 fibrin clots) or 7 (12 fibrin clots) days (D2 and D7). PARTICIPANTS/MATERIALS, SETTING, METHODS This study involved the participation of the Gynecology Research Unit (Universitè Catholique de Louvain) and the Physiological Sciences Department (University of Brasília). Specific techniques were used to analyze the follicle recovery rate (hematoxylin-eosin staining), vascularization (CD34) and follicle ultrastructure (transmission electron microscopy [TEM] and SEM). MAIN RESULTS AND THE ROLE OF CHANCE After follicle isolation and encapsulation, a statistically higher percentage of normal follicles was observed in the secondary group (62%) than in the primordial-primary group (47%). Follicle recovery rates were 34% and 62% for primordial-primary and secondary follicles on D2, respectively, and 12% and 42% on D7, confirming that secondary follicles survive better than primordial-primary follicles after grafting. Concerning vascularization, both follicle stages exhibited similar vascularization to that seen in control mouse ovary on D7, but a significantly higher number of vessels and greater vessel surface area were detected in the secondary follicle group. Despite structural differences in fiber density between fibrin clots and ovarian tissue observed by SEM and TEM, preantral follicles appeared to be well encapsulated in the matrix, also showing a normal ultrastructure after grafting. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION As demonstrated by our results during the isolation procedure, we encapsulated a significantly higher number of round structures in the primordial-primary group than in the secondary group, which could partially explain the lower recovery rate of early-stage follicles in our previous study. However, it is not excluded that the physical and mechanical properties of the fibrin matrix may also play a role in follicle survival and growth, so further investigations are needed. WIDER IMPLICATIONS OF THE FINDINGS This research represents one more key step in the creation of the artificial ovary. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS) to C.A. Amorim as a research associate at FRS-FNRS and (grant 5/4/150/5 awarded to M.M. Dolmans), Fonds Spéciaux de Recherche, Fondation St Luc, Foundation Against Cancer, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) (grant #013/14 CAPES/WBI awarded to C.M. Lucci, with F. Paulini receiving a post-doctoral fellowship), and Wallonie-Bruxelles International, and donations from the Ferrero family. None of the authors have any competing interests to declare in relation to the topic.
Collapse
Affiliation(s)
- M C Chiti
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| | - M M Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium.,Gynecology Department, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | - C M Lucci
- Physiological Sciences Department, Institute of Biological Sciences, University of Brasília, Brasília, DFBrazil
| | - F Paulini
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| | - J Donnez
- Society for Research into Infertility, 1200 Brussels, Belgium
| | - C A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| |
Collapse
|
19
|
Brandão FAS, Alves BG, Alves KA, Souza SS, Silva YP, Freitas VJF, Teixeira DIA, Gastal EL. Laparoscopic ovarian biopsy pick-up method for goats. Theriogenology 2017; 107:219-225. [PMID: 29179058 DOI: 10.1016/j.theriogenology.2017.10.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 11/25/2022]
Abstract
Biopsy pick-up (BPU) has been considered a safe method to harvest ovarian fragments from live animals. However, no studies have been reported on the use of BPU to collect in vivo ovarian tissue in goats. The goals of this study were: (i) to test different biopsy needle sizes to collect ovarian tissue in situ using the BPU method (Experiment 1), and (ii) to study ovarian tissue features such as preantral follicle density, morphology, class distribution, and stromal cell density in ovarian fragments obtained in vivo through a laparoscopic BPU method (Experiment 2). In Experiment 1, goat ovaries (n = 20) were collected in a slaughterhouse and subjected to in situ BPU. Three needles (16, 18, and 20G) were tested. In Experiment 2, the most efficient biopsy needle from Experiment 1 was used to perform laparoscopic BPU in goats (n = 8). In Experiment 1, the recovery rate was greater (P < 0.05; range 50-62%) with 16G and 18G needles than the 20G (17%) needle. The mean weight of ovarian fragments collected by the 16G needle was greater (P < 0.05) than the 18G and the 20G needle. In Experiment 2, 62 biopsy attempts were performed and 52 ovarian fragments were collected (90% success rate). Overall, 2054 preantral follicles were recorded in 5882 histological sections analyzed. Mean preantral follicular density was 28.4 ± 1.3 follicles per cm2. The follicular density differed (P < 0.05) among animals and ovarian fragments within the same animal. The mean stromal cell density in the ovarian fragments was 37.1 ± 0.5 cells per 2500 μm2, and differed (P < 0.05) among animals. Moreover, preantral follicle density and stromal cell density were associated (P < 0.001). The percentage of morphologically normal follicles was 70.1 ± 1.2, and differed (P < 0.05) among animals. The majority (79%) of the morphologically normal follicles was classified as primordial follicles, and differed (P < 0.05) among animals and between ovaries. In summary, a laparoscopic BPU method has been developed to harvest ovarian tissue in vivo with a satisfactory success rate in goats. Furthermore, this study described for the first time that goat ovarian biopsy fragments have a high heterogeneity in follicular density, morphology, class distribution, and stromal cell density.
Collapse
Affiliation(s)
- Fabiana A S Brandão
- Laboratory of Physiology and Control of Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Benner G Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, CE, Brazil
| | - Kele A Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, State University of Ceará, Fortaleza, CE, Brazil
| | - Samara S Souza
- Laboratory of Physiology and Control of Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Yago P Silva
- Laboratory of Physiology and Control of Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Vicente J F Freitas
- Laboratory of Physiology and Control of Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Dárcio I A Teixeira
- Laboratory of Physiology and Control of Reproduction, State University of Ceará, Fortaleza, CE, Brazil
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA.
| |
Collapse
|
20
|
Galarza RA, Rhon Calderón EA, Cortez AE, Faletti AG. Maternal Overweight Disrupts the Sexual Maturation of the Offspring. Reprod Sci 2017; 24:1284-1292. [PMID: 28814191 DOI: 10.1177/1933719116683809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aims of the present work were to study the effect of maternal overweight and obesity on the ovarian reserve, follicular development, and ovulation of the offspring and to assess whether this maternal condition alters oocyte integrity. To this end, female offspring from rats fed standard (OSD) or cafeteria (OCD) diet were used. Body weight, vaginal opening, and estrous cycle were recorded and ovaries were obtained on the day of the second estrus. In addition, ovarian weight, ovulation rate (measured by the number of oocytes within oviducts), follicular development (determined by histology), and oocyte integrity were examined. The OCD were divided into 2 groups: offspring from rats with 17% and 28% of overweight (OCD17 and OCD28, respectively). Both OCD groups showed higher body weight, but OCD28 also exhibited early vaginal opening and higher ovarian weight and glycemia at euthanasia compared with OSD. Both OCD17 and OCD28 had lower number of primordial and primary follicles, and only OCD28 exhibited lower number of antral follicles, all compared with OSD rats. In addition, both OCD17 and OCD28 had higher ovulation rate than controls, and OCD28 had lower number of healthy oocytes, which, in turn, exhibited morphological alterations such as larger perivitelline space and zona pellucida than those of control animals. These results suggest that maternal overweight may severely affect the reproductive ability of the offspring, likely as a result of altering the organogenesis.
Collapse
Affiliation(s)
- Rocío A Galarza
- 1 Universidad de Buenos Aires, Facultad de Medicina, Departamento de Toxicología y Farmacología, Buenos Aires, Argentina.,2 Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Buenos Aires, Argentina
| | - Eric A Rhon Calderón
- 2 Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Buenos Aires, Argentina
| | - Analía E Cortez
- 1 Universidad de Buenos Aires, Facultad de Medicina, Departamento de Toxicología y Farmacología, Buenos Aires, Argentina.,2 Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Buenos Aires, Argentina
| | - Alicia G Faletti
- 1 Universidad de Buenos Aires, Facultad de Medicina, Departamento de Toxicología y Farmacología, Buenos Aires, Argentina.,2 Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
21
|
Ovarian features in white-tailed deer (Odocoileus virginianus) fawns and does. PLoS One 2017; 12:e0177357. [PMID: 28542265 PMCID: PMC5444630 DOI: 10.1371/journal.pone.0177357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/12/2017] [Indexed: 01/01/2023] Open
Abstract
The knowledge about ovarian reserve is essential to determine the reproductive potential and to improve the methods of fertility control for overpopulated species, such as white-tailed deer (Odocoileus virginianus). The goal of this study was to evaluate the effect of age on the female reproductive tract of white-tailed deer, focusing on ovarian features. Genital tracts from 8 prepubertal and 10 pubertal females were used to characterize the preantral follicle population and density, morphology, distribution of follicular classes; stromal cell density; and apoptosis in the ovary. In addition, uterus and ovary weights and dimensions were recorded; and the number and the size of antral follicles and corpus luteum in the ovary were quantified. Overall, fawns had a greater (P < 0.05) preantral follicle population, percentage of normal follicles, and preantral follicle density than does. The mean stromal cell density in ovaries of fawns and does differed among animals but not between age groups. The apoptotic signaling did not differ (P > 0.05) between the ovaries of fawns and does. However, apoptotic ovarian cells negatively (P < 0.001) affected the preantral follicle morphology and density, and conversely, a positive correlation was observed with stromal cell density. As expected, the uteri and ovaries were larger (P < 0.002) and heavier (P < 0.001) in does than in fawns. In conclusion, this study has shown, for the first time, the preantral follicle population and distribution of classes, rate of morphologically normal follicles, and density of preantral follicles and stromal cells in white- tailed deer. Therefore, the findings herein described lead to a better understanding of the white-tailed deer ovarian biology, facilitating the development of new methods of fertility control.
Collapse
|
22
|
Hu KL, Zhao H, Chang HM, Yu Y, Qiao J. Kisspeptin/Kisspeptin Receptor System in the Ovary. Front Endocrinol (Lausanne) 2017; 8:365. [PMID: 29354093 PMCID: PMC5758547 DOI: 10.3389/fendo.2017.00365] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
Kisspeptins are a family of neuropeptides that are critical for initiating puberty and regulating ovulation in sexually mature females via the central control of the hypothalamic-pituitary-gonadal axis. Recent studies have shown that kisspeptin and its receptor kisspeptin receptor (KISS1R) are expressed in the mammalian ovary. Convincing evidence indicates that kisspeptins can activate a wide variety of signals via its binding to KISS1R. Experimental data gathered recently suggest a putative role of kisspeptin signaling in the direct control of ovarian function, including follicular development, oocyte maturation, steroidogenesis, and ovulation. Dysregulation or naturally occurring mutations of the kisspeptin/KISS1R system may negatively affect the ovarian function, leading to reproductive pathology or female infertility. A comprehensive understanding of the expression, actions, and underlying molecular mechanisms of this system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in reproductive diseases and infertility.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongcui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
23
|
Re-implantation of cryopreserved ovarian cortex resulting in restoration of ovarian function, natural conception and successful pregnancy after haematopoietic stem cell transplantation for Wilms tumour. J Assist Reprod Genet 2016; 33:1615-1620. [PMID: 27639996 PMCID: PMC5171891 DOI: 10.1007/s10815-016-0805-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/29/2016] [Indexed: 12/13/2022] Open
Abstract
With the improvement of long-term cancer survival rates, growing numbers of female survivors are suffering from treatment-related premature ovarian insufficiency (POI). Although pre-treatment embryo and oocyte storage are effective fertility preservation strategies, they are not possible for pre-pubertal girls or women who cannot delay treatment. In these cases, the only available treatment option is ovarian cortex cryopreservation and subsequent re-implantation. A 32-year-old woman had ovarian cortex cryopreserved 10 years previously before commencing high-dose chemotherapy and undergoing a haematopoietic stem cell transplant for recurrent adult Wilms tumour, which resulted in POI. She underwent laparoscopic orthotopic transplantation of cryopreserved ovarian cortex to the original site of biopsy on the left ovary. She ovulated at 15 and 29 weeks post-re-implantation with AMH detectable, then rising, from 21 weeks, and conceived naturally following the second ovulation. The pregnancy was uncomplicated and a healthy male infant was born by elective Caesarean section at 36+4 weeks gestation. This is the first report of ovarian cortex re-implantation in the UK. Despite the patient receiving low-risk chemotherapy prior to cryopreservation and the prolonged tissue storage duration, the re-implantation resulted in rapid restoration of ovarian function and natural conception with successful pregnancy.
Collapse
|