1
|
Lopes AF, Ribeiro Ferreira M, do Vale B, Santos M, Silveira I, Claudino S, Martins M, Brida T, Figueira L, Cardoso L, Lopes AP, Coelho AC, Matos M, Matos AC. Update on infections with Thelazia callipaeda in European wildlife and a report in a red fox, Vulpes vulpes, in Portugal. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100211. [PMID: 39280995 PMCID: PMC11399657 DOI: 10.1016/j.crpvbd.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Thelazia callipaeda, also known as the "oriental eye worm", is a zoonotic parasitic nematode with a wide range of hosts, particularly wild and domestic carnivores, but also lagomorphs and humans. Currently, ocular thelaziosis presents an expanding distribution range throughout Europe, including Portugal. This study provides an update on T. callipaeda infection reports (30 studies) in European wildlife comprising 54 host-locality records in 10 host species from nine European countries. The prevalence of T. callipaeda varied widely, with ranges from around 1% in red foxes and European hares to almost 50% in red foxes. The lowest mean intensity was 2.7 nematodes/host in European wildcats and the highest was 38.0 nematodes/host in wolves. In addition, a massive infection with T. callipaeda in a juvenile male red fox from eastern-central Portugal is also described, representing the southernmost report in a wild animal in this country. A total of 188 nematodes (139 females and 49 males) were collected from both eyes and were submitted to morphological and molecular characterization. Collected nematodes were morphologically identified as T. callipaeda. Given the endemicity of T. callipaeda in eastern-central Portugal, surveillance system should be implemented to monitor its presence among wild and domestic animals.
Collapse
Affiliation(s)
- Ana Filipa Lopes
- Centre for the Study and Recovery of Wild Animals (CERAS), Quercus ONGA, Castelo Branco, Portugal
| | - Mariana Ribeiro Ferreira
- Centre for the Study and Recovery of Wild Animals (CERAS), Quercus ONGA, Castelo Branco, Portugal
| | - Beatriz do Vale
- School of Agriculture, Polytechnic University of Castelo Branco (ESA-IPCB), Castelo Branco, Portugal
| | - Marlene Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal
| | - Inês Silveira
- Centre for the Study and Recovery of Wild Animals (CERAS), Quercus ONGA, Castelo Branco, Portugal
| | - Sofia Claudino
- Centre for the Study and Recovery of Wild Animals (CERAS), Quercus ONGA, Castelo Branco, Portugal
| | - Manuel Martins
- School of Agriculture, Polytechnic University of Castelo Branco (ESA-IPCB), Castelo Branco, Portugal
- Quality of Life in the Rural World (Q-RURAL), Polytechnic University of Castelo Branco, Castelo Branco, Portugal
| | - Telma Brida
- School of Agriculture, Polytechnic University of Castelo Branco (ESA-IPCB), Castelo Branco, Portugal
| | - Luís Figueira
- School of Agriculture, Polytechnic University of Castelo Branco (ESA-IPCB), Castelo Branco, Portugal
- Quality of Life in the Rural World (Q-RURAL), Polytechnic University of Castelo Branco, Castelo Branco, Portugal
| | - Luís Cardoso
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), UTAD, Vila Real, Portugal
| | - Ana Patrícia Lopes
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), UTAD, Vila Real, Portugal
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), UTAD, Vila Real, Portugal
| | - Manuela Matos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal
| | - Ana Cristina Matos
- School of Agriculture, Polytechnic University of Castelo Branco (ESA-IPCB), Castelo Branco, Portugal
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic University of Castelo Branco, Castelo Branco, Portugal
| |
Collapse
|
2
|
Al Hikmani H, van Oosterhout C, Birley T, Labisko J, Jackson HA, Spalton A, Tollington S, Groombridge JJ. Can genetic rescue help save Arabia's last big cat? Evol Appl 2024; 17:e13701. [PMID: 38784837 PMCID: PMC11113348 DOI: 10.1111/eva.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Genetic diversity underpins evolutionary potential that is essential for the long-term viability of wildlife populations. Captive populations harbor genetic diversity potentially lost in the wild, which could be valuable for release programs and genetic rescue. The Critically Endangered Arabian leopard (Panthera pardus nimr) has disappeared from most of its former range across the Arabian Peninsula, with fewer than 120 individuals left in the wild, and an additional 64 leopards in captivity. We (i) examine genetic diversity in the wild and captive populations to identify global patterns of genetic diversity and structure; (ii) estimate the size of the remaining leopard population across the Dhofar mountains of Oman using spatially explicit capture-recapture models on DNA and camera trap data, and (iii) explore the impact of genetic rescue using three complementary computer modeling approaches. We estimated a population size of 51 (95% CI 32-79) in the Dhofar mountains and found that 8 out of 25 microsatellite alleles present in eight loci in captive leopards were undetected in the wild. This includes two alleles present only in captive founders known to have been wild-sourced from Yemen, which suggests that this captive population represents an important source for genetic rescue. We then assessed the benefits of reintroducing novel genetic diversity into the wild population as well as the risks of elevating the genetic load through the release of captive-bred individuals. Simulations indicate that genetic rescue can improve the long-term viability of the wild population by reducing its genetic load and realized load. The model also suggests that the genetic load has been partly purged in the captive population, potentially making it a valuable source population for genetic rescue. However, the greater loss of its genetic diversity could exacerbate genomic erosion of the wild population during a rescue program, and these risks and benefits should be carefully evaluated. An important next step in the recovery of the Arabian leopard is to empirically validate these conclusions, implement and monitor a genomics-informed management plan, and optimize a strategy for genetic rescue as a tool to recover Arabia's last big cat.
Collapse
Affiliation(s)
- Hadi Al Hikmani
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
- Office for Conservation of the EnvironmentDiwan of Royal CourtMuscatOman
- The Royal Commission for AlUlaAlUlaSaudi Arabia
| | - Cock van Oosterhout
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Thomas Birley
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Jim Labisko
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
- Centre for Biodiversity and Environment Research, Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
- Island Biodiversity and Conservation CentreUniversity of SeychellesVictoriaSeychelles
- Department of Life SciencesThe Natural History MuseumLondonUK
| | - Hazel A. Jackson
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
| | | | - Simon Tollington
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
- School of Animal Rural and Environmental SciencesNottingham Trent UniversityNottinghamUK
| | - Jim J. Groombridge
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
| |
Collapse
|
3
|
Kim S, Lee HJ, Kim YG, Kang KS. Spatial genetic structure and seed quality of a southernmost Abies nephrolepis population. Sci Rep 2023; 13:18419. [PMID: 37891234 PMCID: PMC10611809 DOI: 10.1038/s41598-023-45635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Abies nephrolepis (Trautv. ex Maxim.) Maxim. has its southernmost populations in South Korea and they are expected to decline under climate change. To establish a strategic conservation plan, this study aimed to investigate the spatial genetic structure and seed characteristics of A. nephrolepis. We used nine microsatellite markers on 165 individuals of A. nephrolepis and sampled seeds in a southernmost population at Mt. Hambaeksan, South Korea. We observed a high level of heterozygosity, and a simulation study found that sampling 20 individuals was enough to secure sufficient genetic diversity on average. Spatial autocorrelation analysis revealed that individuals had a positive genetic relationship until 30 m. Bayesian clustering models, STRUCTURE and GENELAND, failed to achieve a consensus in the optimal number of population (K), estimating K = 1 and K = 2, respectively. Principal coordinate analysis supported the absence of genetic substructure within the study population. There was a large variance in seed production among mother trees. On average, seeds of A. nephrolepis from Mt. Hambaeksan had a purity of 70.4% and a germination percentage of 32.2%. We found that seed weight was the most effective indicator of seed quality. Mother trees at higher altitudes had poorer purity which is threatening to A. nephrolepis considering the upslope retreat of subalpine species under climate change. Our results provide insights into the interactions among spatial processes, genetic structure, and seed quality within a population of A. nephrolepis.
Collapse
Affiliation(s)
- Sunjeong Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Jin Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yang-Gil Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu-Suk Kang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Pflugbeil G, Affenzeller M, Tribsch A, Comes HP. Primary hybrid zone formation in Tephroseris helenitis (Asteraceae), following postglacial range expansion along the central Northern Alps. Mol Ecol 2021; 30:1704-1720. [PMID: 33548078 PMCID: PMC8048512 DOI: 10.1111/mec.15832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/26/2022]
Abstract
Distinguishing between secondary versus primary hybrid zone formation remains a challenging task as, for instance, the time window in which these historical (vicariant) versus contemporary (environmental-selective) processes are distinguishable may be relatively narrow. Here, we examine the origin and structure of a transition zone between two subspecies of Tephroseris helenitis along the central Northern Alps, using molecular (AFLP) and morphological (achene type) data in combination with ecological niche models (ENMs) to hindcast ranges at the Last Glacial Maximum (LGM) and mid-Holocene. Samples were collected over a c. 350 km long transect, largely covered by ice during the LGM. Genetically nonadmixed individuals of subspp. helenitis versus salisburgensis dominated the westernmost versus eastern transect areas, with admixed individuals occurring in between. Clines for achene morphology and outlier loci potentially under climate-driven selection were steep, largely noncoincidental, and displaced to the east of the cline centre for neutral AFLPs. During the LGM, ssp. helenitis should have been able to persist in a refugium southwest of the transect, while suitable habitat for ssp. salisburgensis was apparently absent at this time. Together with patterns of genetic and clinal variation, our ENM data are suggestive of a primary hybrid zone that originated after the species' postglacial, eastward expansion. The observed clinal changes may thus reflect random/nonadaptive processes during expansion and selection on particular loci, and possibly achene type, in response to a long-term, west-to-east climate gradient in the direction of more stressful (e.g., wetter/cooler) conditions. Overall, this study adds to the vast hybrid zone literature a rare example of a hybrid zone caused by primary differentiation within a plant species, underlaid by historical range expansion.
Collapse
Affiliation(s)
- Georg Pflugbeil
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | - Andreas Tribsch
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Hans Peter Comes
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
5
|
Reiner G, Rumpel M, Zimmer K, Willems H. Genetic Differentiation of Wild Boar Populations in a Region Endangered by African Swine Fever. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gerald Reiner
- Working Group Wildlife Biology Justus‐Liebig University 35392 Giessen Germany
| | - Martin Rumpel
- Working Group Wildlife Biology Justus‐Liebig University 35392 Giessen Germany
| | - Karl Zimmer
- Institute of Veterinary Diagnostics Landesuntersuchungsamt 56068 Koblenz Germany
| | - Hermann Willems
- Working Group Wildlife Biology Justus‐Liebig University 35392 Giessen Germany
| |
Collapse
|
6
|
Santos TL, Fernandes C, Henley MD, Dawson DA, Mumby HS. Conservation Genetic Assessment of Savannah Elephants ( Loxodonta africana) in the Greater Kruger Biosphere, South Africa. Genes (Basel) 2019; 10:E779. [PMID: 31590388 PMCID: PMC6826889 DOI: 10.3390/genes10100779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/12/2019] [Accepted: 09/29/2019] [Indexed: 11/24/2022] Open
Abstract
Savannah elephant populations have been severely reduced and fragmented throughout its remaining range. In general, however, there is limited information regarding their genetic status, which is essential knowledge for conservation. We investigated patterns of genetic variation in savannah elephants from the Greater Kruger Biosphere, with a focus on those in previously unstudied nature reserves adjacent to Kruger National Park, using dung samples from 294 individuals and 18 microsatellites. The results of genetic structure analyses using several different methods of ordination and Bayesian clustering strongly suggest that elephants throughout the Greater Kruger National Park (GKNP) constitute a single population. No evidence of a recent genetic bottleneck was detected using three moment-based approaches and two coalescent likelihood methods. The apparent absence of a recent genetic bottleneck associated with the known early 1900s demographic bottleneck may result from a combination of rapid post-bottleneck population growth, immigration and long generation time. Point estimates of contemporary effective population size (Ne) for the GKNP were ~ 500-700, that is, at the low end of the range of Ne values that have been proposed for maintaining evolutionary potential and the current ratio of Ne to census population size (Nc) may be quite low (<0.1). This study illustrates the difficulties in assessing the impacts on Ne in populations that have suffered demographic crashes but have recovered rapidly and received gene flow, particularly in species with long generation times in which genetic time lags are longer. This work provides a starting point and baseline information for genetic monitoring of the GKNP elephants.
Collapse
Affiliation(s)
- Teresa L Santos
- Bull Elephant Network Project, Conservation Science Group, David Attenborough Building, Pembroke St, Cambridge CB2 3QY, UK.
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, UK.
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal.
| | - Carlos Fernandes
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal.
| | - Michelle D Henley
- Applied Behavioural Ecology and Ecosystem Research Unit, University of South Africa, Florida Campus, Private Bag X6, Florida 1710, Johannesburg, South Africa.
- Elephants Alive, P.O. Box 960. Hoedspruit 1380, South Africa.
| | - Deborah A Dawson
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, UK.
| | - Hannah S Mumby
- Bull Elephant Network Project, Conservation Science Group, David Attenborough Building, Pembroke St, Cambridge CB2 3QY, UK.
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa.
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin 14193, Germany.
- School of Biological Sciences and Department of Politics and Public Administration, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Jensen AM, O'Neil NP, Iwaniuk AN, Burg TM. Landscape effects on the contemporary genetic structure of Ruffed Grouse ( Bonasa umbellus) populations. Ecol Evol 2019; 9:5572-5592. [PMID: 31160983 PMCID: PMC6540679 DOI: 10.1002/ece3.5112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 01/01/2023] Open
Abstract
The amount of dispersal that occurs among populations can be limited by landscape heterogeneity, which is often due to both natural processes and anthropogenic activity leading to habitat loss or fragmentation. Understanding how populations are structured and mapping existing dispersal corridors among populations is imperative to both determining contemporary forces mediating population connectivity, and informing proper management of species with fragmented populations. Furthermore, the contemporary processes mediating gene flow across heterogeneous landscapes on a large scale are understudied, particularly with respect to widespread species. This study focuses on a widespread game bird, the Ruffed Grouse (Bonasa umbellus), for which we analyzed samples from the western extent of the range. Using three types of genetic markers, we uncovered multiple factors acting in concert that are responsible for mediating contemporary population connectivity in this species. Multiple genetically distinct groups were detected; microsatellite markers revealed six groups, and a mitochondrial marker revealed four. Many populations of Ruffed Grouse are genetically isolated, likely by macrogeographic barriers. Furthermore, the addition of landscape genetic methods not only corroborated genetic structure results, but also uncovered compelling evidence that dispersal resistance created by areas of unsuitable habitat is the most important factor mediating population connectivity among the sampled populations. This research has important implications for both our study species and other inhabitants of the early successional forest habitat preferred by Ruffed Grouse. Moreover, it adds to a growing body of evidence that isolation by resistance is more prevalent in shaping population structure of widespread species than previously thought.
Collapse
Affiliation(s)
- Ashley M. Jensen
- Department of Biological SciencesUniversity of LethbridgeLethbridgeAlbertaCanada
| | - Nicholas P. O'Neil
- Canadian Centre for Behavioural NeuroscienceUniversity of LethbridgeLethbridgeAlbertaCanada
| | - Andrew N. Iwaniuk
- Canadian Centre for Behavioural NeuroscienceUniversity of LethbridgeLethbridgeAlbertaCanada
| | - Theresa M. Burg
- Department of Biological SciencesUniversity of LethbridgeLethbridgeAlbertaCanada
| |
Collapse
|
8
|
Zecchin B, De Nardi M, Nouvellet P, Vernesi C, Babbucci M, Crestanello B, Bagó Z, Bedeković T, Hostnik P, Milani A, Donnelly CA, Bargelloni L, Lorenzetto M, Citterio C, Obber F, De Benedictis P, Cattoli G. Genetic and spatial characterization of the red fox (Vulpes vulpes) population in the area stretching between the Eastern and Dinaric Alps and its relationship with rabies and canine distemper dynamics. PLoS One 2019; 14:e0213515. [PMID: 30861028 PMCID: PMC6413928 DOI: 10.1371/journal.pone.0213515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/24/2019] [Indexed: 01/02/2023] Open
Abstract
Information on the population dynamics of a reservoir species have been increasingly adopted to understand and eventually predict the dispersal patterns of infectious diseases throughout an area. Although potentially relevant, to date there are no studies which have investigated the genetic structure of the red fox population in relation to infectious disease dynamics. Therefore, we genetically and spatially characterised the red fox population in the area stretching between the Eastern and Dinaric Alps, which has been affected by both distemper and rabies at different time intervals. Red foxes collected from north-eastern Italy, Austria, Slovenia and Croatia between 2006–2012, were studied using a set of 21 microsatellite markers. We confirmed a weak genetic differentiation within the fox population using Bayesian clustering analyses, and we were able to differentiate the fox population into geographically segregated groups. Our finding might be due to the presence of geographical barriers that have likely influenced the distribution of the fox population, limiting in turn gene flow and spread of infectious diseases. Focusing on the Italian red fox population, we observed interesting variations in the prevalence of both diseases among distinct fox clusters, with the previously identified Italy 1 and Italy 2 rabies as well as distemper viruses preferentially affecting different sub-groups identified in the study. Knowledge of the regional-scale population structure can improve understanding of the epidemiology and spread of diseases. Our study paves the way for an integrated approach for disease control coupling pathogen, host and environmental data to inform targeted control programs in the future.
Collapse
Affiliation(s)
- Bianca Zecchin
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
- * E-mail:
| | - Marco De Nardi
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Pierre Nouvellet
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Cristiano Vernesi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - Barbara Crestanello
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - Zoltán Bagó
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control, Mödling, Austria
| | | | - Peter Hostnik
- Virology Unit, Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Adelaide Milani
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Christl Ann Donnelly
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- National Institute for Health Research Health Protection Research Unit in Modelling Methodology, Imperial College London, London, United Kingdom
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - Monica Lorenzetto
- Department of Veterinary Epidemiology, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Carlo Citterio
- SCT2 Belluno, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Belluno, Italy
| | - Federica Obber
- SCT2 Belluno, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Belluno, Italy
| | - Paola De Benedictis
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Giovanni Cattoli
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| |
Collapse
|
9
|
Tsoupas A, Andreadou M, Papakosta MA, Karaiskou N, Bakaloudis DE, Chatzinikos E, Sakoulis A, Triantafyllidis A, Vlachos CG. Phylogeography of Martes foina in Greece. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
|
11
|
Jenkins DA, Yannic G, Schaefer JA, Conolly J, Lecomte N. Population structure of caribou in an ice-bound archipelago. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Deborah. A. Jenkins
- Environmental and Life Sciences Graduate Program; Trent University; Peterborough ON Canada
- Canada Research Chair in Polar and Boreal Ecology and Centre d'Études Nordiques; University of Moncton; Moncton NB Canada
| | - Glenn Yannic
- University of Grenoble Alpes; University of Savoie Mont Blanc; CNRS; LECA (Laboratoire d'Ecologie Alpine); Le Bourget-du-Lac France
| | | | - James Conolly
- Department of Anthropology; Trent University; Peterborough ON Canada
| | - Nicolas Lecomte
- Canada Research Chair in Polar and Boreal Ecology and Centre d'Études Nordiques; University of Moncton; Moncton NB Canada
| |
Collapse
|
12
|
Wereszczuk A, Leblois R, Zalewski A. Genetic diversity and structure related to expansion history and habitat isolation: stone marten populating rural-urban habitats. BMC Ecol 2017; 17:46. [PMID: 29273026 PMCID: PMC5741947 DOI: 10.1186/s12898-017-0156-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/13/2017] [Indexed: 11/10/2022] Open
Abstract
Background Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species’ ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. Results We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Conclusions Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and structure in stone marten. Analysis of local barriers that reduced dispersal and large scale analyses of genetic structure and demographic history highlight the importance of isolation by distance and forest cover for the past colonization of central Europe by stone marten. This confirmed the hypothesis that human-landscape changes (deforestation) accelerated stone marten expansion, to which climate warming probably has also been contributing over the last few decades. Electronic supplementary material The online version of this article (10.1186/s12898-017-0156-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Wereszczuk
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland.
| | - Raphaël Leblois
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University Montpellier, Montpellier, France.,Institut de Biologie Computationnelle, University Montpellier, Montpellier, France
| | - Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| |
Collapse
|
13
|
Lai S, Quiles A, Lambourdière J, Berteaux D, Lalis A. Fine-scale population genetic structure of arctic foxes (Vulpes lagopus) in the High Arctic. BMC Res Notes 2017; 10:663. [PMID: 29191239 PMCID: PMC5710073 DOI: 10.1186/s13104-017-3002-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/25/2017] [Indexed: 11/18/2022] Open
Abstract
Objective The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. Results We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north–south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales. Electronic supplementary material The online version of this article (10.1186/s13104-017-3002-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Lai
- Canada Research Chair on Northern Biodiversity, Centre for Northern Studies and Quebec Center for Biodiversity Science, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.
| | - Adrien Quiles
- UMR7205 ISYEB CNRS-MNHN-EPHE-UPMC, Muséum National d'Histoire Naturelle, CP 51, 75231, Paris Cedex 05, France
| | - Josie Lambourdière
- UMS 2700 OMSI Service de Systématique Moléculaire, Muséum National d'Histoire Naturelle, CP 26, 75231, Paris Cedex 05, France
| | - Dominique Berteaux
- Canada Research Chair on Northern Biodiversity, Centre for Northern Studies and Quebec Center for Biodiversity Science, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - Aude Lalis
- UMR7205 ISYEB CNRS-MNHN-EPHE-UPMC, Muséum National d'Histoire Naturelle, CP 51, 75231, Paris Cedex 05, France
| |
Collapse
|
14
|
Gomes AC, Valente A. Cranial and body size variation in the Iberian red fox (Vulpes vulpes silacea). Mamm Biol 2016. [DOI: 10.1016/j.mambio.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|