1
|
Abou Hammoud A, Giraud J, Gauthereau X, Blanchard C, Daburon S, Zese M, Molina-Castro S, Dubus P, Varon C, Boeuf H. The "StemDif Sensor Test": A Straightforward, Non-Invasive Assay to Characterize the Secreted Stemness and/or Differentiation Activities of Tumor-Derived Cancer Cell Lines. Biomedicines 2023; 11:3293. [PMID: 38137514 PMCID: PMC10741605 DOI: 10.3390/biomedicines11123293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer stem cells are a subpopulation of tumor cells characterized by their ability to self-renew, induce tumors upon engraftment in animals and exhibit strong resistance to chemotherapy and radiotherapy. These cells exhibit numerous characteristics in common with embryonic stem cells, expressing some of their markers, typically absent in non-pathological adult differentiated cells. The aim of this study was to investigate the potential of conditioned media from cancer stem cells to modulate the fate of Leukemia Inhibitory Factor (LIF)-dependent murine embryonic stem cells (mESCs) as a way to obtain a direct readout of the secretome of cancer cells. A functional assay, "the StemDif sensor test", was developed with two types of cancer stem cells derived from grade IV glioblastoma (adult and pediatric) or from gastric adenocarcinoma. We show that conditioned media from the selection of adult but not pediatric Glioma-Inducing Cells (GICs) maintain mESCs' pluripotency in correlation with LIF secretion and activation of STAT3 protein. In contrast, conditioned media from gastric adenocarcinoma cells display LIF-independent stemness and differentiation activities on mESC. Our test stands out for its user-friendly procedures, affordability and straightforward output, positioning it as a pioneering tool for in-depth exploration of cancer stem cell secretome characteristics.
Collapse
Affiliation(s)
- Aya Abou Hammoud
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; (A.A.H.); (C.B.); (M.Z.)
- Univ. Bordeaux, INSERM, BRIC-MIRCADE Team, U1312, F-33000 Bordeaux, France
- Univ. Bordeaux, INSERM, BRIC, U1312, F-33000 Bordeaux, France; (J.G.); (S.M.-C.); (P.D.); (C.V.)
| | - Julie Giraud
- Univ. Bordeaux, INSERM, BRIC, U1312, F-33000 Bordeaux, France; (J.G.); (S.M.-C.); (P.D.); (C.V.)
- Univ. Bordeaux, CNRS, ImmunoConcEpT, U5164, F-33000 Bordeaux, France;
| | - Xavier Gauthereau
- Univ. Bordeaux, CNRS, ImmunoConcEpT, U5164, F-33000 Bordeaux, France;
| | - Camille Blanchard
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; (A.A.H.); (C.B.); (M.Z.)
| | | | - Marco Zese
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; (A.A.H.); (C.B.); (M.Z.)
| | - Silvia Molina-Castro
- Univ. Bordeaux, INSERM, BRIC, U1312, F-33000 Bordeaux, France; (J.G.); (S.M.-C.); (P.D.); (C.V.)
| | - Pierre Dubus
- Univ. Bordeaux, INSERM, BRIC, U1312, F-33000 Bordeaux, France; (J.G.); (S.M.-C.); (P.D.); (C.V.)
| | - Christine Varon
- Univ. Bordeaux, INSERM, BRIC, U1312, F-33000 Bordeaux, France; (J.G.); (S.M.-C.); (P.D.); (C.V.)
| | - Helene Boeuf
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; (A.A.H.); (C.B.); (M.Z.)
| |
Collapse
|
2
|
Mavinga M, Palmier M, Rémy M, Jeannière C, Lenoir S, Rey S, Saint-Marc M, Alonso F, Génot E, Thébaud N, Chevret E, Mournetas V, Rousseau B, Boiziau C, Boeuf H. The Journey of SCAPs (Stem Cells from Apical Papilla), from Their Native Tissue to Grafting: Impact of Oxygen Concentration. Cells 2022; 11:cells11244098. [PMID: 36552862 PMCID: PMC9776846 DOI: 10.3390/cells11244098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Tissue engineering strategies aim at characterizing and at optimizing the cellular component that is combined with biomaterials, for improved tissue regeneration. Here, we present the immunoMap of apical papilla, the native tissue from which SCAPs are derived. We characterized stem cell niches that correspond to a minority population of cells expressing Mesenchymal stromal/Stem Cell (CD90, CD105, CD146) and stemness (SSEA4 and CD49f) markers as well as endothelial cell markers (VWF, CD31). Based on the colocalization of TKS5 and cortactin markers, we detected migration-associated organelles, podosomes-like structures, in specific regions and, for the first time, in association with stem cell niches in normal tissue. From six healthy teenager volunteers, each with two teeth, we derived twelve cell banks, isolated and amplified under 21 or 3% O2. We confirmed a proliferative advantage of all banks when cultured under 3% versus 21% O2. Interestingly, telomerase activity was similar to that of the highly proliferative hiPSC cell line, but unrelated to O2 concentration. Finally, SCAPs embedded in a thixotropic hydrogel and implanted subcutaneously in immunodeficient mice were protected from cell death with a slightly greater advantage for cells preconditioned at 3% O2.
Collapse
Affiliation(s)
- Marine Mavinga
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | | | - Murielle Rémy
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | | | - Solène Lenoir
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | - Sylvie Rey
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | | | - Florian Alonso
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | - Elisabeth Génot
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | - Noélie Thébaud
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | - Edith Chevret
- Univ. Bordeaux, INSERM, BRIC, U1312, F-33000 Bordeaux, France
| | | | - Benoit Rousseau
- Univ. Bordeaux, Animal Facility A2, Service Commun des Animaleries, F-33000 Bordeaux, France
| | | | - Helene Boeuf
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
3
|
Isolation and Culture of Human Stem Cells from Apical Papilla under Low Oxygen Concentration Highlight Original Properties. Cells 2019; 8:cells8121485. [PMID: 31766521 PMCID: PMC6952825 DOI: 10.3390/cells8121485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cells isolated from the apical papilla of wisdom teeth (SCAPs) are an attractive model for tissue repair due to their availability, high proliferation rate and potential to differentiate in vitro towards mesodermal and neurogenic lineages. Adult stem cells, such as SCAPs, develop in stem cell niches in which the oxygen concentration [O2] is low (3–8% compared with 21% of ambient air). In this work, we evaluate the impact of low [O2] on the physiology of SCAPs isolated and processed in parallel at 21% or 3% O2 without any hyperoxic shock in ambient air during the experiment performed at 3% O2. We demonstrate that SCAPs display a higher proliferation capacity at 3% O2 than in ambient air with elevated expression levels of two cell surface antigens: the alpha-6 integrin subunit (CD49f) and the embryonic stem cell marker (SSEA4). We show that the mesodermal differentiation potential of SCAPs is conserved at early passage in both [O2], but is partly lost at late passage and low [O2], conditions in which SCAPs proliferate efficiently without any sign of apoptosis. Unexpectedly, we show that autophagic flux is active in SCAPs irrespective of [O2] and that this process remains high in cells even after prolonged exposure to 3% O2.
Collapse
|
4
|
Vlaski-Lafarge M, Loncaric D, Perez L, Labat V, Debeissat C, Brunet de la Grange P, Rossignol R, Ivanovic Z, Bœuf H. Bioenergetic Changes Underline Plasticity of Murine Embryonic Stem Cells. Stem Cells 2019; 37:463-475. [PMID: 30599083 DOI: 10.1002/stem.2965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
Murine embryonic stem cells (mESCs) are endowed by a time-dependent window of plasticity during their early commitment steps. Indeed, while mESCs deprived of leukemia inhibitory factor (LIF) for 24 hours revert to their naive pluripotent state after subsequent LIF readdition, cells deprived of LIF for 48 hours are no longer efficient in reverting, upon LIF addition, and undergo irreversible differentiation. We investigated undisclosed bioenergetic profiles of early mESC-derived committed cells versus their undifferentiated states in order to reveal specific bioenergetic changes associated with mESC plasticity. Multiparametric bioenergetic analysis revealed that pluripotent (+LIF) and reversibly committed cells (-LIF24h) are energetically flexible, depending on both oxidative phosphorylation (OXPHOS) and glycolysis. They exhibit high mitochondrial respiration in the presence of the main energetic substrates and can also rely on glycolysis in the presence of OXPHOS inhibitor. Inhibition of the glycolysis or mitochondrial respiration does not change drastically the expression of pluripotency genes, which remain well expressed. In addition, cells treated with these inhibitors keep their capacity to differentiate efficiently upon embryoid bodies formation. Transition from metabolically active mESCs to irreversibly committed cells is associated with a clear change in mitochondrial network morphology, to an increase of adenosine triphosphate (ATP) produced from glycolysis and a decline of ATP turnover and of the mitochondrial activity without change in the mitochondrial mass. Our study pointed that plasticity window of mESCs is associated with the bivalent energetic metabolism and potency to shift to glycolysis or OXPHOS on demand. LIF removal provokes glycolytic metabolic orientation and consecutive loss of the LIF-dependent reversion of cells to the pluripotent state. Stem Cells 2019;37:463-475.
Collapse
Affiliation(s)
- Marija Vlaski-Lafarge
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Darija Loncaric
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Laura Perez
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France
| | - Véronique Labat
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Christelle Debeissat
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Philippe Brunet de la Grange
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | | | - Zoran Ivanovic
- R&D Department, Etablissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France.,Inserm/U1035, University of Bordeaux
| | - Hélène Bœuf
- Inserm/U1026, University of Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Chabaud S, Saba I, Baratange C, Boiroux B, Leclerc M, Rousseau A, Bouhout S, Bolduc S. Urothelial cell expansion and differentiation are improved by exposure to hypoxia. J Tissue Eng Regen Med 2017; 11:3090-3099. [DOI: 10.1002/term.2212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/14/2016] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Stéphane Chabaud
- Génie tissulaire et régénération, centre de recherche FRQS du CHU de Québec, Axe Médecine Régénératrice; Centre LOEX de l'Université Laval; Québec QC Canada
| | - Ingrid Saba
- Génie tissulaire et régénération, centre de recherche FRQS du CHU de Québec, Axe Médecine Régénératrice; Centre LOEX de l'Université Laval; Québec QC Canada
| | - Clément Baratange
- Génie tissulaire et régénération, centre de recherche FRQS du CHU de Québec, Axe Médecine Régénératrice; Centre LOEX de l'Université Laval; Québec QC Canada
- Programme Analyses Biologique et Biochimiques; Institut Universitaire de Technologie de Laval; Laval France
| | - Brice Boiroux
- Génie tissulaire et régénération, centre de recherche FRQS du CHU de Québec, Axe Médecine Régénératrice; Centre LOEX de l'Université Laval; Québec QC Canada
- Programme Analyses Biologique et Biochimiques; Institut Universitaire de Technologie de Laval; Laval France
| | - Maude Leclerc
- Génie tissulaire et régénération, centre de recherche FRQS du CHU de Québec, Axe Médecine Régénératrice; Centre LOEX de l'Université Laval; Québec QC Canada
| | - Alexandre Rousseau
- Génie tissulaire et régénération, centre de recherche FRQS du CHU de Québec, Axe Médecine Régénératrice; Centre LOEX de l'Université Laval; Québec QC Canada
| | - Sara Bouhout
- Génie tissulaire et régénération, centre de recherche FRQS du CHU de Québec, Axe Médecine Régénératrice; Centre LOEX de l'Université Laval; Québec QC Canada
| | - Stéphane Bolduc
- Génie tissulaire et régénération, centre de recherche FRQS du CHU de Québec, Axe Médecine Régénératrice; Centre LOEX de l'Université Laval; Québec QC Canada
- Department of Surgery, Faculty of Medicine; Université Laval; Quebec QC Canada
| |
Collapse
|
7
|
Alessio N, Özcan S, Tatsumi K, Murat A, Peluso G, Dezawa M, Galderisi U. The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Cell Cycle 2016; 16:33-44. [PMID: 27463232 DOI: 10.1080/15384101.2016.1211215] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population, which contain several cell phenotypes: mesenchymal stem cells, progenitor cells, fibroblasts and other type of cells. Previously, we identified unique stem cells that we named multilineage-differentiating stress enduring (Muse) cells as one to several percent of MSCs of the bone marrow, adipose tissue and dermis. Among different cell populations in MSCs, Muse cells, positive for pluripotent surface marker SSEA-3, may represent cells responsible for pluripotent-like property of MSCs, since they express pluripotency genes, able to differentiated into triploblastic cells from a single cells and are self-renewable. MSCs release biologically active factors that have profound effects on local cellular dynamics. A thorough examination of MSC secretome seems essential for understanding the physiological functions exerted by these cells in our organism and also for rational cellular therapy design. In this setting, studies on secretome of Muse cells may shed light on pathways that are associated with their specific features. Our findings evidenced that secretomes of MSCs and Muse cells contain factors that regulate extracellular matrix remodeling, ox-redox activities and immune system. Muse cells appear to secrete factors that may preserve their stem cell features, allow survival under stress conditions and may contribute to their immunomodulation capacity. In detail, the proteins belonging to protein kinase A signaling, FXR/RXR activation and LXR/RXR activation pathways may play a role in regulation of Muse stem cell features. These last 2 pathways together with proteins associated with antigen presentation pathway and coagulation system may play a role in immunomodulation.
Collapse
Affiliation(s)
- Nicola Alessio
- a Department of Experimental Medicine , Biotechnology and Molecular Biology Section, Second University of Naples , Naples , Italy
| | - Servet Özcan
- b Genome and Stem Cell Center (GENKOK), Erciyes University , Kayseri , Turkey.,c Graduate School of Health Sciences, Erciyes Universty , Kayseri , Turkey
| | - Kazuki Tatsumi
- d Department of Stem Cell Biology and Histology , Tohoku University Graduate School of Medicine , Sendai , Japan.,e Tohoku Laboratory Non-clinical Research Division, Clio, Inc. , Sendai , Japan
| | - Ayşegül Murat
- c Graduate School of Health Sciences, Erciyes Universty , Kayseri , Turkey
| | | | - Mari Dezawa
- e Tohoku Laboratory Non-clinical Research Division, Clio, Inc. , Sendai , Japan
| | - Umberto Galderisi
- a Department of Experimental Medicine , Biotechnology and Molecular Biology Section, Second University of Naples , Naples , Italy.,b Genome and Stem Cell Center (GENKOK), Erciyes University , Kayseri , Turkey.,g Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University , Philadelphia , PA , USA
| |
Collapse
|