1
|
Costa SR, Vasconcelos AG, Almeida JOCS, Arcanjo DDR, Dematei A, Barbosa EA, Silva PC, Nascimento T, Santos LH, Eaton P, Leite JRSDA, Brand GD. Structural Characterization and Rat Aortic Vascular Reactivity of Bradykinin-Potentiating Peptides (BPPs) from the Snake Venom of Bothrops moojeni from Delta do Parnaíba Region, Brazil. JOURNAL OF NATURAL PRODUCTS 2024; 87:820-830. [PMID: 38449376 DOI: 10.1021/acs.jnatprod.3c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.
Collapse
Affiliation(s)
- Samuel R Costa
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Andreanne G Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - José Otávio C S Almeida
- LAFMOL-Laboratório de Estudos Funcionais e Moleculares em Fisiofarmacologia, Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina 64049-550, Brazil
| | - Daniel D R Arcanjo
- LAFMOL-Laboratório de Estudos Funcionais e Moleculares em Fisiofarmacologia, Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina 64049-550, Brazil
| | - Anderson Dematei
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Eder A Barbosa
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Pedro Costa Silva
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Universidade Federal do Delta do Parnaíba, UFDPAR, Parnaíba, Piauí 64202-020, Brazil
| | - Thiago Nascimento
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Universidade Federal do Delta do Parnaíba, UFDPAR, Parnaíba, Piauí 64202-020, Brazil
| | - Lucianna H Santos
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Peter Eaton
- The Bridge, Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln LN6 7EL, U.K
| | - José Roberto S de A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA), Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Universidade Federal do Delta do Parnaíba, UFDPAR, Parnaíba, Piauí 64202-020, Brazil
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
2
|
Alves MB, Vasconcelos AG, Silva de Carvalho AÉ, Slompo RC, Sá BS, Gonçalves MJL, Lima Moura LNRDC, Brito AKDS, França JVDS, Martins MDCDCE, Rizzo MDS, Soares S, Bastos V, Saldanha de Araujo F, Mogharbel BF, Carvalho KATD, Oliveira H, Plácido A, Arcanjo DDR, Barbosa EA, Leite JRDSDA. Lycopene from Red Guava ( Psidium guajava L.): From Hepatoprotective Effect to Its Use as Promising Self-Emulsifying Drug Delivery System for Anti-Inflammatory and Antioxidant Applications. Pharmaceuticals (Basel) 2023; 16:905. [PMID: 37375852 DOI: 10.3390/ph16060905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Lycopene is a carotenoid with potential use in the treatment of chronic illnesses. Here, different formulations of lycopene were studied: lycopene-rich extract from red guava (LEG), purified lycopene from red guava (LPG) and a self-emulsifying drug delivery system loaded with LPG (nanoLPG). The effects of administering orally various doses of LEG to hypercholesterolemic hamsters were evaluated regarding the liver function of the animals. The cytotoxicity of LPG in Vero cells was analyzed by a crystal violet assay and by fluorescence microscopy. In addition, nanoLPG was employed in stability tests. LPG and nanoLPG were tested for their cytotoxic effect on human keratinocytes and antioxidant capacity on cells in an endothelial dysfunction model in an isolated rat aorta. Finally, the effect of different nanoLPG concentrations on the expression of immune-related genes (IL-10, TNF-α, COX-2 and IFN-γ) from peripheral blood mononuclear cells (PBMC) using real-time PCR was also analyzed. Results suggest that LEG, despite not being able to improve blood markers indicative of liver function in hypercholesterolemic hamsters, reduced hepatic degenerative changes. Additionally, LPG did not show cytotoxicity in Vero cells. In relation to nanoLPG, the effects produced by heat stress evaluated by Dynamics Light Scattering (DLS) and visually were loss of color, texture change and phase separation after 15 days without interfering with the droplet size, so the formulation proved to be efficient in stabilizing the encapsulated lycopene. Although LPG and nanoLPG showed moderate toxicity to keratinocytes, which may be related to cell lineage characteristics, both revealed potent antioxidant activity. LPG and nanoLPG showed vasoprotective effects in aortic preparations. The gene expression assay indicates that, although no significant differences were observed in the expression of IL-10 and TNF-α, the PBMCs treated with nanoLPG showed a reduction in transcriptional levels of IFN-γ and an increased expression of COX-2. Thus, the work adds evidence to the safety of the use of lycopene by humans and shows that tested formulations, mainly nanoLPG due to its stability, stand out as promising and biosafe products for the treatment of diseases that have oxidative stress and inflammation in their etiopathology.
Collapse
Affiliation(s)
- Maíra Bernardes Alves
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Andreanne Gomes Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
- Department of Biomedicine, Centro Universitário do Distrito Federal (UDF), Brasília 70390-045, Brazil
- People & Science Pesquisa Desenvolvimento e Inovação LTDA, Brasília 70790-120, Brazil
| | - Amandda Évelin Silva de Carvalho
- Laboratório de Hematologia e Células-Tronco (LHCT), Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | | | - Bruno Silva Sá
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
- Department of Biomedicine, Centro Universitário do Distrito Federal (UDF), Brasília 70390-045, Brazil
| | | | | | - Ana Karolinne da Silva Brito
- Departamento de Biofísica e Fisiologia, Centro de Ciências da Saúde (DBFis/CCS), Universidade Federal do Piauí (UFPI), Teresina 64049-550, Brazil
| | - José Vinícius de Sousa França
- Departamento de Biofísica e Fisiologia, Centro de Ciências da Saúde (DBFis/CCS), Universidade Federal do Piauí (UFPI), Teresina 64049-550, Brazil
| | - Maria do Carmo de Carvalho E Martins
- Departamento de Biofísica e Fisiologia, Centro de Ciências da Saúde (DBFis/CCS), Universidade Federal do Piauí (UFPI), Teresina 64049-550, Brazil
| | - Márcia Dos Santos Rizzo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Department of Morphology, Health Sciences Center (DMOR/CCS), Federal University of Piauí (UFPI), Teresina 64049-550, Brazil
| | - Susana Soares
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Verónica Bastos
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | - Helena Oliveira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandra Plácido
- Departamento de Bioquímica, Faculdade de Ciências (FCUP), Universidade do Porto (UP), 4169-007 Porto, Portugal
- Bioprospectum, UPTEC, 4200-135 Porto, Portugal
| | - Daniel Dias Rufino Arcanjo
- Departamento de Biofísica e Fisiologia, Centro de Ciências da Saúde (DBFis/CCS), Universidade Federal do Piauí (UFPI), Teresina 64049-550, Brazil
| | - Eder Alves Barbosa
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - José Roberto de Souza de Almeida Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
- People & Science Pesquisa Desenvolvimento e Inovação LTDA, Brasília 70790-120, Brazil
| |
Collapse
|
3
|
Plácido A, do Pais do Amaral C, Teixeira C, Nogueira A, Brango-Vanegas J, Alves Barbosa E, C Moreira D, Silva-Carvalho AÉ, da Silva MDG, do Nascimento Dias J, Albuquerque P, Saldanha-Araújo F, C D A Lima F, Batagin-Neto A, Kuckelhaus S, Bessa LJ, Freitas J, Dotto Brand G, C Santos N, B Relvas J, Gomes P, S A Leite JR, Eaton P. Neuroprotective effects on microglia and insights into the structure-activity relationship of an antioxidant peptide isolated from Pelophylax perezi. J Cell Mol Med 2022; 26:2793-2807. [PMID: 35460166 PMCID: PMC9097852 DOI: 10.1111/jcmm.17292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian’s skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin‐like peptide, named PpT‐2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP‐HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT‐2 (FPWLLS‐NH2) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT‐2 shared physicochemical properties with other well‐known antioxidants. To test PpT‐2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical‐based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT‐2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT‐2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA‐stimulated BV‐2 microglia cells. We further explored possible bioactivities of PpT‐2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT‐2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT‐2. This novel peptide, PpT‐2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Alexandra Plácido
- Department of Chemistry and Biochemistry, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| | | | - Cátia Teixeira
- Department of Chemistry and Biochemistry, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ariane Nogueira
- Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil
| | - José Brango-Vanegas
- Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil
| | - Eder Alves Barbosa
- Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil.,Laboratory of Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry (IQ), University of Brasilia, Brasília, Brazil
| | - Daniel C Moreira
- Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil
| | - Amandda É Silva-Carvalho
- Laboratory of Hematology and Stem Cells, Faculty of Health Sciences, University of Brasilia, Brasília, Brazil
| | - Maria da Gloria da Silva
- Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil
| | - Jhones do Nascimento Dias
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.,Biomedicine Course, Federal University of Delta do Parnaíba (UFDPar), Parnaíba, Brazil
| | - Patrícia Albuquerque
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.,Faculty of Ceilândia, University of Brasilia, Brasilia, Brazil
| | - Felipe Saldanha-Araújo
- Laboratory of Hematology and Stem Cells, Faculty of Health Sciences, University of Brasilia, Brasília, Brazil
| | - Filipe C D A Lima
- Federal Institute of Education, Science and Technology of São Paulo, Matão, Brazil
| | | | - Selma Kuckelhaus
- Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil
| | - Lucinda J Bessa
- Department of Chemistry and Biochemistry, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal.,Egas Moniz Interdisciplinary Research Center (CiiEM), Egas Moniz - Cooperative for Higher Education, CRL, Almada, Portugal
| | - Jaime Freitas
- Institute for Research and Innovation in Health (i3S), National Institute of Biomedical Engineering (INEB), University of Porto, Porto, Portugal
| | - Guilherme Dotto Brand
- Laboratory of Synthesis and Analysis of Biomolecules (LSAB), Institute of Chemistry (IQ), University of Brasilia, Brasília, Brazil
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João B Relvas
- Institute for Research and Innovation in Health (i3S), Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Paula Gomes
- Department of Chemistry and Biochemistry, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Roberto S A Leite
- Department of Chemistry and Biochemistry, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal.,Center for Research in Applied Morphology and Immunology (NuPMIA), University of Brasilia, Brasilia, Brazil
| | - Peter Eaton
- Department of Chemistry and Biochemistry, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal.,The Bridge, School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, UK
| |
Collapse
|
4
|
Mendes Furtado M, Lima Rocha JÉ, da Silva Mendes AV, Mello Neto RS, Brito AKDS, Sena de Almeida JOC, Rodrigues Queiroz EI, de Sousa França JV, Cunha Sales ALDC, Gomes Vasconcelos A, Felix Cabral W, de Oliveira Lopes L, Souza do Carmo I, Souza Kückelhaus SA, de Souza de Almeida Leite JR, Nunes AMV, Rizzo MDS, Citó AMDGL, Fortes Lustosa AKM, Lucarini M, Durazzo A, Martins MDCDCE, Arcanjo DDR. Effects of ω-3 PUFA-Rich Oil Supplementation on Cardiovascular Morphology and Aortic Vascular Reactivity of Adult Male Rats Submitted to an Hypercholesterolemic Diet. BIOLOGY 2022; 11:biology11020202. [PMID: 35205069 PMCID: PMC8869584 DOI: 10.3390/biology11020202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Currently, processed and ultraprocessed foods represent a significant component of the diet of modern societies, increasing the risk of developing obesity, diabetes and atherosclerosis. Therefore, replacing saturated fats with mono- and polyunsaturated fats, such as omega-3 polyunsaturated fatty acids (ω-3 PUFAs), has been considered as a dietary strategy to reduce clinical events related to atherosclerosis. In the present study, the effects of 56-day ω-3 PUFA-rich oil supplementation on liver function, lipid profile, and oxidative stress in hypercholesterolemic rats were investigated, as well as its impact on cardiovascular health. Interestingly, we observed a positive effect in reducing hepatic markers, preserving cardiovascular morphology, and increasing vasodilator responsiveness. These findings contribute to the generation of consistent recommendations for the therapeutic use of ω-3 PUFAs in the treatment of atherosclerosis, leading to a consequent reduction in related morbidity and mortality. Abstract Atherosclerosis is a cardiovascular disease associated with abnormalities of vascular functions. The consumption of mono- and polyunsaturated fatty acids can be considered a strategy to reduce clinical events related to atherosclerosis. In the present study, we investigated the effects of supplementation with 310 mg of ω-3 PUFAs (2:1 eicosapentaenoic/docosahexaenoic acids) for 56 days on rats with hypercholesterolemia induced by a diet containing cholesterol (0.1%), cholic acid (0.5%), and egg yolk. Serum biochemical parameters were determined by the enzymatic colorimetric method. Assessment of vascular effects was performed by analysis of histological sections of the heart and aortic arch stained with hematoxylin and eosin and vascular reactivity of the aorta artery. We observed that treatment with ω-3 PUFAs did not promote alterations in lipid profile. On the other hand, we documented a favorable reduction in liver biomarkers, as well as contributions to the preservation of heart and aortic arch morphologies. Interestingly, the vascular reactivity of rat thoracic aortic preparations was improved after treatment with ω-3 PUFAs, with a decrease in hyperreactivity to phenylephrine and increased vasorelaxation promoted by acetylcholine. Our findings suggest that the supplementation of hypercholesterolemic rats with ω-3 PUFAs promoted improvement in liver and vascular endothelial function as well as preserving heart and aortic tissue, reinforcing the early health benefits of ω-3 PUFAs in the development of atherosclerotic plaque and further related events.
Collapse
Affiliation(s)
- Mariely Mendes Furtado
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Joana Érica Lima Rocha
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | | | - Renato Sampaio Mello Neto
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | | | | | | | | | - Ana Lina de Carvalho Cunha Sales
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
- University Hospital, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Andreanne Gomes Vasconcelos
- Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Wanessa Felix Cabral
- Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Luana de Oliveira Lopes
- Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil
| | | | - Selma Aparecida Souza Kückelhaus
- Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil
| | | | - Adriana Maria Viana Nunes
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | | | | | | | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | | | | |
Collapse
|
5
|
Lyra ML, Monteiro JPC, Rancilhac L, Irisarri I, Künzel S, Sanchez E, Condez TH, Rojas-Padilla O, Solé M, Toledo LF, Haddad CFB, Vences M. Initial Phylotranscriptomic Confirmation of Homoplastic Evolution of the Conspicuous Coloration and Bufoniform Morphology of Pumpkin-Toadlets in the Genus Brachycephalus. Toxins (Basel) 2021; 13:816. [PMID: 34822600 PMCID: PMC8620806 DOI: 10.3390/toxins13110816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023] Open
Abstract
The genus Brachycephalus is a fascinating group of miniaturized anurans from the Brazilian Atlantic Forest, comprising the conspicuous, brightly colored pumpkin-toadlets and the cryptic flea-toads. Pumpkin-toadlets are known to contain tetrodotoxins and therefore, their bright colors may perform an aposematic function. Previous studies based on a limited number of mitochondrial and nuclear-encoded markers supported the existence of two clades containing species of pumpkin-toadlet phenotype, but deep nodes remained largely unresolved or conflicting between data sets. We use new RNAseq data of 17 individuals from nine Brachycephalus species to infer their evolutionary relationships from a phylogenomic perspective. Analyses of almost 5300 nuclear-encoded ortholog protein-coding genes and full mitochondrial genomes confirmed the existence of two separate pumpkin-toadlet clades, suggesting the convergent evolution (or multiple reversals) of the bufoniform morphology, conspicuous coloration, and probably toxicity. In addition, the study of the mitochondrial gene order revealed that three species (B. hermogenesi, B. pitanga, and B. rotenbergae) display translocations of different tRNAs (NCY and CYA) from the WANCY tRNA cluster to a position between the genes ATP6 and COIII, showing a new mitochondrial gene order arrangement for vertebrates. The newly clarified phylogeny suggests that Brachycephalus has the potential to become a promising model taxon to understand the evolution of coloration, body plan and toxicity. Given that toxicity information is available for only few species of Brachycephalus, without data for any flea-toad species, we also emphasize the need for a wider screening of toxicity across species, together with more in-depth functional and ecological study of their phenotypes.
Collapse
Affiliation(s)
- Mariana L. Lyra
- Instituto de Biociências, Departamento de Biodiversidade (Campus Rio Claro), Universidade Estadual Paulista (UNESP), Avenida 24A, N 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (M.L.L.); (J.P.C.M.); (C.F.B.H.)
| | - Juliane P. C. Monteiro
- Instituto de Biociências, Departamento de Biodiversidade (Campus Rio Claro), Universidade Estadual Paulista (UNESP), Avenida 24A, N 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (M.L.L.); (J.P.C.M.); (C.F.B.H.)
| | - Loïs Rancilhac
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (L.R.); (E.S.)
| | - Iker Irisarri
- Institute for Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goldschmidtstr, 1, 37077 Göttingen, Germany;
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
| | - Eugenia Sanchez
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (L.R.); (E.S.)
| | - Thais H. Condez
- Unidade Passos, Universidade do Estado de Minas Gerais (UEMG), Avenida Juca Stockler 1130, Passos 37900-106, MG, Brazil;
| | - Omar Rojas-Padilla
- Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre 90619-900, RS, Brazil;
| | - Mirco Solé
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil;
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil;
| | - Célio F. B. Haddad
- Instituto de Biociências, Departamento de Biodiversidade (Campus Rio Claro), Universidade Estadual Paulista (UNESP), Avenida 24A, N 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; (M.L.L.); (J.P.C.M.); (C.F.B.H.)
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (L.R.); (E.S.)
| |
Collapse
|
6
|
Condez TH, Monteiro JP, Malagoli LR, Trevine VC, Schunck F, Garcia PC, Haddad CF. Notes on the Hyperossified Pumpkin Toadlets of the Genus Brachycephalus (Anura: Brachycephalidae) with the Description of a New Species. HERPETOLOGICA 2021. [DOI: 10.1655/herpetologica-d-20-00031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thais H. Condez
- Instituto Nacional da Mata Atlântica (INMA), 29.650–000, Santa Teresa, Espírito Santo, Brazil
| | - Juliane P.C. Monteiro
- Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), 13506–900, Rio Claro, São Paulo, Brazil
| | - Leo R. Malagoli
- Fundação para a Conservação e a Produção Florestal do Estado de São Paulo, Parque Estadual da Serra do Mar, Núcleo São Sebastião, 11600–000, São Sebastião, São Paulo, Brazil
| | - Vivian C. Trevine
- Laboratório de Coleções Zoológicas, Instituto Butantan, 05503–900, São Paulo, São Paulo, Brazil
| | - Fabio Schunck
- Comitê Brasileiro de Registros Ornitológicos, www.cbro.org.br, 04785–040, São Paulo, São Paulo, Brazil
| | - Paulo C.A. Garcia
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Zoologia, Laboratório de Herpetologia, 31270–910, Belo Horizonte, Minas Gerais, Brazil
| | - Célio F.B. Haddad
- Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), 13506–900, Rio Claro, São Paulo, Brazil
| |
Collapse
|
7
|
Condez TH, Haddad CFB, Zamudio KR. Historical biogeography and multi-trait evolution in miniature toadlets of the genus Brachycephalus (Anura: Brachycephalidae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blz200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Evolutionary changes towards a miniaturized body plan may directly affect other important phenotypic traits related to the physiology, behaviour and ecology of organisms. The frog genus Brachycephalus is an outstanding example of a radiation of miniaturized species endemic to the Brazilian Atlantic Forest. We inferred ancestral states and historical changes in body size, body colour and hyperossification to test hypotheses about diversification and selective environmental mechanisms leading to the evolution of these specialized traits. The ancestral distribution was associated with high-elevation regions in the northern Serra do Mar mountain range, and diversification in the genus was coincident with important geological and climatic events during the history of the Atlantic Forest. The dynamic historical changes provided an opportunity for multiple lowland lineages and for speciation via dispersal and vicariance in multiple invasions of the highlands. The ancestral Brachycephalus was reconstructed as miniaturized and dull coloured, without hyperossification in the skin, skull or postcranial skeleton. A parallel evolution of phenotypic traits has occurred in northern and southern Atlantic Forest lineages, beginning in the Miocene. Shifts in body size are not related to elevation range or latitude. However, we found a significant correlation between the evolution of hyperossification and aposematism with increasing body size.
Collapse
Affiliation(s)
- Thais H Condez
- Instituto Nacional da Mata Atlântica (INMA), Avenida José Ruschi, Santa Teresa, Espírito Santo, Brazil
| | - Célio F B Haddad
- Departamento de Zoologia e Centro de Aquicultura (CAUNESP), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| | - Kelly R Zamudio
- Ecology and Evolutionary Biology (EEB), Cornell University, Corson Hall, Ithaca, New York, United States
| |
Collapse
|
8
|
Structural basis for the C-domain-selective angiotensin-converting enzyme inhibition by bradykinin-potentiating peptide b (BPPb). Biochem J 2019; 476:1553-1570. [DOI: 10.1042/bcj20190290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/15/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Angiotensin-converting enzyme (ACE) is a zinc metalloprotease best known for its role in blood pressure regulation. ACE consists of two homologous catalytic domains, the N- and C-domain, that display distinct but overlapping catalytic functions in vivo owing to subtle differences in substrate specificity. While current generation ACE inhibitors target both ACE domains, domain-selective ACE inhibitors may be clinically advantageous, either reducing side effects or having utility in new indications. Here, we used site-directed mutagenesis, an ACE chimera and X-ray crystallography to unveil the molecular basis for C-domain-selective ACE inhibition by the bradykinin-potentiating peptide b (BPPb), naturally present in Brazilian pit viper venom. We present the BPPb N-domain structure in comparison with the previously reported BPPb C-domain structure and highlight key differences in peptide interactions with the S4 to S9 subsites. This suggests the involvement of these subsites in conferring C-domain-selective BPPb binding, in agreement with the mutagenesis results where unique residues governing differences in active site exposure, lid structure and dynamics between the two domains were the major drivers for C-domain-selective BPPb binding. Mere disruption of BPPb interactions with unique S2 and S4 subsite residues, which synergistically assist in BPPb binding, was insufficient to abolish C-domain selectivity. The combination of unique S9–S4 and S2′ subsite C-domain residues was required for the favourable entry, orientation and thus, selective binding of the peptide. This emphasizes the need to consider factors other than direct protein–inhibitor interactions to guide the design of domain-selective ACE inhibitors, especially in the case of larger peptides.
Collapse
|
9
|
Hepatotoxicity effect of short-term Bradykinin potentiating factor in cholestatic rats. Toxicol Lett 2019; 301:73-78. [DOI: 10.1016/j.toxlet.2018.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
10
|
Abstract
AIM Hypertension is associated with development of cardiovascular disease and has become a significant health problem worldwide. Naturally-derived antihypertensive peptides have emerged as promising alternatives to synthetic drugs. MATERIALS & METHODS This study introduces predictor of antihypertensive activity of peptides constructed using random forest classifier as a function of various combinations of amino acid, dipeptide and pseudoamino acid composition descriptors. RESULTS Classification models were assessed via independent test set that demonstrated accuracy of 84.73%. Feature importance analysis revealed the preference of proline and hydrophobic amino acids at the C-terminal as well as the preference of short peptides for robust activity. CONCLUSION Model presented herein serves as a useful tool for predicting and analysis of antihypertensive activity of peptides.
Collapse
|
11
|
Ma B, Xi Z, Li J, Gao T, Liao R, Wang S, Li X, Tang Y, Wang Z, Hou S, Jiang J, Deng M, Duan Z, Tang X, Jiang L. Vasodilator and hypotensive effects of the spider peptide Lycosin-I in vitro and in vivo. Peptides 2018; 99:108-114. [PMID: 29248696 DOI: 10.1016/j.peptides.2017.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022]
Abstract
Lycosin-I, a spider peptide isolated from the venom of the spider Lycosa singoriensis, has anti-bacteria and anti-cancer properties in organisms. However, cardiovascular effects of Lycosin-I have not been studied. In this study, we investigated for the first time the vasodilator and hypotensive effects of Lycosin-I and the possible mechanisms, in order to develop a promising treatment for hypertension-related diseases. For in vitro experiments, thoracic aortas were isolated, and divided into two groups, endothelium-intact and endothelium-denuded aortic rings. Lycosin-I induced a remarkable dose-dependent relaxation in endothelium-intact aortic rings pre-treated with phenylephrine (p < 0.05), while it showed no obvious vasodilator effects in endothelium-denuded aortic rings (p > 0.05). The vasodilator effects of Lycosin-I were significantly weakened by a nitric oxide synthase (NOS) inhibitor, L-NAME (p < 0.001) and a selective inhibitor of nitric oxide (NO)-sensitive soluble guanylate cyclase (sGC), ODQ (p < 0.05), respectively. The levels of endothelial nitric oxide synthase (eNOS) phosphorylation and the NO production were significantly higher in human umbilical vascular endothelial cells pre-cultured with Lycosin-I than the control (p < 0.001), determined via western blot analysis and ozone-chemiluminescence technology. For in vivo experiments, arterial and venous catheters were inserted for mean arterial pressure (MAP) recording and drug administration in anaesthetized spontaneously hypertensive rats. Lycosin-I caused a transient drop of MAP 2 min after the administration compared with the control (p < 0.001). In conclusion, Lycosin-I has the potential to be an anti-hypertensive drug by endothelium-dependent vasodilatation, in which eNOS and NO-sensitive sGC are two main involved factors.
Collapse
Affiliation(s)
- Binbin Ma
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhouhuan Xi
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Jiahui Li
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Tianqi Gao
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Runzhi Liao
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shuhang Wang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Xianyao Li
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Yaqin Tang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zheng Wang
- The First Department of General Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - Shengjie Hou
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Jinying Jiang
- Department of Neonatology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410013, PR China
| | - Meichun Deng
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Zhigui Duan
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Xing Tang
- College of Chemistry, Biology, and Material Science, East China Institute of Technology, Nanchang, Jiangxi 330013, PR China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
12
|
Mladic M, de Waal T, Burggraaff L, Slagboom J, Somsen GW, Niessen WMA, Manjunatha Kini R, Kool J. Rapid screening and identification of ACE inhibitors in snake venoms using at-line nanofractionation LC-MS. Anal Bioanal Chem 2017; 409:5987-5997. [PMID: 28801827 PMCID: PMC5602078 DOI: 10.1007/s00216-017-0531-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/13/2017] [Accepted: 07/17/2017] [Indexed: 11/05/2022]
Abstract
This study presents an analytical method for the screening of snake venoms for inhibitors of the angiotensin-converting enzyme (ACE) and a strategy for their rapid identification. The method is based on an at-line nanofractionation approach, which combines liquid chromatography (LC), mass spectrometry (MS), and pharmacology in one platform. After initial LC separation of a crude venom, a post-column flow split is introduced enabling parallel MS identification and high-resolution fractionation onto 384-well plates. The plates are subsequently freeze-dried and used in a fluorescence-based ACE activity assay to determine the ability of the nanofractions to inhibit ACE activity. Once the bioactive wells are identified, the parallel MS data reveals the masses corresponding to the activities found. Narrowing down of possible bioactive candidates is provided by comparison of bioactivity profiles after reversed-phase liquid chromatography (RPLC) and after hydrophilic interaction chromatography (HILIC) of a crude venom. Additional nanoLC-MS/MS analysis is performed on the content of the bioactive nanofractions to determine peptide sequences. The method described was optimized, evaluated, and successfully applied for screening of 30 snake venoms for the presence of ACE inhibitors. As a result, two new bioactive peptides were identified: pELWPRPHVPP in Crotalus viridis viridis venom with IC50 = 1.1 μM and pEWPPWPPRPPIPP in Cerastes cerastes cerastes venom with IC50 = 3.5 μM. The identified peptides possess a high sequence similarity to other bradykinin-potentiating peptides (BPPs), which are known ACE inhibitors found in snake venoms.
Collapse
Affiliation(s)
- Marija Mladic
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Tessa de Waal
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Lindsey Burggraaff
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Wilfried M A Niessen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.,hyphen MassSpec, Herenweg 95, 2361 EK, Warmond, The Netherlands
| | - R Manjunatha Kini
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Arcanjo DDR, Vasconcelos AG, Nascimento LA, Mafud AC, Plácido A, Alves MMM, Delerue-Matos C, Bemquerer MP, Vale N, Gomes P, Oliveira EB, Lima FCA, Mascarenhas YP, Carvalho FAA, Simonsen U, Ramos RM, Leite JRSA. Structure-function studies of BPP-BrachyNH 2 and synthetic analogues thereof with Angiotensin I-Converting Enzyme. Eur J Med Chem 2017; 139:401-411. [PMID: 28810191 DOI: 10.1016/j.ejmech.2017.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 10/19/2022]
Abstract
The vasoactive proline-rich oligopeptide termed BPP-BrachyNH2 (H-WPPPKVSP-NH2) induces in vitro inhibitory activity of angiotensin I-converting enzyme (ACE) in rat blood serum. In the present study, the removal of N-terminal tryptophan or C-terminal proline from BPP-BrachyNH2 was investigated in order to predict which structural components are important or required for interaction with ACE. Furthermore, the toxicological profile was assessed by in silico prediction and in vitro MTT assay. Two BPP-BrachyNH2 analogues (des-Trp1-BPP-BrachyNH2 and des-Pro8-BPP-BrachyNH2) were synthesized, and in vitro and in silico ACE inhibitory activity and toxicological profile were assessed. The des-Trp1-BPP-BrachyNH2 and des-Pro8-BPP-BrachyNH2 were respectively 3.2- and 29.5-fold less active than the BPP-BrachyNH2-induced ACE inhibitory activity. Molecular Dynamic and Molecular Mechanics Poisson-Boltzmann Surface Area simulations (MM-PBSA) demonstrated that the ACE/BBP-BrachyNH2 complex showed lower binding and van der Wall energies than the ACE/des-Pro8-BPP-BrachyNH2 complex, therefore having better stability. The removal of the N-terminal tryptophan increased the in silico predicted toxicological effects and cytotoxicity when compared with BPP-BrachyNH2 or des-Pro8-BPP-BrachyNH2. Otherwise, des-Pro8-BPP-BrachyNH2 was 190-fold less cytotoxic than BPP-BrachyNH2. Thus, the removal of C-terminal proline residue was able to markedly decrease both the BPP-BrachyNH2-induced ACE inhibitory and cytotoxic effects assessed by in vitro and in silico approaches. In conclusion, the aminoacid sequence of BPP-BrachyNH2 is essential for its ACE inhibitory activity and associated with an acceptable toxicological profile. The perspective of the interactions of BPP-BrachyNH2 with ACE found in the present study can be used for development of drugs with differential therapeutic profile than current ACE inhibitors.
Collapse
Affiliation(s)
- Daniel D R Arcanjo
- Núcleo de Pesquisa Em Biodiversidade e Biotecnologia - BIOTEC, Campus Ministro Reis Velloso - CMRV, Universidade Federal do Piauí, UFPI, 642020-020, Parnaíba, PI, Brazil; Núcleo de Pesquisas Em Plantas Medicinais - NPPM, Universidade Federal do Piauí - UFPI, Campus Ministro Petrônio Portella, SG-15, Ininga, 64049-550, Teresina, PI, Brazil
| | - Andreanne G Vasconcelos
- Núcleo de Pesquisa Em Biodiversidade e Biotecnologia - BIOTEC, Campus Ministro Reis Velloso - CMRV, Universidade Federal do Piauí, UFPI, 642020-020, Parnaíba, PI, Brazil
| | - Lucas A Nascimento
- Laboratório de Pesquisa Em Sistemas de Informação, LaPeSI, Departamento de Informação, Ambiente, Saúde e Produção Alimentícia, Instituto Federal do Piauí, Teresina, Brazil; Grupo de Química Quântica Computacional e Planejamento de Fármaco, GQQCPF, Departamento de Química, Universidade Estadual do Piauí, Teresina, Brazil
| | - Ana Carolina Mafud
- Instituto de Física de São Carlos - IFSC, Universidade de São Paulo - USP, São Carlos, SP, Brazil; Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Alexandra Plácido
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Michel M M Alves
- Núcleo de Pesquisas Em Plantas Medicinais - NPPM, Universidade Federal do Piauí - UFPI, Campus Ministro Petrônio Portella, SG-15, Ininga, 64049-550, Teresina, PI, Brazil
| | - Cristina Delerue-Matos
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Marcelo P Bemquerer
- EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5 Norte (final), 70770-917, Brasília, DF, Brazil
| | - Nuno Vale
- UCIBIO/REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Eduardo B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14096000, Brazil
| | - Francisco C A Lima
- Grupo de Química Quântica Computacional e Planejamento de Fármaco, GQQCPF, Departamento de Química, Universidade Estadual do Piauí, Teresina, Brazil
| | - Yvonne P Mascarenhas
- Instituto de Física de São Carlos - IFSC, Universidade de São Paulo - USP, São Carlos, SP, Brazil
| | - Fernando Aécio A Carvalho
- Núcleo de Pesquisas Em Plantas Medicinais - NPPM, Universidade Federal do Piauí - UFPI, Campus Ministro Petrônio Portella, SG-15, Ininga, 64049-550, Teresina, PI, Brazil
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Ricardo M Ramos
- Laboratório de Pesquisa Em Sistemas de Informação, LaPeSI, Departamento de Informação, Ambiente, Saúde e Produção Alimentícia, Instituto Federal do Piauí, Teresina, Brazil.
| | - José Roberto S A Leite
- Núcleo de Pesquisa Em Biodiversidade e Biotecnologia - BIOTEC, Campus Ministro Reis Velloso - CMRV, Universidade Federal do Piauí, UFPI, 642020-020, Parnaíba, PI, Brazil; Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| |
Collapse
|
14
|
Arcanjo DDR, Mafud AC, Vasconcelos AG, da Silva-Filho JC, Amaral MPM, Brito LM, Bemquerer MP, Kückelhaus SAS, Plácido A, Delerue-Matos C, Vale N, Mascarenhas YP, Carvalho FAA, Oliveira AP, Leite JRSA. In Silico, In Vitro and In Vivo Toxicological Assessment of BPP-BrachyNH2, A Vasoactive Proline-Rich Oligopeptide from Brachycephalus ephippium. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9564-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|