1
|
Houshyar M, Saki AA, Alikhani MY, Bedford MR, Soleimani M, Kamarehei F. Characterization of recombinant phytase of Klebsiella sp. and the influence of novel 3-phytase on mineral solubility in broiler diets under an in vitro digestion assay. Protein Expr Purif 2024; 220:106489. [PMID: 38685535 DOI: 10.1016/j.pep.2024.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Phytate (inositol hexaphosphate) is the major storage form of phosphorus (P) in nature, and phytases catalyze the hydrolysis of P from phytate and the formation of inositol phosphate isomers. In this study, a bacterium that produces phytase was isolated in a phytase screening medium. The bacterium was identified as Klebsiella sp. using phenotypic and molecular techniques. The PhyK phytase gene was successfully amplified from the genome, inserted into the pET-21a (+) vector, and expressed as a recombinant protein in E. Coli BL21. The efficiency of a laboratory phytase (Lab-Ph, PhyK phytase) was determined and compared with a commercial phytase (Com-Ph, Quantum Blue 40P phytase, AB Vista) under an in vitro digestion assay. The native signal peptide effectively facilitated the translocation of the protein to the periplasmic space of E. Coli BL21, resulting in the proper folding of the protein and the manifestation of desirable enzyme activity. The Lab-Ph displayed the temperature and pH optima at 50 °C and 5 respectively. In addition, the Lab-Ph was inactivated at 80 °C. Under an in vitro digestion assay condition, Lab-Ph improved the P solubility coefficient in broiler diets. In comparison, the Com-Ph significantly increased the P solubility coefficient even when compared with the Lab-Ph. In summary, this study has shown that Lab-Ph possesses the necessary biochemical properties to be used in various industrial applications. However, Lab-Ph is extremely sensitive to heat treatment. The Lab-Ph and Com-Ph under an in vitro digestion assay improved the solubility coefficient of P in the broiler diet.
Collapse
Affiliation(s)
- Mohammad Houshyar
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Asghar Saki
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farideh Kamarehei
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Nezhad NG, Jamaludin SZB, Rahman RNZRA, Yahaya NM, Oslan SN, Shariff FM, Isa NM, Leow TC. Functional expression, purification, biochemical and biophysical characterizations, and molecular dynamics simulation of a histidine acid phosphatase from Saccharomyces cerevisiae. World J Microbiol Biotechnol 2024; 40:171. [PMID: 38630327 DOI: 10.1007/s11274-024-03970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
A histidine acid phosphatase (HAP) (PhySc) with 99.50% protein sequence similarity with PHO5 from Saccharomyces cerevisiae was expressed functionally with the molecular mass of ∼110 kDa through co-expression along with the set of molecular chaperones dnaK, dnaJ, GroESL. The purified HAP illustrated the optimum activity of 28.75 ± 0.39 U/mg at pH 5.5 and 40 ˚C. The Km and Kcat values towards calcium phytate were 0.608 ± 0.09 mM and 650.89 ± 3.6 s- 1. The half-lives (T1/2) at 55 and 60 ˚C were 2.75 min and 55 s, respectively. The circular dichroism (CD) demonstrated that PhySc includes 30.5, 28.1, 21.3, and 20.1% of random coils, α-Helix, β-Turns, and β-Sheet, respectively. The Tm recorded by CD for PhySc was 56.5 ± 0.34˚C. The molecular docking illustrated that His59 and Asp322 act as catalytic residues in the PhySc. MD simulation showed that PhySc at 40 ˚C has higher structural stability over those of the temperatures 60 and 80 ˚C that support the thermodynamic in vitro investigations. Secondary structure content results obtained from MD simulation indicated that PhySc consists of 34.03, 33.09, 17.5, 12.31, and 3.05% of coil, helix, turn, sheet, and helix310, respectively, which is almost consistent with the experimental results.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Siti Zahra Binti Jamaludin
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Laboratory of Vaccine and Biomolecules (VacBio), Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
| |
Collapse
|
3
|
Houshyar M, Saki AA, Alikhani MY, Bedford MR, Soleimani M, Kamarehei F. Approaches to determine the efficiency of novel 3-phytase from Klebsiella pneumoniae and commercial phytase in broilers from 1 to 14 d of age. Poult Sci 2023; 102:103014. [PMID: 37672835 PMCID: PMC10494260 DOI: 10.1016/j.psj.2023.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023] Open
Abstract
This study aimed to evaluate the effects of a laboratory 3-phytase (the expression of the phyK gene, Lab-Phy) and a commercial 6-phytase (Quantum Blue 40 P, Com-Phy) alone and in combination (corn-soy-based diets) in broilers. A total of 400, day-old Ross 308 male broilers were randomly assigned to 5 treatments with 10 replicate cages (8 chicks/cage) for a 14-day trial. Experimental treatments included the positive control (0.95% Ca and 0.48% nonphytate phosphorus (nPP), PC), negative control (0.90% Ca and 0.22% nPP, NC), and NC which was supplemented with Lab-Phy 250 FTU/kg and Com-Phy 250 FTU/kg alone or in combination of Lab-Phy 125 FTU/kg and Com-Phy 125 FTU/kg. The inclusion of Lab-Phy in the NC diet significantly improved the P and Ca content in the tibia compared to the NC group. Moreover, the inclusion of Com-Phy alone and in combination with Lab-Phy in the NC diet significantly increased the P and Ca content in the tibia compared to the Lab-Phy. The mRNA expression of NaPi-IIb was upregulated in the duodenum by the reduction of nPP and downregulated by the inclusion of any phytase, whereas other nutrient transporters were not influenced by the reduction of nPP or the addition of phytase in the small intestine mucosa. Broilers receiving the NC diet obtained the lowest body weight (BW) and body weight gain (BWG) at 8 to 14 and 1 to 14 d of age. The NC group showed the lowest villi height and surface area, Newcastle disease (ND) antibody titer, and digestibility of nutrients compared to the PC group at 14 d of age. Supplementing the NC diet with the Lab-Phy and Com-Phy individually, or in combination tended to improve BW, BWG, tibia characteristics, villi characteristics, ND, and retained CP and P, and apparent ileal digestibility of CP, P, methionine, and threonine. The present research indicated that the studied traits by the combination of phytases were slightly better than the average of the 2 individually, suggesting there might be some value in combining the laboratory and commercial phytases.
Collapse
Affiliation(s)
- Mohammad Houshyar
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Asghar Saki
- Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farideh Kamarehei
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Tkachenko AA, Borshchevskaya LN, Sineoky SP, Gordeeva TL. CRISPR/Cas9-Mediated Genome Editing of the Komagataella phaffii to Obtain a Phytase-Producer Markerless Strain. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1338-1346. [PMID: 37770400 DOI: 10.1134/s0006297923090134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 09/30/2023]
Abstract
Using CRISPR/Cas9 system, the recipient strains K. phaffii VKPM Y-5013 (His- phenotype) and K. phaffii VKPM Y-5014 (Leu- phenotype) were derived from the K. phaffii VKPM Y-4287 strain, which has a high expression potential. Based on the developed recipient strains, markerless producers of heterologous proteins could be obtained. Efficiency of the gene inactivation with different variants of sgRNA ranged from 65 to 98% and from 15 to 72% for the HIS4 and LEU2 genes, respectively. The recipient strains retained growth characteristics of the parent strain and exhibited high expression potential, as estimated by the production of heterologous phytase from Citrobacter gillenii. Average productivity of the transformants based on the K. phaffii VKPM Y-5013 and K. phaffii VKPM Y-5014 strains was 2.1 and 2.0 times higher than productivity of the transformants of the commercial K. phaffii GS115 strain. Method for sequential integration of genetic material into genome of the K. phaffii VKPM Y-5013 strain was proposed. A highly effective multicopy markerless strain producing C. gillenii phytase was obtained.
Collapse
Affiliation(s)
- Artur A Tkachenko
- National Research Center "Kurchatov Institute", Moscow, 117545, Russia.
| | | | - Sergey P Sineoky
- National Research Center "Kurchatov Institute", Moscow, 117545, Russia
| | | |
Collapse
|
5
|
Inactivation of Escherichia coli in an Orange Juice Beverage by Combined Ultrasonic and Microwave Treatment. Foods 2023; 12:foods12030666. [PMID: 36766194 PMCID: PMC9914373 DOI: 10.3390/foods12030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The inactivation of Escherichia coli is one of the major issues in the food industry. The present study focuses on the application of a combined microwave-ultrasound system for the optimization of the inactivation of Escherichia coli ATCC 25922 in an orange juice drink. Using response surface methodology (RSM), trials were planned with a Box-Behnken Design (BBD) to maximize the impact of microwave power (A: 300-900 W), microwave treatment time (B: 15-35 s), and time of ultrasound (C: 10-30 min) on E. coli inactivation. Analysis of variance (ANOVA) was carried out and E. coli inactivation was expressed with a mathematical equation depending on the factors. The results showed that both the microwave treatment time and the time of ultrasound were effective as independent variables in eliminating the E. coli strain. However, the effect of these two variables, ultrasound and microwave exposure time, in combination was significantly greater than when examined separately. RSM modeling determined that optimal treatment conditions include 900 W microwave power, 33 s microwave treatment time, and 20 min time of ultrasound to achieve an 8-log reduction of E. coli, constituting total inactivation. The results of this study showed that ultrasound-microwave treatment is a potential alternative processing method for an orange juice beverage.
Collapse
|
6
|
Zhao Y, Yang L, Chen Y, Zhang X, Li J, Liang D, Jiang S, Gao J, Meng Y. A Comparative Analysis of Bombyx mori (Lepidoptera: Bombycidae) β-fructofuranosidase Homologs Reveals Different Post-Translational Regulations in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). INSECTS 2022; 13:insects13050410. [PMID: 35621746 PMCID: PMC9143633 DOI: 10.3390/insects13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary The β-fructofuranosidase (β-FFase) encoding gene BmSuc1 regulates the glycometabolism of silkworm larvae, and it participates in the resistance of mulberry alkaloids. However, there is no molecular or biochemical information available about the mulberry pest Glyphodespyloalis Walker β-FFase homologs. In this paper, we have obtained five β-FFase homologous genes in G. pyloalis and characterized the expression and the localization of GpSUC1a in the midgut. The β-FFase activity in the midgut of G. pyloalis larvae and GpSUC1a were both confirmed, while recombinant GpSUC1a displayed little activity as compared with the higher activity of BmSUC1. Some putative N-glycosylation sites were found in GpSUC1a but none in BmSUC1, while there was more methylation in BmSUC1 than in GpSUC1a. The results indicate that such post-translational modifications (PTMs) are differentially supporting that β-FFase are active in these two mulberry feeding caterpillars, and the activation of GpSUC1a may be controlled by a more complex post-translational regulatory system in G. pyloalis larvae. This is the first report on the characterization of β-FFase genes from G. pyloalis and the first comparison of expression regulation between two mulberry feeding insects B. mori and G. pyloalis. Moreover, this research may provide new ideas for the management of mulberry borers. Abstract The silk-spinning and Lepidopteran model insect Bombyx mori (Bombycidae) is a mulberry specialist. The BmSuc1 gene is the first β-fructofuranosidase (β-FFase) encoding gene identified in animals, and β-FFase acts as an essential sucrase for glycometabolism modulation in the silkworm larvae, involved in resistance to mulberry alkaloids. Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is an important mulberry pest leading to heavy economic loss of sericulture. However, no molecular or biochemical information is available about G. pyloalis β-FFase homologs. In this study, five β-FFase homologous genes in G. pyloalis were obtained. The genes GpSuc1a and GpSuc2c were expressed in the midgut; GpSuc2c encodes a truncated polypeptide. The expression and the localization of GpSUC1a in the midgut was characterized. Whereas recombinant GpSUC1a expressed in both Escherichia coli and BmN cells displayed little activity as compared with higher activity of BmSUC1, β-FFase activity in the larval midgut of G. pyloalis and GpSUC1a purified from the midgut were both confirmed. The data suggested that the activation of GpSUC1a is probably controlled by a more complicated post-translational regulation system in G. pyloalis larvae than that of BmSUC1 in B. mori. To study post-translational modifications (PTMs), GpSUC1a and BmSUC1 were purified from larval midguts using immunoprecipitation and subjected to LC-MS to perform PTMs analysis. Some putative N-glycosylated sites were found in GpSUC1a but none in BmSUC1, while there was more methylation in BmSUC1 than in GpSUC1a, indicating that such PTMs were supporting the differential β-FFases activities in these two mulberry feeding caterpillars.
Collapse
Affiliation(s)
- Yue Zhao
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Liangli Yang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Yu Chen
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
| | - Xinwei Zhang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Department of Pathology, Henan Provincial People’s Hospital, 7 Weiwu Road, Zhengzhou 450003, China
| | - Jing Li
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
| | - Dan Liang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Song Jiang
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Junshan Gao
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; (Y.Z.); (L.Y.); (Y.C.); (X.Z.); (J.L.); (D.L.); (S.J.); (J.G.)
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
- Correspondence: ; Tel./Fax: +86-551-65786967
| |
Collapse
|
7
|
Expression of Pantoea sp. 3.5.1 AgpP Phytase in Three Expression Systems. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Suleimanova A, Bulmakova D, Sharipova M. Heterologous Expression of Histidine Acid Phytase From Pantoea sp. 3.5.1 in Methylotrophic Yeast Pichia Pastoris. Open Microbiol J 2020. [DOI: 10.2174/1874285802014010179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background and Objective:The major storage form of phosphorus in plant-derived feed is presented by phytates and not digested by animals. Phytases are able to hydrolyze phytates and successfully used as feed additives. Nevertheless, nowadays, there is a constant search of new phytases and expression systems for better production of these enzymes. In this study, we describe cloning and expression of gene encoding histidine acid phytase fromPantoeasp. 3.5.1 using methylotrophic yeastPichia pastorisas the host.Methods:The phytase gene was placed under the control of the methanol-inducible AOX1 promoter and expressed inP. pastoris. Experiments of small-scale phytase expression and activity assays were used to test recombinant colonies. Four different signal peptides were screened for better secretion of phytase byP. pastoris. After 36 h of methanol induction in shake flasks, the maximum extracellular phytase activity (3.2 U/ml) was observed inP. pastorisstrain with integrated construct based on pPINK-HC vector andKluyveromyces maxianusinulinase gene signal sequence. This phytase was isolated and purified using affinity chromatography.Results:Recombinant phytase was a glycosylated protein, had a molecular weight of around 90 kDa and showed maximum activity at pH 4.0 and at 50°C. Recombinant phytase had excellent thermal stability – it retained high residual activity (100% ± 2%) after 1 hour of heat treatment at 70°C.Conclusion:The enhanced thermostability of the recombinant phytase, its expression provided by strong inducible promotor and the effectively designed expression cassette, the simple purification procedure of the secreted enzyme, and the possibility of large-scale expression make the foundation for further production of this bacterial phytase inP. pastorisat an industrial scale.
Collapse
|
9
|
EL ENSHASY H, DAİLİN DJ, ABD MANAS NH, WAN AZLEE Nİ, EYAHMALAY ,J, YAHAYA ,SA, ABD MALEK R, SİWAPİRAGAM V, SUKMAWATİ D. Current and Future Applications of Phytases in Poultry Industry: A Critical Review. JOURNAL OF ADVANCES IN VETBIO SCIENCE AND TECHNIQUES 2018; 3:65-74. [DOI: 10.31797/vetbio.455687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Phytases
are enzymes that initiate the removal of phosphate from phytate. This enzyme
has been widely utilized in animal feeding especially in the poultry industry
to enhance phosphorus intake and minimize environmental pollution. Phytases are
widely distributed in microbial, plants and animals. Supplementations of
phytase into the diets of poultry have great impact to the improvement of
poultry immune systems and increase bird weight. In addition to that, phytase
are able to improve both quantity and quality of eggs, egg mass and egg shell
quality. This review covers the classifications and distribution of phytases in
different biofactoris. In addition, it shed more light on the recent trends of
application and beneficial impact in poultry farming.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dalia SUKMAWATİ
- Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta
| |
Collapse
|
10
|
Balaban NP, Suleimanova AD, Shakirov EV, Sharipova MR. Histidine Acid Phytases of Microbial Origin. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Gessler NN, Serdyuk EG, Isakova EP, Deryabina YI. Phytases and the Prospects for Their Application (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818040087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Farias N, Almeida I, Meneses C. New Bacterial Phytase through Metagenomic Prospection. Molecules 2018; 23:E448. [PMID: 29462992 PMCID: PMC6017413 DOI: 10.3390/molecules23020448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 11/16/2022] Open
Abstract
Alkaline phytases from uncultured microorganisms, which hydrolyze phytate to less phosphorylated myo-inositols and inorganic phosphate, have great potential as additives in agricultural industry. The development of metagenomics has stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. In this study, a gene encoding a phytase was cloned from red rice crop residues and castor bean cake using a metagenomics strategy. The amino acid identity between this gene and its closest published counterparts is lower than 60%. The phytase was named PhyRC001 and was biochemically characterized. This recombinant protein showed activity on sodium phytate, indicating that PhyRC001 is a hydrolase enzyme. The enzymatic activity was optimal at a pH of 7.0 and at a temperature of 35 °C. β-propeller phytases possess great potential as feed additives because they are the only type of phytase with high activity at neutral pH. Therefore, to explore and exploit the underlying mechanism for β-propeller phytase functions could be of great benefit to biotechnology.
Collapse
Affiliation(s)
- Nathálya Farias
- Graduate Program in Agricultural Sciences, Universidade Estadual da Paraíba (UEPB), Campina Grande/PB 58429-500, Brazil.
| | - Isabela Almeida
- Department of Biology, Universidade Estadual da Paraíba (UEPB).
| | - Carlos Meneses
- Department of Biology and Graduate Program in Agricultural Sciences, Universidade Estadual da Paraíba (UEPB), Campina Grande/PB 58429-500, Brazil.
| |
Collapse
|
13
|
Pal Roy M, Datta S, Ghosh S. A novel extracellular low‐temperature active phytase fromBacillus aryabhattaiRS1 with potential application in plant growth. Biotechnol Prog 2017; 33:633-641. [DOI: 10.1002/btpr.2452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/31/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Moushree Pal Roy
- Dept. of BiotechnologyUniversity of North BengalRaja Rammohunpur Siliguri India
| | - Subhabrata Datta
- Dept. of BiotechnologyUniversity of North BengalRaja Rammohunpur Siliguri India
| | - Shilpi Ghosh
- Dept. of BiotechnologyUniversity of North BengalRaja Rammohunpur Siliguri India
| |
Collapse
|
14
|
Molecular advancements in the development of thermostable phytases. Appl Microbiol Biotechnol 2017; 101:2677-2689. [PMID: 28233043 DOI: 10.1007/s00253-017-8195-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
Since the discovery of phytic acid in 1903 and phytase in 1907, extensive research has been carried out in the field of phytases, the phytic acid degradatory enzymes. Apart from forming backbone enzyme in the multimillion dollar-based feed industry, phytases extend a multifaceted role in animal nutrition, industries, human physiology, and agriculture. The utilization of phytases in industries is not effectively achieved most often due to the loss of its activity at high temperatures. The growing demand of thermostable phytases with high residual activity could be addressed by the combinatorial use of efficient phytase sources, protein engineering techniques, heterologous expression hosts, or thermoprotective coatings. The progress in phytase research can contribute to its economized production with a simultaneous reduction of various environmental problems such as eutrophication, greenhouse gas emission, and global warming. In the current review, we address the recent advances in the field of various natural as well as recombinant thermotolerant phytases, their significance, and the factors contributing to their thermotolerance.
Collapse
|