1
|
Carrasco M, Cabrito TMS, Montalbano MJ, Hołda MK, Walocha J, Tubbs RS, Loukas M. Cardiac ventricular false tendons: A meta-analysis. Clin Anat 2024; 37:114-129. [PMID: 37819143 DOI: 10.1002/ca.24116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
Ventricular false tendons are fibromuscular structures that travel across the ventricular cavity. Left ventricular false tendons (LVFTs) have been examined through gross dissection and echocardiography. This study aimed to comprehensively evaluate the prevalence, morphology, and clinical importance of ventricular false tendons using a systematic review. In multiple studies, these structures have had a wide reported prevalence ranging from less than 1% to 100% of cases. This meta-analysis found the overall pooled prevalence of LVFTs to be 30.2%. Subgroup analysis indicated the prevalence to be 55.1% in cadaveric studies and 24.5% in living patients predominantly studied by echocardiography. Morphologically, left and right ventricular false tendons have been classified into several types based on their location and attachments. Studies have demonstrated false tendons have important clinical implications involving innocent murmurs, premature ventricular contractions, early repolarization, and impairment of systolic and diastolic function. Despite these potential complications, there is evidence demonstrating that the presence of false tendons can lead to positive clinical outcomes.
Collapse
Affiliation(s)
- Mark Carrasco
- Department of Family Medicine, HealthQuest, Rhinebeck, New York, USA
| | | | | | - Mateusz K Hołda
- HEART-Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Jerzy Walocha
- Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland
| | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, West Indies
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, Louisiana, USA
| | - Marios Loukas
- Department of Anatomical Sciences, St. George's University, West Indies
- Department of Anatomy, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
2
|
Gonzalez-Martin P, Sacco F, Butakoff C, Doste R, Bederian C, Gutierrez Espinosa de los Monteros LK, Houzeaux G, Iaizzo PA, Iles TL, Vazquez M, Aguado-Sierra J. Ventricular anatomical complexity and sex differences impact predictions from electrophysiological computational models. PLoS One 2023; 18:e0263639. [PMID: 36780442 PMCID: PMC9925004 DOI: 10.1371/journal.pone.0263639] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/07/2022] [Indexed: 02/15/2023] Open
Abstract
The aim of this work was to analyze the influence of sex hormones and anatomical details (trabeculations and false tendons) on the electrophysiology of healthy human hearts. Additionally, sex- and anatomy-dependent effects of ventricular tachycardia (VT) inducibility are presented. To this end, four anatomically normal, human, biventricular geometries (two male, two female), with identifiable trabeculations, were obtained from high-resolution, ex-vivo MRI and represented by detailed and smoothed geometrical models (with and without the trabeculations). Additionally one model was augmented by a scar. The electrophysiology finite element model (FEM) simulations were carried out, using O'Hara-Rudy human myocyte model with sex phenotypes of Yang and Clancy. A systematic comparison between detailed vs smooth anatomies, male vs female normal hearts was carried out. The heart with a myocardial infarction was subjected to a programmed stimulus protocol to identify the effects of sex and anatomical detail on ventricular tachycardia inducibility. All female hearts presented QT-interval prolongation however the prolongation interval in comparison to the male phenotypes was anatomy-dependent and was not correlated to the size of the heart. Detailed geometries showed QRS fractionation and increased T-wave magnitude in comparison to the corresponding smoothed geometries. A variety of sustained VTs were obtained in the detailed and smoothed male geometries at different pacing locations, which provide evidence of the geometry-dependent differences regarding the prediction of the locations of reentry channels. In the female phenotype, sustained VTs were induced in both detailed and smooth geometries with RV apex pacing, however no consistent reentry channels were identified. Anatomical and physiological cardiac features play an important role defining risk in cardiac disease. These are often excluded from cardiac electrophysiology simulations. The assumption that the cardiac endocardium is smooth may produce inaccurate predictions towards the location of reentry channels in in-silico tachycardia inducibility studies.
Collapse
Affiliation(s)
| | - Federica Sacco
- Barcelona Supercomputing Center, Barcelona, Spain
- Physense, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Ruben Doste
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Carlos Bederian
- Instituto de Física Enrique Gaviola - CONICET, Córdoba, Argentina
| | | | | | - Paul A. Iaizzo
- Visible Heart Laboratories, Department of Surgery and the Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Tinen L. Iles
- University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Mariano Vazquez
- Barcelona Supercomputing Center, Barcelona, Spain
- ELEM Biotech S.L., Barcelona, Spain
| | | |
Collapse
|
3
|
Romero P, Lozano M, Martínez-Gil F, Serra D, Sebastián R, Lamata P, García-Fernández I. Clinically-Driven Virtual Patient Cohorts Generation: An Application to Aorta. Front Physiol 2021; 12:713118. [PMID: 34539438 PMCID: PMC8440937 DOI: 10.3389/fphys.2021.713118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
The combination of machine learning methods together with computational modeling and simulation of the cardiovascular system brings the possibility of obtaining very valuable information about new therapies or clinical devices through in-silico experiments. However, the application of machine learning methods demands access to large cohorts of patients. As an alternative to medical data acquisition and processing, which often requires some degree of manual intervention, the generation of virtual cohorts made of synthetic patients can be automated. However, the generation of a synthetic sample can still be computationally demanding to guarantee that it is clinically meaningful and that it reflects enough inter-patient variability. This paper addresses the problem of generating virtual patient cohorts of thoracic aorta geometries that can be used for in-silico trials. In particular, we focus on the problem of generating a cohort of patients that meet a particular clinical criterion, regardless the access to a reference sample of that phenotype. We formalize the problem of clinically-driven sampling and assess several sampling strategies with two goals, sampling efficiency, i.e., that the generated individuals actually belong to the target population, and that the statistical properties of the cohort can be controlled. Our results show that generative adversarial networks can produce reliable, clinically-driven cohorts of thoracic aortas with good efficiency. Moreover, non-linear predictors can serve as an efficient alternative to the sometimes expensive evaluation of anatomical or functional parameters of the organ of interest.
Collapse
Affiliation(s)
- Pau Romero
- Computational Multiscale Simulation Lab, Department of Computer Science, Universitat de Valencia, Valencia, Spain
| | - Miguel Lozano
- Computational Multiscale Simulation Lab, Department of Computer Science, Universitat de Valencia, Valencia, Spain
| | - Francisco Martínez-Gil
- Computational Multiscale Simulation Lab, Department of Computer Science, Universitat de Valencia, Valencia, Spain
| | - Dolors Serra
- Computational Multiscale Simulation Lab, Department of Computer Science, Universitat de Valencia, Valencia, Spain
| | - Rafael Sebastián
- Computational Multiscale Simulation Lab, Department of Computer Science, Universitat de Valencia, Valencia, Spain
| | - Pablo Lamata
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom
| | - Ignacio García-Fernández
- Computational Multiscale Simulation Lab, Department of Computer Science, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
4
|
Wang Y, Cai L, Luo X, Ying W, Gao H. Simulation of action potential propagation based on the ghost structure method. Sci Rep 2019; 9:10927. [PMID: 31358816 PMCID: PMC6662858 DOI: 10.1038/s41598-019-47321-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
In this paper, a ghost structure (GS) method is proposed to simulate the monodomain model in irregular computational domains using finite difference without regenerating body-fitted grids. In order to verify the validity of the GS method, it is first used to solve the Fitzhugh-Nagumo monodomain model in rectangular and circular regions at different states (the stationary and moving states). Then, the GS method is used to simulate the propagation of the action potential (AP) in transverse and longitudinal sections of a healthy human heart, and with left bundle branch block (LBBB). Finally, we analyze the AP and calcium concentration under healthy and LBBB conditions. Our numerical results show that the GS method can accurately simulate AP propagation with different computational domains either stationary or moving, and we also find that LBBB will cause the left ventricle to contract later than the right ventricle, which in turn affects synchronized contraction of the two ventricles.
Collapse
Affiliation(s)
- Yongheng Wang
- NPU-UoG International Cooperative Lab for Computation and Application in Cardiology, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Li Cai
- NPU-UoG International Cooperative Lab for Computation and Application in Cardiology, Northwestern Polytechnical University, Xi'an, 710129, China. .,Xi'an Key Laboratory of Scientific Computation and Applied Statistics, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wenjun Ying
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
5
|
Lange M, Palamara S, Lassila T, Vergara C, Quarteroni A, Frangi AF. Improved hybrid/GPU algorithm for solving cardiac electrophysiology problems on Purkinje networks. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2835. [PMID: 27661463 DOI: 10.1002/cnm.2835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Cardiac Purkinje fibers provide an important pathway to the coordinated contraction of the heart. We present a numerical algorithm for the solution of electrophysiology problems across the Purkinje network that is efficient enough to be used in in silico studies on realistic Purkinje networks with physiologically detailed models of ion exchange at the cell membrane. The algorithm is on the basis of operator splitting and is provided with 3 different implementations: pure CPU, hybrid CPU/GPU, and pure GPU. Compared to our previous work, we modify the explicit gap junction term at network bifurcations to improve its mathematical consistency. Due to this improved consistency of the model, we are able to perform an empirical convergence study against analytical solutions. The study verified that all 3 implementations produce equivalent convergence rates, and shows that the algorithm produces equivalent result across different hardware platforms. Finally, we compare the efficiency of all 3 implementations on Purkinje networks of increasing spatial resolution using membrane models of increasing complexity. Both hybrid and pure GPU implementations outperform the pure CPU implementation, but their relative performance difference depends on the size of the Purkinje network and the complexity of the membrane model used.
Collapse
Affiliation(s)
- M Lange
- CISTIB, Department of Electronic and Electrical Engineering, The University of Sheffield, UK
| | - S Palamara
- MOX, Dipartimento di Matematica, Politecnico di Milano, Italy
| | - T Lassila
- CISTIB, Department of Electronic and Electrical Engineering, The University of Sheffield, UK
| | - C Vergara
- MOX, Dipartimento di Matematica, Politecnico di Milano, Italy
| | - A Quarteroni
- CMCS, Mathematics Institute of Computational Science and Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - A F Frangi
- CISTIB, Department of Electronic and Electrical Engineering, The University of Sheffield, UK
| |
Collapse
|
6
|
A rare asymptomatic false tendon crossing left atrium and ventricle assessed by echocardiography. Int J Cardiol 2016; 223:779-780. [DOI: 10.1016/j.ijcard.2016.08.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 11/19/2022]
|