1
|
Yasin JA, Odat RM, Qtaishat FA, Tamimi MAA, Alsufi MI, Younis OM, Alkuttob LA, Saeed A. The Prognostic Significance of NEDD9 Expression in Human Cancers: A Systematic Review, Meta-Analysis, and Omics Exploration. Technol Cancer Res Treat 2024; 23:15330338241297597. [PMID: 39540210 PMCID: PMC11561999 DOI: 10.1177/15330338241297597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is considered an important factor in the progression of cancer, acting as a modulator of cellular migration, adhesion, and metastatic potential. Its significance as a prognostic factor, however, remains unclear, which necessitated a comprehensive review and meta-analysis. METHODS Our study followed the PRISMA guidelines, analyzing studies from major databases including PubMed, Embase, and Cochrane. Our eligibility criteria included studies evaluating NEDD9 expression in relation to cancer prognosis and outcomes such as overall survival (OS), progression-free survival (PFS), disease-free Survival (DFS), recurrence-free survival (RFS), and cancer-specific survival (CSS). We used random-effects and fixed-effect models for meta-analysis, and we validated our findings by comparative analysis using data from external cohorts like The Cancer Genome Atlas (TCGA). RESULTS The analysis of 27 studies with 3915 patients demonstrated a significant relationship between NEDD9 expression and poor OS as indicated by the pooled meta-analysis outcome across all included cancers (HR: 1.81, 95% CI: 1.38-2.37). A significant effect on PFS/DFS/RFS/CSS was also found (HR: 2.14, 95% CI: 1.42-3.23). Variations in survival across different types of cancer were indicated by subgroup analysis. NEDD9 expression was correlated with various immune cells across cancer types according to immune infiltration analysis. Protein-protein interaction (PPI) analysis indicated significant interactions involving NEDD9, suggesting mechanisms which influence tumor behavior and response to treatment. CONCLUSION Our results suggest that NEDD9 is a significant prognostic marker in several human cancers. As a result of its central role in cancer progression and prognosis, it presents a promising target for therapeutic interventions. Our study highlights the importance of further research into the biology of NEDD9 and its therapeutic potential.
Collapse
Affiliation(s)
- Jehad A. Yasin
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Ramez M. Odat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | | | | | - Anwaar Saeed
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
| |
Collapse
|
2
|
Wang SS, Zhai GQ, Chen G, Huang ZG, Zhang Y, Zhang LJ, Dang YW, Li SH, Yan HB. Metadherin Promotes the Development of Bladder Cancer by Enhancing Cell Division. Cancer Biother Radiopharm 2023; 38:650-662. [PMID: 35704039 DOI: 10.1089/cbr.2021.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Bladder cancer (BLCA) is a malignant tumor occurring in bladder mucosa. Metadherin (MTDH) has been implicated in tumor progression; however, its molecular biological mechanisms in BLCA remain unclear. Materials and Methods: Cell functions were tested after BLCA cells were transfected by both short hairpin RNAs and small interfering RNAs to silence MTDH. Furthermore, in-house RNA sequencing (RNA-seq) was performed with T24 cells after the knockdown of MTDH. In addition, MTDH-related pathways were explored. Finally, MTDH mRNA and protein expression levels were examined using multiple detection methods in BLCA tissues. Results: MTDH knockdown could largely inhibit cell proliferation, viability, and migration and induce apoptosis of BLCA cells. In-house RNA-seq showed that MTDH knockdown led to extracellular matrix organization and cell division. The integrated analysis showed that the comprehensive expression of MTDH at the mRNA level was 0.47 and that at the protein level was 0.54, based on 11 platforms, including 1485 BLCA and 180 non-BLCA samples. Conclusions: MTDH promotes the growth of BLCA cells through the pathway of cell division. This study provides new directions and biomarkers for future treatment.
Collapse
Affiliation(s)
- Shi-Shuo Wang
- Department of Pathology and First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Gao-Qiang Zhai
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Gang Chen
- Department of Pathology and First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Zhi-Guang Huang
- Department of Pathology and First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Yu Zhang
- Department of Pathology and First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Li-Jie Zhang
- Department of Pathology and First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Yi-Wu Dang
- Department of Pathology and First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Sheng-Hua Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Hai-Biao Yan
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
3
|
Lin LW, Lai PS, Chen YY, Chen CY. Expression of astrocyte-elevated gene-1 indicates prognostic value of fluoropyrimidine-based adjuvant chemotherapy in resectable stage III colorectal cancer. Pathol Int 2021; 71:752-764. [PMID: 34528330 DOI: 10.1111/pin.13160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
It is unclear which prognostic factor such as pathological features and gene mutation are majorly relevant for stage III disease and whether they aid in determining patients who will be benefit from postoperative adjuvant chemotherapy. The expression of astrocyte-elevated gene-1 (AEG-1), thymidylate synthase (TS), excision repair cross-complementation group 1 (ERCC1), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGF) was examined to investigate their role in adjuvant chemotherapy for patients with resectable stage III colorectal cancer (CRC). A significant positive correlation was observed between AEG-1, TS, ERCC1, EGFR, and VEGF gene expression levels in CRC cell lines, and low AEG-1 and TS expression were highly sensitive to 5-fluorouracil treatment. Our results showed that AEG-1 expression was high in T4 and caused CRC recurrence or metastasis. Patients with T4, high AEG-1, TS and VEGF expression had a significantly short disease-free survival and overall survival. In multivariate Cox regression analysis, high AEG-1 expression could be an independent prognostic factor indicating poor survival in patients with resectable stage III CRC treated with adjuvant chemotherapy. In conclusion, AEG-1 expression and tumor grade are potential prognostic factors for recurrence and survival in patients with stage III CRC receiving adjuvant fluoropyrimidine-based chemotherapy.
Collapse
Affiliation(s)
- Long-Wei Lin
- Department of Pathology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Peng-Sheng Lai
- Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Ying-Yin Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Chung-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.,Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Khan M, Sarkar D. The Scope of Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH) in Cancer Clinicopathology: A Review. Genes (Basel) 2021; 12:genes12020308. [PMID: 33671513 PMCID: PMC7927008 DOI: 10.3390/genes12020308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022] Open
Abstract
Since its initial cloning in 2002, a plethora of studies in a vast number of cancer indications, has strongly established AEG-1 as a bona fide oncogene. In all types of cancer cells, overexpression and knockdown studies have demonstrated that AEG-1 performs a seminal role in regulating proliferation, invasion, angiogenesis, metastasis and chemoresistance, the defining cancer hallmarks, by a variety of mechanisms, including protein-protein interactions activating diverse oncogenic pathways, RNA-binding promoting translation and regulation of inflammation, lipid metabolism and tumor microenvironment. These findings have been strongly buttressed by demonstration of increased tumorigenesis in tissue-specific AEG-1 transgenic mouse models, and profound resistance of multiple types of cancer development and progression in total and conditional AEG-1 knockout mouse models. Additionally, clinicopathologic correlations of AEG-1 expression in a diverse array of cancers establishing AEG-1 as an independent biomarker for highly aggressive, chemoresistance metastatic disease with poor prognosis have provided a solid foundation to the mechanistic and mouse model studies. In this review a comprehensive analysis of the current and up-to-date literature is provided to delineate the clinical significance of AEG-1 in cancer highlighting the commonality of the findings and the discrepancies and discussing the implications of these observations.
Collapse
Affiliation(s)
- Maheen Khan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
5
|
Zhang Y, Zhao Q. AEG-1 deletion promotes cartilage repair and modulates bone remodeling-related cytokines via TLR4/MyD88/NF-κB inhibition in ovariectomized rats with osteoporosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1298. [PMID: 33209878 PMCID: PMC7661885 DOI: 10.21037/atm-20-5842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Osteoporosis is a systemic skeletal disorder that can impact a variety of bones throughout the body. Astrocyte-elevated gene-1 (AEG-1) is involved in multiple pro-tumorigenic functions and participates in various inflammatory reactions. However, whether it has an impact on osteoporosis-related cartilage repair and bone remodeling remains unknown. Methods We utilized an ovariectomy mouse model with AEG-1 deletion to investigate the role of AEG-1 in osteoporosis. The mRNA level of AEG-1 was detected by RT-PCR, bone markers, bone volume/total volume (BV/TV), trabecular bone surface/bone volume (BSA/BV) and trabecular bone thickness (Tb. Th) were detected by micro computed tomography (µCT), bone injury was observed by HE and alcian blue staining. The contents of IL-6, IL-17, iNOS and IL-10 in peripheral blood of the three groups were detected by ELISA. The expression of OSX, coi1a1, OC, TLR4, MyD88 and NF-κB were detected by Western Blot. Results µCT revealed increased bone volume in the AEG-1 knockout (KO) ovariectomy (OVX) group compared to the wildtype (WT) OVX group 4 weeks after surgery, indicating restored bone formation after AEG-1 deletion. Flow sorting revealed that AEG-1 deletion inhibited the production of inflammatory factors. Western blot demonstrated activation of the TLR4/MyD88/NF-κB pathway after LPS exposure, which was reduced by AEG-1 deletion. AEG-1 deletion also improved lipopolysaccharide (LPS) induced adverse reactions. Conclusions Taken together, these findings indicate that AEG-1 deletion improves cartilage repair and bone remodeling during osteoporosis, which may partly occur through the inhibition of the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Rheumatology, Henan University Huai He Hospital, Kaifeng City, China
| | - Qing Zhao
- Department of Rheumatology, Henan University Huai He Hospital, Kaifeng City, China
| |
Collapse
|
6
|
Wang Y, Zhong X, Zhou L, Lu J, Jiang B, Liu C, Guo J. Prognostic Biomarkers for Pancreatic Ductal Adenocarcinoma: An Umbrella Review. Front Oncol 2020; 10:1466. [PMID: 33042793 PMCID: PMC7527774 DOI: 10.3389/fonc.2020.01466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) leads to the majority of cancer-related deaths due to its morbidity with similar mortality. Lack of effective prognostic biomarkers are the main reason for belated post-operative intervention of recurrence which causes high mortality. Numerous systematic reviews and meta-analyses have explored the prognostic value of biomarkers in PDAC so far. In this article, we performed an umbrella review analyzing these studies to provide an overview of associations between prognostic biomarkers and PDAC survival outcome and synthesized these results to guide better clinical practice. Methods: Systematic reviews and meta-analyses investigating the associations between PDAC survival outcomes and prognostic biomarkers were acquired via the PubMed and Embase databases from inception till February 1, 2020. Associations supported by nominally statistically significant results were classified into strong, highly suggestive, suggestive, and weak based on several critical factors such as the statistical significance of summary estimates, the number of events, the estimate of the largest study included, interstudy heterogeneity, small-study effects, 95% predictive interval (PI), excess significance bias, and the results of credibility ceiling sensitivity analyses. Results: We included 41 meta-analyses containing 63 associations between PDAC survival outcomes and prognostic biomarkers. Although, none was supported by strong evidence among these associations, an association between C-reactive protein to albumin ratio (CAR) and PDAC overall survival (OS) and an association between neutrophil-lymphocyte ratio (NLR) and PDAC OS were supported by highly suggestive evidence. Otherwise, the association between lactate dehydrogenase (LDH) and PDAC OS was supported by suggestive evidence. The remaining 60 associations were supported by weak or not suggestive evidence. Conclusion: Associations between CAR or NLR and PDAC OS were supported by highly suggestive evidence. And the association between LDH and PDAC OS was supported by suggestive evidence. Although the methodological quality of the included systematic reviews and meta-analyses which were evaluated by AMSTAR2.0 is generally poor, the identification of the relatively robust prognostic biomarkers of PDAC may guide better post-operative intervention and follow-up to prolong patients' survival.
Collapse
Affiliation(s)
- Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xi Zhong
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Department of Surgical Oncology and General Surgery, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jun Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Bolun Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Chengxi Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Deng J, Zhang Q, Lu L, Fan C. Long Noncoding RNA DLGAP1-AS1 Promotes the Aggressive Behavior of Gastric Cancer by Acting as a ceRNA for microRNA-628-5p and Raising Astrocyte Elevated Gene 1 Expression. Cancer Manag Res 2020; 12:2947-2960. [PMID: 32431541 PMCID: PMC7197941 DOI: 10.2147/cmar.s246166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose The long noncoding RNA DLGAP1 antisense RNA 1 (DLGAP1-AS1) plays well-defined roles in the malignant progression of hepatocellular carcinoma. The purpose of this study was to determine whether DLGAP1-AS1 affects the aggressive behavior of gastric cancer (GC). Methods DLGAP1-AS1 expression in GC tissue samples and cell lines was determined by reverse-transcription quantitative PCR. GC cell proliferation, apoptosis, migration, invasion, and tumor growth in vitro as well as in vivo were examined by the Cell Counting Kit-8 assay, flow-cytometric analysis, transwell migration and invasion assays, and xenograft model experiments, respectively. Results DLGAP1-AS1 was overexpressed in GC tissue samples and cell lines. Among patients with GC, the increased level of DLGAP1-AS1 correlated with tumor size, TNM stage, lymph node metastasis, distant metastasis, and shorter overall survival. The knockdown of DLGAP1-AS1 suppressed GC cell proliferation, migration, and invasion in vitro, as well as promoted cell apoptosis and hindered tumor growth in vivo. Mechanistically, DLGAP1-AS1 functioned as a competing endogenous RNA for microRNA-628-5p (miR-628-5p) in GC cells, thereby increasing the expression of the miR-628-5p target astrocyte elevated gene 1 (AEG-1). Functionally, the recovery of the miR-628-5p/AEG-1 axis output attenuated the effects of DLGAP1-AS1 knockdown in GC cells. Conclusion DLGAP1-AS1 is a pleiotropic oncogenic lncRNA in GC. DLGAP1-AS1 plays a pivotal part in the oncogenicity of GC in vitro and in vivo by regulating the miR-628-5p/AEG-1 axis. DLGAP1-AS1, miR-628-5p, and AEG-1 form a regulatory pathway to facilitate GC progression, suggesting this pathway as an effective target for the treatment of GC.
Collapse
Affiliation(s)
- Jiying Deng
- Department of General Surgery, Gaomi People's Hospital, Gaomi, Shandong 261500, People's Republic of China
| | - Qin Zhang
- Department of Neurosurgery, Gaomi People's Hospital, Gaomi, Shandong 261500, People's Republic of China
| | - Lianwei Lu
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong 261000, People's Republic of China
| | - Chunxia Fan
- Department of General Surgery, Gaomi People's Hospital, Gaomi, Shandong 261500, People's Republic of China
| |
Collapse
|
8
|
Long M, Lin F, Wang X, Chen X, Liu L, Zhang H, Dong K. Adenovirus-mediated anti-AEG-1 ScFv expression driven by stathmin promoter inhibits tumor growth in cervical cancer. Cancer Cell Int 2020; 20:79. [PMID: 32190003 PMCID: PMC7068931 DOI: 10.1186/s12935-020-1159-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Astrocyte-elevated gene-1 (AEG-1) is over-expressed in many cancer cells and has multiple key functions in tumor initiation and progression. Currently, targeted-AEG-1 siRNA is one of the most common techniques to down-regulate AEG-1 expression, but the lack of tumor specificity and available delivery system make it difficult to enter clinical trials. Methods In this study, we creatively developed an adenovirus-mediated anti-AEG-1 single-chain antibody fragment (ScFv) expression system driven by a tumor specific promoter, and experimented with it in human cervical carcinoma cells to investigate the effect on tumor’s proliferation and apoptosis. Results The results showed that of HeLa and SiHa cells treated with this recombinant anti-AEG-1 ScFv adenovirus not only inhibited cell growth, but induced apoptosis both in vitro and in vivo. Furthermore, we also observed that the expressions of several apoptosis-related genes like Akt 1 and c-Myc decreased, while NF-κB (p65) and cleaved caspase 3 increased on protein levels in vivo. Conclusion We concluded that stathmin promoter-driving anti-AEG-1 ScFv adenoviral system may be a breakthrough for its dual-specificity, and serve as an adjuvant tumor specific therapy method in the treatment for human cervical cancers.
Collapse
Affiliation(s)
- Min Long
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| | - Fang Lin
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| | - Xi Wang
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| | - Xi Chen
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| | - Li Liu
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| | - Huizhong Zhang
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| | - Ke Dong
- Department of Medical Laboratory, Tangdu Hospital, Airforce Military Medical University, Xinsi Road, Xi'an, 710038 Shaanxi China
| |
Collapse
|
9
|
Cao W, Sharma M, Imam R, Yu J. Study on Diagnostic Values of Astrocyte Elevated Gene 1 (AEG-1) and Glypican 3 (GPC-3) in Hepatocellular Carcinoma. Am J Clin Pathol 2019; 152:647-655. [PMID: 31305883 DOI: 10.1093/ajcp/aqz086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To investigate the diagnostic potential of AEG-1 and GPC-3 in hepatocellular carcinoma (HCC). METHODS AEG-1 and GPC-3 immunohistochemistry were performed on HCC, adjacent nontumor tissue (ANT), and dysplastic nodules (DN). RESULTS H score of AEG-1 or GPC-3 in HCC was significantly higher than in ANT or DN. In HCC, 92% and 54% showed AEG-1 and GPC-3 positivity, respectively. In ANT, 16.2% were AEG-1 and 7.6% GPC-3 positive. AEG-1 staining was mostly diffuse, whereas GPC-3 frequently showed focal staining. AEG-1 alone showed high sensitivity but low specificity and accuracy. GPC-3, on the other hand, showed high specificity but low sensitivity and accuracy. Combination of both stains boosted the sensitivity, specificity, and accuracy to 94.6%, 89.5%, and 90.5%, respectively, when only diffuse staining was considered as positive. CONCLUSIONS AEG-1 or GPC-3 alone seemed not an ideal marker for HCC. The combination of AEG-1 and GPC-3 might improve early diagnosis of HCC.
Collapse
Affiliation(s)
- Wenqing Cao
- Department of Pathology, New York University Langone Health, New York
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Meenal Sharma
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Rami Imam
- Department of Pathology, New York University Langone Health, New York
| | - Jiangzhou Yu
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
- Department of Physiology and Biophysics, University of Illinois at Chicago
| |
Collapse
|
10
|
Zhang L, Singh A, Plaisier C, Pruett N, Ripley RT, Schrump DS, Hoang CD. Metadherin Is a Prognostic Apoptosis Modulator in Mesothelioma Induced via NF-κB-Mediated Signaling. Transl Oncol 2019; 12:859-870. [PMID: 31054476 PMCID: PMC6500914 DOI: 10.1016/j.tranon.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Therapies against malignant pleural mesothelioma (MPM) have yielded disappointing results, in part, because pathologic mechanisms remain obscure. In searching for rational molecular targets, we identified metadherin (MTDH), a multifunctional gene associated with several tumor types but previously unrecognized in MPM. Cox proportional hazards regression analysis delineated associations between higher MTDH expression and lower patient survival from three independent MPM cohorts (n = 349 patients). Through in vitro assays with overexpression and downregulation constructs in MPM cells, we characterized the role of MTDH. We confirmed in vivo the phenotype of altered MTDH expression in a murine xenograft model. Transcriptional regulators of MTDH were identified by chromatin immunoprecipitation. Overexpression of both MTDH mRNA (12-fold increased) and protein levels was observed in tumor tissues. MTDH stable overexpression significantly augmented proliferation, invasiveness, colony formation, chemoresistance, and an antiapoptosis phenotype, while its suppression showed opposite effects in MPM cells. Interestingly, NF-κB and c-Myc (in a feed-forward loop motif) contributed to modulating MTDH expression. Knockdown of MTDH expression profoundly retarded xenograft tumor growth. Thus, our findings support the notion that MTDH integrates upstream signals from certain transcription factors and mediates pathogenic interactions contributing to MPM traits. MTDH represents a new MPM-associated gene that can contribute to insights of MPM biology and, as such, suggest other treatment strategies.
Collapse
Affiliation(s)
- Li Zhang
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Anand Singh
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Nathanael Pruett
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA
| | - R Taylor Ripley
- Dept. of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - David S Schrump
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Chuong D Hoang
- Thoracic Surgery Branch, NCI, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Zhang J, Yin M, Huang J, Lv Z, Liang S, Miao X, Huang F, Zhao Y. Long noncoding RNA LINC00152 as a novel predictor of lymph node metastasis and survival in human cancer: a systematic review and meta-analysis. Clin Chim Acta 2018; 483:25-32. [DOI: 10.1016/j.cca.2018.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
|
12
|
Li Q, Wang M, Wang N, Wang J, Qi L, Mao P. Downregulation of microRNA-216b contributes to glioma cell growth and migration by promoting AEG-1-mediated signaling. Biomed Pharmacother 2018; 104:420-426. [PMID: 29787989 DOI: 10.1016/j.biopha.2018.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence indicates microRNA-216b (miR-216b) plays an important role in the development and progression of various cancers. However, little is known about the function of miR-216b in gliomas. In this study, we aimed to investigate the expression level and functional significance of miR-216b in gliomas. We found that miR-216b was significantly downregulated in glioma specimens and cell lines. Overexpression of miR-216b suppressed the growth and migration of glioma cells, while miR-216b inhibition showed the opposite effects. Astrocyte elevated gene-1 (AEG-1) was predicted as a potential target gene of miR-216b by bioinformatics analysis. A dual-luciferase reporter assay showed that miR-216b could directly target the 3'-untranslated region of AEG-1. RT-qPCR and western blot analysis showed that miR-216 negatively regulated AEG-1 expression in glioma cells. Correlation analysis revealed an inverse correlation between miR-216b and AEG-1 in clinical glioma specimens. miR-216b also regulated the activation of nuclear factor-κB and Wnt signaling in glioma cells. Moreover, restoration of AEG-1 expression partially reversed the inhibitory effect of miR-216b overexpression on glioma cell growth and migration. Overall, these results revealed a tumor suppressive role of miR-216b in glioma tumorigenesis, and identified AEG-1 as a target gene of miR-216b action. Our study suggests that miR-216b can be potentially targeted for the development of novel therapies for gliomas.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lei Qi
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
13
|
Long J, Menggen Q, Wuren Q, Shi Q, Pi X. Long Noncoding RNA Taurine-Upregulated Gene1 (TUG1) Promotes Tumor Growth and Metastasis Through TUG1/Mir-129-5p/Astrocyte-Elevated Gene-1 (AEG-1) Axis in Malignant Melanoma. Med Sci Monit 2018; 24:1547-1559. [PMID: 29543785 PMCID: PMC5866625 DOI: 10.12659/msm.906616] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/10/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Malignant melanoma is a class of malignant tumors derived from melanocytes. lncRNAs have been considered as pro-/anti-tumor factors in progression of cancers. The function of lncRNA TUG1 on growth of melanoma was investigated in this study. MATERIAL AND METHODS The TUG1 and miR-129-5p expression were examined via qRT-PCR. The protein expression was investigated by Western blotting assay. Luciferase reporter assay was used to assess if lncRNA TUG1 can bind to miR-129-5p and if miR-129-5p can target AEG1 mRNA. CCK-8 and apoptosis assay were used to detect cell growth and apoptosis. The metastasis of melanoma cells was detected by wound-healing and Transwell assays. The effects of TUG1 on growth of melanoma in vivo and cell chemoresistance were investigated via xenograft animal experiment and CCK-8 assay. RESULTS The expression of TUG1 and AEG1 was elevated and the miR-129-5p level was decreased in melanoma specimens and cell lines. Downregulation of either TUG1 or AEG1 suppressed cell growth and metastasis. miR-129-5p can bind directly to AEG1 and TUG1 can directly sponge miR-129-5p. Inhibition of TUG1 expression suppressed the expression of Bcl-2, MMP-9, and cyclin D1, and raised the level of cleaved caspase3 by modulating AEG1 level in melanoma cells. Inhibition of TUG1 reduced the growth of tumors in vivo and improved the chemosensitivity of A375 cells to cisplatin and 5-FU. CONCLUSIONS Reduction of TUG1 level suppressed cell growth and metastasis by regulating AEG1 expression mediated by targeting miR-129-5p. Suppression of lnc TUG1 may be a promising therapeutic strategy in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Jianwen Long
- Department of Dermatology, First Clinical Medicine School, Hubei University of Chinese Medicine, Wuhan, Hubei, P.R. China
| | - Qiqige Menggen
- Department of Dermatology, Mongolian Medicine Hospital of Bortala Mongolia Autonomous Prefecture, Bola, Bortala, P.R. China
| | - Qimige Wuren
- Department of Dermatology, Mongolian Medicine Hospital of Bortala Mongolia Autonomous Prefecture, Bola, Bortala, P.R. China
| | - Quan Shi
- Department of Dermatology, Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, Hubei, P.R. China
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, P.R. China
| | - Xianming Pi
- Department of Dermatology, Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, Hubei, P.R. China
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, P.R. China
| |
Collapse
|
14
|
Altered long non-coding RNAs predict worse outcome in osteosarcoma patients: evidence from a meta-analysis. Oncotarget 2018; 8:35234-35243. [PMID: 28415638 PMCID: PMC5471049 DOI: 10.18632/oncotarget.16470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/10/2017] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as promising prognostic biomarkers in an expanding list of malignant neoplasms. Here, we sought to investigate the strength of associations between lncRNA signatures and clinical outcomes in osteosarcoma. We conducted a systematic search of the online databases from inception to July 2016. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) for the primary endpoints of overall survival (OS), progression-free survival (PFS) or event-free survival (EFS) were extracted and meta-analyzed. Our results manifested that altered lncRNAs expression was markedly associated with worse OS (univariate analysis: HR = 3.20, 95% CI: 2.42-4.24, P = 0.000; multivariate analysis: HR = 2.66, 95% CI: 1.92-3.69, P = 0.000), PFS (HR = 2.05, 95% CI: 1.32-3.18, P = 0.001) and EFS (HR = 4.37, 95% CI: 1.64-11.66, P = 0.003) times among osteosarcoma patients. In the pooled analyses stratified by clinicopathological features, levels of lncRNAs were closely correlated with tumor size (pooled P = 0.001), tumor stage (pooled P = 0.003), and distant metastasis (pooled P = 0.002) in osteosarcoma. The results obtained in our work suggest that altered lncRNA signatures predict unfavorable clinical outcomes and are acceptable to be potential prognostic biomarkers in forecasting prognosis of osteosarcoma.
Collapse
|
15
|
Liang HW, Yang X, Wen DY, Gao L, Zhang XY, Ye ZH, Luo J, Li ZY, He Y, Pang YY, Chen G. Utility of miR‑133a‑3p as a diagnostic indicator for hepatocellular carcinoma: An investigation combined with GEO, TCGA, meta‑analysis and bioinformatics. Mol Med Rep 2018; 17:1469-1484. [PMID: 29138825 PMCID: PMC5780086 DOI: 10.3892/mmr.2017.8040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has demonstrated that microRNA (miR)‑133a‑3p is an important regulator of hepatocellular carcinoma (HCC). In the present study, the diagnostic role of miR‑133a‑3p in HCC, and the potential functional pathways, were both explored based on publicly available data. Eligible microarray datasets were collected from NCBI Gene Expression Omnibus (GEO) database and ArrayExpress database. The data related to HCC and matched adjacent normal tissues were also downloaded from The Cancer Genome Atlas (TCGA). Published studies reporting the association between miR‑133a‑3p expression and HCC were reviewed from multiple databases. By combining the data derived from three sources (GEO, TCGA and published studies), the authors analyzed the comprehensive relationship between miR‑133a‑3p expression and clinicopathological features of HCC. Eventually, putative targets of miR‑133a‑3p in HCC were selected for further bioinformatics prediction. A total of eight published microarray datasets were gathered, and the pooled results demonstrated that the expression of miR‑133a‑3p in the tumor group was lower than that in normal groups [standardized mean difference (SMD)=‑0.54; 95% confidence interval (CI), ‑0.74 to ‑0.35; P<0.001]. Consistently, the level of miR‑133a‑1 in HCC was reduced markedly compared to normal tissues (P<0.001) based on TCGA data, and the AUC value of low miR‑133a‑1 expression for HCC diagnosis was 0.670 (P<0.001). Furthermore, the combined SMD of all datasets (GEO, TCGA and literature) suggested that significant difference was observed between the HCC group and the normal control group, and lower miR‑133a‑3p expression in HCC group was noted (SMD=‑0.69; 95% CI, ‑1.10 to ‑0.29; P=0.001). In addition, the authors discovered five key genes of the calcium signaling pathway (NOS1, ADRA1A, ADRA1B, ADRA1D and TBXA2R) that may probably be targeted by miR‑133a‑3p in HCC. The study reveals that miR‑133a‑3p may function as a tumor suppressor in HCC. The prospective novel pathways and key genes of miR‑133a‑3p could offer potential biomarkers for HCC; however, the predictions require further confirmation.
Collapse
Affiliation(s)
- Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiang-Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Hua Ye
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Luo
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zu-Yun Li
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun He
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
16
|
Song H, Rao Y, Zhang G, Kong X. MicroRNA-384 Inhibits the Growth and Invasion of Renal Cell Carcinoma Cells by Targeting Astrocyte Elevated Gene 1. Oncol Res 2017; 26:457-466. [PMID: 28877780 PMCID: PMC7844631 DOI: 10.3727/096504017x15035025554553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs (miRNAs) are emerging as pivotal regulators in the development and progression of various cancers, including renal cell carcinoma (RCC). MicroRNA-384 (miR-384) has been found to be an important cancer-related miRNA in several types of cancers. However, the role of miR-384 in RCC remains unclear. In this study, we aimed to investigate the potential function of miR-384 in regulating tumorigenesis in RCC. Here we found that miR-384 was significantly downregulated in RCC tissues and cell lines. Overexpression of miR-384 significantly inhibited the growth and invasion of RCC cells, whereas inhibition of miR-384 had the opposite effects. Bioinformatic analysis and luciferase reporter assay showed that miR-384 directly targeted the 3′-untranslated region of astrocyte elevated gene 1 (AEG-1). Further data showed that miR-384 could negatively regulate the expression of AEG-1 in RCC cells. Importantly, miR-384 expression was inversely correlated with AEG-1 expression in clinical RCC specimens. Moreover, miR-384 regulates the activation of Wnt signaling. Overexpression of AEG-1 significantly reversed the antitumor effects of miR-384. Overall, these findings suggest that miR-384 suppresses the growth and invasion of RCC cells via downregulation of AEG-1, providing a potential therapeutic target for the treatment of RCC.
Collapse
Affiliation(s)
- Haitao Song
- Department of Urinary Surgery, ChinaJapan Union Hospital, Jilin UniversityChangchunP.R. China
| | - Yanwei Rao
- Department of Critical Care Medicine, Jilin Province Peoples HospitalChangchunP.R. China
| | - Gang Zhang
- Department of Urinary Surgery, ChinaJapan Union Hospital, Jilin UniversityChangchunP.R. China
| | - Xiangbo Kong
- Department of Urinary Surgery, ChinaJapan Union Hospital, Jilin UniversityChangchunP.R. China
| |
Collapse
|
17
|
Huang LL, Wang Z, Cao CJ, Ke ZF, Wang F, Wang R, Luo CQ, Lu X, Wang LT. AEG-1 associates with metastasis in papillary thyroid cancer through upregulation of MMP2/9. Int J Oncol 2017; 51:812-822. [PMID: 28731152 PMCID: PMC5564412 DOI: 10.3892/ijo.2017.4074] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
Astrocyte elevated gene-1 (AEG-1), known as an oncogene, is overexpressed in various cancers and implicated in tumor progression and metastasis. However, its functional significance and underlying molecular mechanisms in thyroid cancer remain to be elucidated. In the present study, we detected the potential function of AEG-1 in papillary thyroid cancer (PTC). We also investigated the relation between AEG-1 and matrix metalloproteases (MMP)2 and 9 through immunohistochemistry, western blotting, real-time PCR, immunofluorescence staining, zymography and co-immunoprecipitation (Co-IP). We found that overexpression of AEG-1 in PTC was positively correlated with lymph node metastasis and MMP2/9 expression. Knockdown of AEG-1 reduced the capacity of migration and invasion through downregulation of MMP2/9 in thyroid cancer cells. Furthermore, we firstly found that AEG-1 interacted with MMP9 in thyroid cancer cells. AEG-1 was associated with the activation of the nuclear factor κB (NF-κB) signaling pathways in thyroid cancer cells. Overall, our results for the first time showed that AEG-1 interacted with MMP9 in thyroid cancer cells and AEG-1 expression was closely associated with progression and metastasis of papillary thyroid cancer. AEG-1 might be a potential therapeutic target in papillary thyroid cancer.
Collapse
Affiliation(s)
- Lei-Lei Huang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chuang-Jie Cao
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zun-Fu Ke
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fen Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ran Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Can-Qiao Luo
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaofang Lu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lian-Tang Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
18
|
Post-trimodality expression levels of metadherin (MTDH) as a prognostic biomarker for esophageal adenocarcinoma patients. Med Oncol 2017; 34:135. [PMID: 28685276 DOI: 10.1007/s12032-017-0994-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/01/2017] [Indexed: 02/07/2023]
Abstract
Resectable esophageal adenocarcinoma (EAC) patients often receive chemoradiation followed by surgery. However, most patients experience recurrences. Overexpression of MTDH, an oncoprotein with multiple functions, has been found to be associated with poor prognosis in breast cancer, glioblastoma, melanoma and various gastrointestinal malignancies, but not in EAC. We sought to establish its role in resistant EAC (post-treatment residual EAC). MTDH was assessed by immunohistochemistry in resected EAC, and results were correlated with clinical outcomes. MTDH expression was detectable in 72.5% (50/69) of patients, while expression levels were high (positive) in 50.7% (35/69). Of 69 patients analyzed, 25 had no relapse and 44 patients had a relapse (8 with local-regional and 36 with distant). The median follow-up duration was 3 years (0.4-11.6). The median overall survival was not associated with MTDH status (2.79 years for MTDH-negative and 3.60 years for MTDH-positive patients, p = 0.121). In addition, MTDH was not associated with either the type of relapse (local or distant), baseline clinical stage, tumor grade, presence of signet ring cells, surgical (yp) stage, percentage of residual EAC or presence of lymphovascular invasion. Our data reveal that MTDH is not a prognostic biomarker in resistant EAC after trimodality therapy.
Collapse
|
19
|
Hou Y, Yu L, Mi Y, Zhang J, Wang K, Hu L. Association of MTDH immunohistochemical expression with metastasis and prognosis in female reproduction malignancies: a systematic review and meta-analysis. Sci Rep 2016; 6:38365. [PMID: 27917902 PMCID: PMC5137005 DOI: 10.1038/srep38365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/08/2016] [Indexed: 02/04/2023] Open
Abstract
Various literatures have demonstrated that overexpression of Metadherin (MTDH) is correlated with tumor metastasis and it can predict poor survival outcomes in female reproduction malignancies. In order to enhance the statistical power and reach a recognized conclusion, we conducted a systematic review and meta-analysis to thoroughly investigate the association of MTDH expression with tumor metastasis and survival outcomes following PRISMA guidelines. Odds ratios (ORs) and hazard ratios (HRs) were used to demonstrate the impact of MTDH on tumor metastasis and prognosis respectively. Data were pooled with appropriate effects model on STATA12.0. Our results indicated that high MTDH expression is significantly correlated with higher mortality for breast, ovarian and cervical cancer. High immunohistochemical expression of MTDH is remarkably associated with shorter disease-free survival (DFS) in breast cancer but not in ovarian cancer. The pooled results suggested that high level of MTDH significantly predicted distant metastasis and lymph node metastasis in breast cancer. Strong associations were observed between MTDH expression and lymph node metastasis in ovarian and cervical cancer. In conclusion, MTDH might be a novel biomarker which can effectively reflect metastasis status and prognosis of breast cancer. However, its application in clinical practice needs more prospective studies with large samples.
Collapse
Affiliation(s)
- Yongbin Hou
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Lihua Yu
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Yonghua Mi
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Jiwang Zhang
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Ke Wang
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Liyi Hu
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China.,Department of CIK treatment laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| |
Collapse
|
20
|
Li W, Lin S, Li W, Wang W, Li X, Xu D. IL-8 interacts with metadherin promoting proliferation and migration in gastric cancer. Biochem Biophys Res Commun 2016; 478:1330-7. [PMID: 27565732 DOI: 10.1016/j.bbrc.2016.08.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023]
Abstract
It has been reported that IL-8 was involved in the promotion of invasion of Gastric Cancer (GC), however the underlying mechanism by which IL-8 was observed to be able to promote invasion remains unknown. Here, in our study, IL-8 was shown to be significantly up-regulated in GC compared with paired normal control tissues whose expression was markedly associated with inferior overall prognosis; and IL-8 was displayed to be capable of directly interacting with metadherin (MTDH), which in turn can up-regulate IL-8 expression. Blockage of IL-8/MTDH using specific mono-antibody can abolish the invasion IL-8 mediated. Taken together, our results may provide a novel explanation of working mechanism of IL-8 in the invasion of GC.
Collapse
Affiliation(s)
- Wenfeng Li
- The Department of Gastrointestinal and Anus Surgery, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, 364000, Fujian Province, PR China
| | - Shuangming Lin
- The Department of Gastrointestinal and Anus Surgery, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, 364000, Fujian Province, PR China
| | - Wenhuan Li
- The Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Weijun Wang
- The Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China
| | - Xueming Li
- The Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, PR China.
| | - Dongbo Xu
- The Department of Gastrointestinal and Anus Surgery, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, 364000, Fujian Province, PR China.
| |
Collapse
|
21
|
Emdad L, Das SK, Hu B, Kegelman T, Kang DC, Lee SG, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC: A Promiscuous Protein Partner Critical in Cancer, Obesity, and CNS Diseases. Adv Cancer Res 2016; 131:97-132. [PMID: 27451125 DOI: 10.1016/bs.acr.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since its original discovery in 2002, AEG-1/MTDH/LYRIC has emerged as a primary regulator of several diseases including cancer, inflammatory diseases, and neurodegenerative diseases. AEG-1/MTDH/LYRIC has emerged as a key contributory molecule in almost every aspect of cancer progression, including uncontrolled cell growth, evasion of apoptosis, increased cell migration and invasion, angiogenesis, chemoresistance, and metastasis. Additionally, recent studies highlight a seminal role of AEG-1/MTDH/LYRIC in neurodegenerative diseases and obesity. By interacting with multiple protein partners, AEG-1/MTDH/LYRIC plays multifaceted roles in the pathogenesis of a wide variety of diseases. This review discusses the current state of understanding of AEG-1/MTDH/LYRIC regulation and function in cancer and other diseases with a focus on its association/interaction with several pivotal protein partners.
Collapse
Affiliation(s)
- L Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - S K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - B Hu
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - T Kegelman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - D-C Kang
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | - S-G Lee
- Cancer Preventive Material Development Research Center, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - D Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - P B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|