1
|
Zhang Y, Ding X, Yang Z, Wang J, Li C, Zhou G. Emerging Microfluidic Building Blocks for Cultured Meat Construction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8771-8793. [PMID: 39884858 DOI: 10.1021/acsami.4c19276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Cultured meat aims to produce meat mass by culturing cells and tissues based on the muscle regeneration mechanism, and is considered an alternative to raising and slaughtering livestock. Hydrogel building blocks are commonly used as substrates for cell culture in tissue engineering and cultured meat because of their high water content, biocompatibility, and similar three-dimensional (3D) environment to the cellular niche in vivo. With the characteristics of precise manipulation of fluids, microfluidics exhibits advantages in the fabrication of building blocks with different structures and components, which have been widely applied in tissue regeneration. Microfluidic building blocks show promising prospects in the field of cultured meat; however, few reviews on the application of microfluidic building blocks in cultured meat have been published. This review outlines the recent status and prospects of the use of microfluidic building blocks in cultured meat. Starting with the introduction of cells and materials for cultured meat tissue construction, we then describe the diverse structures of the fabricated building blocks, including microspheres, microfibers, and microsphere-microfiber hybrid systems. Next, the stacking strategies for tissue construction are highlighted in detail. Finally, challenges and future prospects for developing microfluidic building blocks for cultured meat are discussed.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zijiang Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Cheung HL, Wong YH, Li YY, Yang X, Ko LH, Tan Kabigting JE, Chan KC, Leung AYH, Chan BP. Microenvironment matters: In vitro 3D bone marrow niches differentially modulate survival, phenotype and drug responses of acute myeloid leukemia (AML) cells. Biomaterials 2025; 312:122719. [PMID: 39088912 DOI: 10.1016/j.biomaterials.2024.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Acute myeloid leukemia (AML) is a deadly form of leukemia with ineffective traditional treatment and frequent chemoresistance-associated relapse. Personalized drug screening holds promise in identifying optimal regimen, nevertheless, primary AML cells undergo spontaneous apoptosis during cultures, invalidating the drug screening results. Here, we reconstitute a 3D osteogenic niche (3DON) mimicking that in bone marrow to support primary AML cell survival and phenotype maintenance in cultures. Specifically, 3DON derived from osteogenically differentiated mesenchymal stem cells (MSC) from healthy and AML donors are co-cultured with primary AML cells. The AML cells under the AML_3DON niche showed enhanced viability, reduced apoptosis and maintained CD33+ CD34-phenotype, associating with elevated secretion of anti-apoptotic cytokines in the AML_3DON niche. Moreover, AML cells under the AML_3DON niche exhibited low sensitivity to two FDA-approved chemotherapeutic drugs, further suggesting the physiological resemblance of the AML_3DON niche. Most interestingly, AML cells co-cultured with the healthy_3DON niche are highly sensitive to the same sample drugs. This study demonstrates the differential responses of AML cells towards leukemic and healthy bone marrow niches, suggesting the impact of native cancer cell niche in drug screening, and the potential of re-engineering healthy bone marrow niche in AML patients as chemotherapeutic adjuvants overcoming chemoresistance, respectively.
Collapse
Affiliation(s)
- Hoi Lam Cheung
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Yu Hin Wong
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Yuk Yin Li
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Xingxing Yang
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Lok Him Ko
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jessica Evangeline Tan Kabigting
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Koon Chuen Chan
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Anskar Yu Hung Leung
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Barbara Pui Chan
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
3
|
Milano F, Masi A, Madaghiele M, Sannino A, Salvatore L, Gallo N. Current Trends in Gelatin-Based Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051499. [PMID: 37242741 DOI: 10.3390/pharmaceutics15051499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed.
Collapse
Affiliation(s)
- Francesca Milano
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Europa 113, 73021 Calimera, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
4
|
Chairez-Cantu K, González-González M, Rito-Palomares M. Generation of polyethylene glycol-dextran aqueous two-phase system droplets using different culture media under in vitro conditions. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Sharma K, Porat Z, Gedanken A. Designing Natural Polymer-Based Capsules and Spheres for Biomedical Applications-A Review. Polymers (Basel) 2021; 13:4307. [PMID: 34960858 PMCID: PMC8708131 DOI: 10.3390/polym13244307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Natural polymers, such as polysaccharides and polypeptides, are potential candidates to serve as carriers of biomedical cargo. Natural polymer-based carriers, having a core-shell structural configuration, offer ample scope for introducing multifunctional capabilities and enable the simultaneous encapsulation of cargo materials of different physical and chemical properties for their targeted delivery and sustained and stimuli-responsive release. On the other hand, carriers with a porous matrix structure offer larger surface area and lower density, in order to serve as potential platforms for cell culture and tissue regeneration. This review explores the designing of micro- and nano-metric core-shell capsules and porous spheres, based on various functions. Synthesis approaches, mechanisms of formation, general- and function-specific characteristics, challenges, and future perspectives are discussed. Recent advances in protein-based carriers with a porous matrix structure and different core-shell configurations are also presented in detail.
Collapse
Affiliation(s)
- Kusha Sharma
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel;
| | - Ze’ev Porat
- Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Department of Chemistry, Nuclear Research Center-Negev, Be’er Sheva 84190, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel;
| |
Collapse
|
6
|
Cao H, Wang X, Chen M, Liu Y, Cui X, Liang J, Wang Q, Fan Y, Zhang X. Childhood Cartilage ECM Enhances the Chondrogenesis of Endogenous Cells and Subchondral Bone Repair of the Unidirectional Collagen-dECM Scaffolds in Combination with Microfracture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57043-57057. [PMID: 34806361 DOI: 10.1021/acsami.1c19447] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the formation of mechanically inferior fibrocartilage, microfracture (MF) still remains the gold standard to repair the articular cartilage defects in clinical settings. To date, although many tissue-engineering scaffolds have been developed to enhance the MF outcome, the clinical outcomes remain inconsistent. Decellularized extracellular matrix (dECM) is among the most promising scaffold for cartilage repair due to its inheritance of the natural cartilage components. However, the impact of dECM from different developmental stages on cellular chondrogenesis and therapeutic effect remains elusive, as the development of native cartilage involves the distinct temporal dependency of the ECM components and various growth factors. Herein, we hypothesized that the immature cartilage dECM at various developmental stages was inherently different, and would consequently impact the chondrogenic potential BMSCs. In this study, we fabricated three different unidirectional collagen-dECM scaffolds sourced from neonatal, childhood, and adolescent rabbit cartilage tissues, and identified the age-dependent biological variations, including DNA, cartilage-specific proteins, and growth factors; along with the mechanical and degradation differences. Consequently, the different local cellular microenvironments provided by these scaffolds led to the distinctive cell morphology, circularity, proliferation, chondrogenic genes expression, and chondrogenesis of BMSCs in vitro, and the different gross morphology, cartilage-specific protein production, and subchondral bone repair when in combination with microfracture in vivo. Together, this work highlights the immature cartilage dECM at different developmental stages that would result in the diversified effects to BMSCs, and childhood cartilage would be considered the optimal dECM source for the further development of dECM-based tissue engineering scaffolds in articular cartilage repair.
Collapse
Affiliation(s)
- Hongfu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Xiuyu Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Manyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Yuhan Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaolin Cui
- Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
- Department of Bone and Joint, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
- College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
7
|
Corallo D, Frabetti S, Candini O, Gregianin E, Dominici M, Fischer H, Aveic S. Emerging Neuroblastoma 3D In Vitro Models for Pre-Clinical Assessments. Front Immunol 2020; 11:584214. [PMID: 33324402 PMCID: PMC7726254 DOI: 10.3389/fimmu.2020.584214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023] Open
Abstract
The potential of tumor three-dimensional (3D) in vitro models for the validation of existing or novel anti-cancer therapies has been largely recognized. During the last decade, diverse in vitro 3D cell systems have been proposed as a bridging link between two-dimensional (2D) cell cultures and in vivo animal models, both considered gold standards in pre-clinical settings. The latest awareness about the power of tailored therapies and cell-based therapies in eradicating tumor cells raises the need for versatile 3D cell culture systems through which we might rapidly understand the specificity of promising anti-cancer approaches. Yet, a faithful reproduction of the complex tumor microenvironment is demanding as it implies a suitable organization of several cell types and extracellular matrix components. The proposed 3D tumor models discussed here are expected to offer the required structural complexity while also assuring cost-effectiveness during pre-selection of the most promising therapies. As neuroblastoma is an extremely heterogenous extracranial solid tumor, translation from 2D cultures into innovative 3D in vitro systems is particularly challenging. In recent years, the number of 3D in vitro models mimicking native neuroblastoma tumors has been rapidly increasing. However, in vitro platforms that efficiently sustain patient-derived tumor cell growth, thus allowing comprehensive drug discovery studies on tailored therapies, are still lacking. In this review, the latest neuroblastoma 3D in vitro models are presented and their applicability for a more accurate prediction of therapy outcomes is discussed.
Collapse
Affiliation(s)
- Diana Corallo
- Neuroblastoma Laboratory, Istituto di Ricerca Pediatrica Fondazione Città della Speranza, Padova, Italy
| | | | | | | | - Massimo Dominici
- Rigenerand srl, Modena, Italy.,Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Sanja Aveic
- Neuroblastoma Laboratory, Istituto di Ricerca Pediatrica Fondazione Città della Speranza, Padova, Italy.,Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
8
|
Aggarwal V, Miranda O, Johnston PA, Sant S. Three dimensional engineered models to study hypoxia biology in breast cancer. Cancer Lett 2020; 490:124-142. [PMID: 32569616 PMCID: PMC7442747 DOI: 10.1016/j.canlet.2020.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Breast cancer is the second leading cause of mortality among women worldwide. Despite the available therapeutic regimes, variable treatment response is reported among different breast cancer subtypes. Recently, the effects of the tumor microenvironment on tumor progression as well as treatment responses have been widely recognized. Hypoxia and hypoxia inducible factors in the tumor microenvironment have long been known as major players in tumor progression and survival. However, the majority of our understanding of hypoxia biology has been derived from two dimensional (2D) models. Although many hypoxia-targeted therapies have elicited promising results in vitro and in vivo, these results have not been successfully translated into clinical trials. These limitations of 2D models underscore the need to develop and integrate three dimensional (3D) models that recapitulate the complex tumor-stroma interactions in vivo. This review summarizes role of hypoxia in various hallmarks of cancer progression. We then compare traditional 2D experimental systems with novel 3D tissue-engineered models giving accounts of different bioengineering platforms available to develop 3D models and how these 3D models are being exploited to understand the role of hypoxia in breast cancer progression.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Oshin Miranda
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
9
|
Laranga R, Duchi S, Ibrahim T, Guerrieri AN, Donati DM, Lucarelli E. Trends in Bone Metastasis Modeling. Cancers (Basel) 2020; 12:E2315. [PMID: 32824479 PMCID: PMC7464021 DOI: 10.3390/cancers12082315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Bone is one of the most common sites for cancer metastasis. Bone tissue is composed by different kinds of cells that coexist in a coordinated balance. Due to the complexity of bone, it is impossible to capture the intricate interactions between cells under either physiological or pathological conditions. Hence, a variety of in vivo and in vitro approaches have been developed. Various models of tumor-bone diseases are routinely used to provide valuable information on the relationship between metastatic cancer cells and the bone tissue. Ideally, when modeling the metastasis of human cancers to bone, models would replicate the intra-tumor heterogeneity, as well as the genetic and phenotypic changes that occur with human cancers; such models would be scalable and reproducible to allow high-throughput investigation. Despite the continuous progress, there is still a lack of solid, amenable, and affordable models that are able to fully recapitulate the biological processes happening in vivo, permitting a correct interpretation of results. In the last decades, researchers have demonstrated that three-dimensional (3D) methods could be an innovative approach that lies between bi-dimensional (2D) models and animal models. Scientific evidence supports that the tumor microenvironment can be better reproduced in a 3D system than a 2D cell culture, and the 3D systems can be scaled up for drug screening in the same way as the 2D systems thanks to the current technologies developed. However, 3D models cannot completely recapitulate the inter- and intra-tumor heterogeneity found in patients. In contrast, ex vivo cultures of fragments of bone preserve key cell-cell and cell-matrix interactions and allow the study of bone cells in their natural 3D environment. Moreover, ex vivo bone organ cultures could be a better model to resemble the human pathogenic metastasis condition and useful tools to predict in vivo response to therapies. The aim of our review is to provide an overview of the current trends in bone metastasis modeling. By showing the existing in vitro and ex vivo systems, we aspire to contribute to broaden the knowledge on bone metastasis models and make these tools more appealing for further translational studies.
Collapse
Affiliation(s)
- Roberta Laranga
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (R.L.); (D.M.D.); (E.L.)
| | - Serena Duchi
- BioFab3D@ACMD, St Vincent’s Hospital, Melbourne, VIC 3065, Australia;
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Ania Naila Guerrieri
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (R.L.); (D.M.D.); (E.L.)
| | - Davide Maria Donati
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (R.L.); (D.M.D.); (E.L.)
- Rizzoli Laboratory Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (R.L.); (D.M.D.); (E.L.)
| |
Collapse
|
10
|
Nolan JC, Frawley T, Tighe J, Soh H, Curtin C, Piskareva O. Preclinical models for neuroblastoma: Advances and challenges. Cancer Lett 2020; 474:53-62. [PMID: 31962141 DOI: 10.1016/j.canlet.2020.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Neuroblastoma is a paediatric cancer of the sympathetic nervous system and the most common solid tumour of infancy, contributing to 15% of paediatric oncology deaths. Current therapies are not effective in the long-term treatment of almost 80% of patients with this clinically aggressive disease. The primary challenge in the identification and validation of new agents for paediatric drug development is the accurate representation of tumour biology and diversity. In addition to this limitation, the low incidence of neuroblastoma makes the recruitment of eligible patients for early phase clinical trials highly challenging and highlights the need for robust preclinical testing to ensure that the best treatments are selected. The research field requires new preclinical models, technologies, and concepts to tackle these problems. Tissue engineering offers attractive tools to assist in the development of three-dimensional (3D) cell models using various biomaterials and manufacturing approaches that recreate the geometry, mechanics, heterogeneity, metabolic gradients, and cell communication of the native tumour microenvironment. In this review, we discuss current experimental models and assess their abilities to reflect the structural organisation and physiological conditions of the human body, in addition to current and new techniques to recapitulate the tumour niche using tissue-engineered platforms. Finally, we will discuss the possible use of novel 3D in vitro culture systems to address open questions in neuroblastoma biology.
Collapse
Affiliation(s)
- J C Nolan
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - T Frawley
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - J Tighe
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - H Soh
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - C Curtin
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - O Piskareva
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
11
|
Brancato V, Oliveira JM, Correlo VM, Reis RL, Kundu SC. Could 3D models of cancer enhance drug screening? Biomaterials 2019; 232:119744. [PMID: 31918229 DOI: 10.1016/j.biomaterials.2019.119744] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/29/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023]
Abstract
Cancer is a multifaceted pathology, where cellular and acellular players interact to drive cancer progression and, in the worst-case, metastasis. The current methods to investigate the heterogeneous nature of cancer are inadequate, since they rely on 2D cell cultures and animal models. The cell line-based drug efficacy and toxicity assays are not able to predict the tumor response to anti-cancer agents and it is already widely discussed how molecular pathway are not recapitulated in vitro so called flat biology. On the other side, animal models often fail to detect the side-effects of drugs, mimic the metastatic progression or the interaction between cancer and immune system, due to biologic difference in human and animals. Moreover, ethical and regulatory issues limit animal experimentation. Every year pharma/biotech companies lose resources in drug discovery and testing processes that are successful only in 5% of the cases. There is an urgent need to validate accurate and predictive platforms in order to enhance drug-testing process taking into account the physiopathology of the tumor microenvironment. Three dimensional in vitro tumor models could enhance drug manufactures in developing effective drugs for cancer diseases. The 3D in vitro cancer models can improve the predictability of toxicity and drug sensitivity in cancer. Despite the demonstrated advantages of 3D in vitro disease systems when compared to 2D culture and animal models, they still do not reach the standardization required for preclinical trials. This review highlights in vitro models that may be used as preclinical models, accelerating the drug development process towards more precise and personalized standard of care for cancer patients. We describe the state-of-the art of 3D in vitro culture systems, with a focus on how these different approaches could be coupled in order to achieve a compromise between standardization and reliability in recapitulating tumor microenvironment and drug response.
Collapse
Affiliation(s)
- Virginia Brancato
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Vitor Manuel Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Rui Luis Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
12
|
Ornell KJ, Coburn JM. Developing preclinical models of neuroblastoma: driving therapeutic testing. BMC Biomed Eng 2019; 1:33. [PMID: 32903387 PMCID: PMC7422585 DOI: 10.1186/s42490-019-0034-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022] Open
Abstract
Despite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under 1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-risk NB exhibit a survival rate of 40–50%. The heterogeneous nature of NB makes development of effective therapeutic strategies challenging. Many preclinical models attempt to mimic the tumor phenotype and tumor microenvironment. In vivo mouse models, in the form of genetic, syngeneic, and xenograft mice, are advantageous as they replicated the complex tumor-stroma interactions and represent the gold standard for preclinical therapeutic testing. Traditional in vitro models, while high throughput, exhibit many limitations. The emergence of new tissue engineered models has the potential to bridge the gap between in vitro and in vivo models for therapeutic testing. Therapeutics continue to evolve from traditional cytotoxic chemotherapies to biologically targeted therapies. These therapeutics act on both the tumor cells and other cells within the tumor microenvironment, making development of preclinical models that accurately reflect tumor heterogeneity more important than ever. In this review, we will discuss current in vitro and in vivo preclinical testing models, and their potential applications to therapeutic development.
Collapse
Affiliation(s)
- Kimberly J Ornell
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01605 USA
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01605 USA
| |
Collapse
|
13
|
Gros SJ, Holland-Cunz SG, Supuran CT, Braissant O. Personalized Treatment Response Assessment for Rare Childhood Tumors Using Microcalorimetry-Exemplified by Use of Carbonic Anhydrase IX and Aquaporin 1 Inhibitors. Int J Mol Sci 2019; 20:ijms20204984. [PMID: 31600976 PMCID: PMC6834116 DOI: 10.3390/ijms20204984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/19/2022] Open
Abstract
We present a novel approach to a personalized therapeutic concept for solid tumors. We illustrate this on a rare childhood tumor for which only a generalized treatment concept exists using carbonic anhydrase IX and aquaporin 1 inhibitors. The use of microcalorimetry as a refined in vitro method for evaluation of drug susceptibility in organotypic slice culture has not previously been established. Rapid microcalorimetric drug response assessment can refine a general treatment concept when it is applied in cases in which tumors do not respond to conventional chemo-radiation treatment. For solid tumors, which do not respond to classical treatment, and especially for rare tumors without an established protocol rapid microcalorimetric drug response testing presents an elegant novel approach to test alternative therapeutic approaches. While improved treatment concepts have led to improved outcome over the past decades, the prognosis of high risk disease is still poor and rethinking of clinical trial design is necessary. A small patient population combined with the necessity to assess experimental therapies for rare solid tumors rather at the time of diagnosis than in relapsed or refractory patients provides great challenges. The possibility to rapidly compare established protocols with innovative therapeutics presents an elegant novel approach to refine and personalize treatment.
Collapse
Affiliation(s)
- Stephanie J Gros
- Department of Pediatric Surgery, University Children's Hospital Basel, 4031 Basel, Switzerland.
| | - Stefan G Holland-Cunz
- Department of Pediatric Surgery, University Children's Hospital Basel, 4031 Basel, Switzerland.
| | - Claudiu T Supuran
- Department Neurofarba, Sezione di Scienze farmaceutiche, University of Florence, 50139 Florence, Italy.
| | - Olivier Braissant
- Biological Calorimetry Lab, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Basel, Switzerland.
| |
Collapse
|
14
|
Marrella A, Dondero A, Aiello M, Casu B, Olive D, Regis S, Bottino C, Pende D, Meazza R, Caluori G, Castriconi R, Scaglione S. Cell-Laden Hydrogel as a Clinical-Relevant 3D Model for Analyzing Neuroblastoma Growth, Immunophenotype, and Susceptibility to Therapies. Front Immunol 2019; 10:1876. [PMID: 31447858 PMCID: PMC6697063 DOI: 10.3389/fimmu.2019.01876] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
High risk Neuroblastoma (NB) includes aggressive, metastatic solid tumors of childhood. The survival rate improved only modestly, despite the use of combination therapies including novel immunotherapies based on the antibody-mediated targeting of tumor-associated surface ligands. Treatment failures may be due to the lack of adequate in vitro models for studying, in a given patient, the efficacy of potential therapeutics, including those aimed to enhance anti-tumor immune responses. We here propose a 3D alginate-based hydrogel as extracellular microenvironment to evaluate the effects of the three-dimensionality on biological and immunological properties of NB cells. NB cell lines grown within the 3D alginate spheres presented spheroid morphology, optimal survival, and proliferation capabilities, and a reduced sensitivity to the cytotoxic effect of imatinib mesylate. 3D cultured NB cells were also evaluated for the constitutive and IFN-γ-induced expression of surface molecules capable of tuning the anti-tumor activity of NK cells including immune checkpoint ligands. In particular, IFN-γ induced de novo expression of high amounts of HLA-I molecules, which protected NB cells from the attack mediated by KIR/KIR-L matched NK cells. Moreover, in the 3D alginate spheres, the cytokine increased the expression of the immune checkpoint ligands PD-Ls and B7-H3 while virtually abrogating that of PVR, a ligand of DNAM-1 activating receptor, whose expression correlates with high susceptibility to NK-mediated killing. Our 3D model highlighted molecular features that more closely resemble the immunophenotypic variants occurring in vivo and not fully appreciated in classical 2D culture conditions. Thus, based on our results, 3D alginate-based hydrogels might represent a clinical-relevant cell culture platform where to test the efficacy of personalized therapeutic approaches aimed to optimize the current and innovative immune based therapies in a very systematic and reliable way.
Collapse
Affiliation(s)
| | | | | | - Beatrice Casu
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniel Olive
- Tumor Immunology Team, IBISA Immunomonitoring Platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Giannina Gaslini, Genoa, Italy
| | - Cristina Bottino
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, IRCCS Giannina Gaslini, Genoa, Italy
| | - Daniela Pende
- Laboratorio di Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Raffaella Meazza
- Laboratorio di Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Guido Caluori
- FNUSA-ICRC, Interventional Cardiac Electrophysiology, Brno, Czechia.,Nanobiotechnology, CEITEC Masaryk University, Brno, Czechia
| | - Roberta Castriconi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, CEBR, University of Genoa, Genoa, Italy
| | - Silvia Scaglione
- CNR-IEIIT Institute, National Research Council of Italy, Genoa, Italy.,React4life S.r.l., Genoa, Italy
| |
Collapse
|
15
|
Kuriakose AE, Hu W, Nguyen KT, Menon JU. Scaffold-based lung tumor culture on porous PLGA microparticle substrates. PLoS One 2019; 14:e0217640. [PMID: 31150477 PMCID: PMC6544352 DOI: 10.1371/journal.pone.0217640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/15/2019] [Indexed: 12/02/2022] Open
Abstract
Scaffold-based cancer cell culture techniques have been gaining prominence especially in the last two decades. These techniques can potentially overcome some of the limitations of current three-dimensional cell culture methods, such as uneven cell distribution, inadequate nutrient diffusion, and uncontrollable size of cell aggregates. Porous scaffolds can provide a convenient support for cell attachment, proliferation and migration, and also allows diffusion of oxygen, nutrients and waste. In this paper, a comparative study was done on porous poly (lactic-co-glycolic acid) (PLGA) microparticles prepared using three porogens—gelatin, sodium bicarbonate (SBC) or novel poly N-isopropylacrylamide [PNIPAAm] particles, as substrates for lung cancer cell culture. These fibronectin-coated, stable particles (19–42 μm) supported A549 cell attachment at an optimal cell seeding density of 250,000 cells/ mg of particles. PLGA-SBC porous particles had comparatively larger, more interconnected pores, and favored greater cell proliferation up to 9 days than their counterparts. This indicates that pore diameters and interconnectivity have direct implications on scaffold-based cell culture compared to substrates with minimally interconnected pores (PLGA-gelatin) or pores of uniform sizes (PLGA-PMPs). Therefore, PLGA-SBC-based tumor models were chosen for preliminary drug screening studies. The greater drug resistance observed in the lung cancer cells grown on porous particles compared to conventional cell monolayers agrees with previous literature, and indicates that the PLGA-SBC porous microparticle substrates are promising for in vitro tumor or tissue development.
Collapse
Affiliation(s)
- Aneetta E. Kuriakose
- Bioengineering Department, University of Texas at Arlington, Arlington, Texas, United States of America
- Graduate Biomedical Engineering Program, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Wenjing Hu
- Progenitec Inc., Arlington, Texas, United States of America
| | - Kytai T. Nguyen
- Bioengineering Department, University of Texas at Arlington, Arlington, Texas, United States of America
- Graduate Biomedical Engineering Program, UT Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (KTN); (JUM)
| | - Jyothi U. Menon
- Bioengineering Department, University of Texas at Arlington, Arlington, Texas, United States of America
- Graduate Biomedical Engineering Program, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
- * E-mail: (KTN); (JUM)
| |
Collapse
|
16
|
Ferreira LP, Gaspar VM, Mano JF. Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomater 2018; 75:11-34. [PMID: 29803007 PMCID: PMC7617007 DOI: 10.1016/j.actbio.2018.05.034] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Three-dimensional multicellular tumor models are receiving an ever-growing focus as preclinical drug-screening platforms due to their potential to recapitulate major physiological features of human tumors in vitro. In line with this momentum, the technologies for assembly of 3D microtumors are rapidly evolving towards a comprehensive inclusion of tumor microenvironment elements. Customized spherically structured platforms, including microparticles and microcapsules, provide a robust and scalable technology to imprint unique biomolecular tumor microenvironment hallmarks into 3D in vitro models. Herein, a comprehensive overview of novel advances on the integration of tumor-ECM components and biomechanical cues into 3D in vitro models assembled in spherical shaped platforms is provided. Future improvements regarding spatiotemporal/mechanical adaptability, and degradability, during microtumors in vitro 3D culture are also critically discussed considering the realistic potential of these platforms to mimic the dynamic tumor microenvironment. From a global perspective, the production of 3D multicellular spheroids with tumor ECM components included in spherical models will unlock their potential to be used in high-throughput screening of therapeutic compounds. It is envisioned, in a near future, that a combination of spherically structured 3D microtumor models with other advanced microfluidic technologies will properly recapitulate the flow dynamics of human tumors in vitro. STATEMENT OF SIGNIFICANCE The ability to correctly mimic the complexity of the tumor microenvironment in vitro is a key aspect for the development of evermore realistic in vitro models for drug-screening and fundamental cancer biology studies. In this regard, conventional spheroid-based 3D tumor models, combined with spherically structured biomaterials, opens the opportunity to precisely recapitulate complex cell-extracellular matrix interactions and tumor compartmentalization. This review provides an in-depth focus on current developments regarding spherically structured scaffolds engineered into in vitro 3D tumor models, and discusses future advances toward all-encompassing platforms that may provide an improved in vitro/in vivo correlation in a foreseeable future.
Collapse
Affiliation(s)
- L P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - V M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - J F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Sreepadmanabh M, Toley BJ. Investigations into the cancer stem cell niche using in-vitro 3-D tumor models and microfluidics. Biotechnol Adv 2018; 36:1094-1110. [DOI: 10.1016/j.biotechadv.2018.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
|
18
|
Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis. Biomaterials 2017; 133:176-207. [DOI: 10.1016/j.biomaterials.2017.04.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/04/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023]
|
19
|
Brancato V, Comunanza V, Imparato G, Corà D, Urciuolo F, Noghero A, Bussolino F, Netti PA. Bioengineered tumoral microtissues recapitulate desmoplastic reaction of pancreatic cancer. Acta Biomater 2017; 49:152-166. [PMID: 27916739 DOI: 10.1016/j.actbio.2016.11.072] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/07/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023]
Abstract
Many of the existing three-dimensional (3D) cancer models in vitro fail to represent the entire complex tumor microenvironment composed of cells and extra cellular matrix (ECM) and do not allow a reliable study of the tumoral features and progression. In this paper we reported a strategy to produce 3D in vitro microtissues of pancreatic ductal adenocarcinoma (PDAC) for studying the desmoplastic reaction activated by the stroma-cancer crosstalk. Human PDAC microtissues were obtained by co-culturing pancreatic cancer cells (PT45) and normal or cancer-associated fibroblasts within biodegradable microcarriers in a spinner flask bioreactor. Morphological and histological analyses highlighted that the presence of fibroblasts resulted in the deposition of a stromal matrix rich in collagen leading to the formation of tumor microtissues composed of a heterotypic cell population embedded in their own ECM. We analyzed the modulation of expression of ECM genes and proteins and found that when fibroblasts were co-cultured with PT45, they acquired a myofibroblast phenotype and expressed the desmoplastic reaction markers. This PDAC microtissue, closely recapitulating key PDAC microenvironment characteristics, provides a valuable tool to elucidate the complex stroma-cancer interrelationship and could be used in a future perspective as a testing platform for anticancer drugs in tissue-on-chip technology. STATEMENT OF SIGNIFICANCE Tumor microenvironment is extremely complex and its organization is due to the interaction between different kind of cells and the extracellular matrix. Tissue engineering could give the answer to the increasing need of 3D culture model that better recapitulate the tumor features at cellular and extracellular level. We aimed in this work at developing a microtissue tumor model by mean of seeding together cancer cells and fibroblasts on gelatin microsphere in order to monitor the crosstalk between the two cell populations and the endogenous extracellular matrix deposition. Results are of particular interest because of the need of heterotypic cancer model that can replicate the complexity of the tumor microenvironment and could be used as drug screening platform.
Collapse
Affiliation(s)
- Virginia Brancato
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo, Italy; Candiolo Cancer Institute - IRCCS, SP 142 km 3.95, 10060 Candiolo, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Davide Corà
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo, Italy; Candiolo Cancer Institute - IRCCS, SP 142 km 3.95, 10060 Candiolo, Italy
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alessio Noghero
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo, Italy; Candiolo Cancer Institute - IRCCS, SP 142 km 3.95, 10060 Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo, Italy; Candiolo Cancer Institute - IRCCS, SP 142 km 3.95, 10060 Candiolo, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples, Italy; Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy; Department of Chemical, Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.le Tecchio 80, Naples, Italy
| |
Collapse
|