1
|
Kim S, Mungalpara N, Wangikar R, Tarabichi M, Karam J, Bedi A, Koh J, Amirouche F. Comparative study of locking neutralization plate construct versus tension band wiring with a cannulated screw for patella fractures: experimental and finite element analysis. J Orthop Surg Res 2024; 19:77. [PMID: 38233950 PMCID: PMC10795423 DOI: 10.1186/s13018-024-04538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Transverse patella fractures, accounting for approximately 1% of Orthopedic injuries, pose intricate challenges due to their vital role in knee mechanics. This study aimed to compare the biomechanical performance of a construct, integrating cannulated screws and an anterior locking neutralization plate, with the conventional tension band wiring technique for treating these fractures. Experimental testing and Finite Element Analysis were employed to evaluate the constructs and gain profound insights into their mechanical behavior. Sixteen cadaveric knees were prepared, and transverse patella fractures were induced at the midpoints using a saw. The plate construct and tension band wire fixation were randomly assigned to the specimens. A cyclic test evaluated the implants' durability and stability, simulating knee movement during extension and flexion. Tensile testing assessed the implants' maximum failure force after cyclic testing, while Finite Element Analysis provided detailed insights into stress distribution and deformation patterns. Statistical analysis was exclusively performed for the experimental data. Results showed the plate enhanced stability with significantly lower deformation (0.09 ± 0.12 mm) compared to wire fixation (0.77 ± 0.54 mm) after 500 cycles (p = 0.004). In tensile testing, the construct also demonstrated higher failure resistance (1359 ± 21.53 N) than wire fixation (780.1 ± 22.62N) (p = 0.007). Finite Element Analysis highlighted distinct stress patterns, validating the construct's superiority. This research presents a promising treatment approach for transverse patella fractures with potential clinical impact and future research prospects. This study presents a promising advancement in addressing the intricate challenges of transverse patella fractures, with implications for refining clinical practice. The construct's improved stability and resistance to failure offer potential benefits in postoperative management and patient outcomes.
Collapse
Affiliation(s)
- Sunjung Kim
- Department of Orthopedic Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Nirav Mungalpara
- Department of Orthopedic Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Rohan Wangikar
- Department of Orthopedic Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Majd Tarabichi
- Department of Orthopedic Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph Karam
- Department of Orthopedic Surgery, Orthopedic and Spine Institute, Northshore University Health System, An Affiliate of the University of Chicago Pritzker School of Medicine, 9669 Kenton Avenue, Skokie, IL, 60076, USA
| | - Asheesh Bedi
- Department of Orthopedic Surgery, Orthopedic and Spine Institute, Northshore University Health System, An Affiliate of the University of Chicago Pritzker School of Medicine, 9669 Kenton Avenue, Skokie, IL, 60076, USA
| | - Jason Koh
- Department of Orthopedic Surgery, Orthopedic and Spine Institute, Northshore University Health System, An Affiliate of the University of Chicago Pritzker School of Medicine, 9669 Kenton Avenue, Skokie, IL, 60076, USA
| | - Farid Amirouche
- Department of Orthopedic Surgery, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Orthopedic Surgery, Orthopedic and Spine Institute, Northshore University Health System, An Affiliate of the University of Chicago Pritzker School of Medicine, 9669 Kenton Avenue, Skokie, IL, 60076, USA.
| |
Collapse
|
2
|
Chawla D, Han G, Eriten M, Henak CR. Microindentation Technique to Create Localized Cartilage Microfractures. Curr Protoc 2021; 1:e280. [PMID: 34670019 DOI: 10.1002/cpz1.280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Articular cartilage is a multiphasic, anisotropic, and heterogeneous material. Although cartilage possesses excellent mechanical and biological properties, it can undergo mechanical damage, resulting in osteoarthritis. Thus, it is important to understand the microscale failure behavior of cartilage in both basic science and clinical contexts. Determining cartilage failure behavior and mechanisms provides insight for improving treatment strategies to delay osteoarthritis initiation or progression and can also enhance the value of cartilage as bioinspiration for material fabrication. To investigate microscale failure behavior, we developed a protocol to initiate fractures by applying a microindentation technique using a well-defined tip geometry that creates localized cracks across a range of loading rates. The protocol includes extracting the tissue from the joint, preparing samples, and microfracture. Various aspects of the experiment, such as loading profile and solvent, can be adjusted to mimic physiological or pathological conditions and thereby further clarify phenomena underlying articular cartilage failure. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Harvesting and dissection of the joint surfaces Basic Protocol 2: Preparation of samples for microindentation and fatigue testing Basic Protocol 3: Microfracture using microindentation Basic Protocol 4: Crack propagation under cyclic loading.
Collapse
Affiliation(s)
- Dipul Chawla
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Guebum Han
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melih Eriten
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Truhn D, Zwingenberger KT, Schock J, Abrar DB, Radke KL, Post M, Linka K, Knobe M, Kuhl C, Nebelung S. No pressure, no diamonds? - Static vs. dynamic compressive in-situ loading to evaluate human articular cartilage functionality by functional MRI. J Mech Behav Biomed Mater 2021; 120:104558. [PMID: 33957568 DOI: 10.1016/j.jmbbm.2021.104558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 01/21/2023]
Abstract
Biomechanical Magnetic Resonance Imaging (MRI) of articular cartilage, i.e. its imaging under loading, is a promising diagnostic tool to assess the tissue's functionality in health and disease. This study aimed to assess the response to static and dynamic loading of histologically intact cartilage samples by functional MRI and pressure-controlled in-situ loading. To this end, 47 cartilage samples were obtained from the medial femoral condyles of total knee arthroplasties (from 24 patients), prepared to standard thickness, and placed in a standard knee joint in a pressure-controlled whole knee-joint compressive loading device. Cartilage samples' responses to static (i.e. constant), dynamic (i.e. alternating), and no loading, i.e. free-swelling conditions, were assessed before (δ0), and after 30 min (δ1) and 60 min (δ2) of loading using serial T1ρ maps acquired on a 3.0T clinical MRI scanner (Achieva, Philips). Alongside texture features, relative changes in T1ρ (Δ1, Δ2) were determined for the upper and lower sample halves and the entire sample, analyzed using appropriate statistical tests, and referenced to histological (Mankin scoring) and biomechanical reference measures (tangent stiffness). Histological, biomechanical, and T1ρ sample characteristics at δ0 were relatively homogenous in all samples. In response to loading, relative increases in T1ρ were strong and significant after dynamic loading (Δ1 = 10.3 ± 17.0%, Δ2 = 21.6 ± 21.8%, p = 0.002), while relative increases in T1ρ after static loading and in controls were moderate and not significant. Generally, texture features did not demonstrate clear loading-related associations underlying the spatial relationships of T1ρ. When realizing the clinical translation, this in-situ study suggests that serial T1ρ mapping is best combined with dynamic loading to assess cartilage functionality in humans based on advanced MRI techniques.
Collapse
Affiliation(s)
- Daniel Truhn
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Ken Tonio Zwingenberger
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Justus Schock
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany; Institute of Imaging and Computer Vision, RWTH Aachen University, D-52074, Aachen, Germany
| | - Daniel Benjamin Abrar
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany
| | - Karl Ludger Radke
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany
| | - Manuel Post
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Kevin Linka
- Hamburg University of Technology, Department of Continuum and Materials Mechanics, D-21073, Hamburg, Germany
| | - Matthias Knobe
- Cantonal Hospital Lucerne, Department of Orthopaedic and Trauma Surgery, CH-6000, Lucerne, Switzerland
| | - Christiane Kuhl
- Aachen University Hospital, Department of Diagnostic and Interventional Radiology, D-52074, Aachen, Germany
| | - Sven Nebelung
- University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Gomez-Contreras PC, Kluz PN, Hines MR, Coleman MC. Intersections Between Mitochondrial Metabolism and Redox Biology Mediate Posttraumatic Osteoarthritis. Curr Rheumatol Rep 2021; 23:32. [PMID: 33893892 DOI: 10.1007/s11926-021-00994-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW This review will cover foundational studies and recent findings that established key concepts for understanding the importance of redox biology to chondrocyte mitochondrial function and osteoarthritis pathophysiology after injury. RECENT FINDINGS Articular chondrocyte mitochondria can be protected with a wide variety of antioxidants that will be discussed within a framework suggested by classic studies. These agents not only underscore the importance of thiol metabolism and associated redox function for chondrocyte mitochondria but also suggest complex interactions with signal transduction pathways and other molecular features of osteoarthritis that require more thorough investigation. Emerging evidence also indicates that reductive stress could occur alongside oxidative stress. Recent studies have shed new light on historic paradoxes in chondrocyte redox and mitochondrial physiology, leading to the development of promising disease-modifying therapies for posttraumatic osteoarthritis.
Collapse
Affiliation(s)
| | - Paige N Kluz
- University of Iowa, 1182 Biomedical Laboratories, 500 Newton Road, Iowa City, 52242, USA
| | - Madeline R Hines
- University of Iowa, 1182 Biomedical Laboratories, 500 Newton Road, Iowa City, 52242, USA
| | - Mitchell C Coleman
- University of Iowa, 1182 Biomedical Laboratories, 500 Newton Road, Iowa City, 52242, USA.
| |
Collapse
|
5
|
Adebayo OO, Holyoak DT, van der Meulen MCH. Mechanobiological Mechanisms of Load-Induced Osteoarthritis in the Mouse Knee. J Biomech Eng 2020; 141:2736041. [PMID: 31209459 DOI: 10.1115/1.4043970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions of people worldwide, yet its disease mechanism is not clearly understood. Animal models have been established to study disease progression by initiating OA through modified joint mechanics or altered biological activity within the joint. However, animal models often do not have the capability to directly relate the mechanical environment to joint damage. This review focuses on a novel in vivo approach based on controlled, cyclic tibial compression to induce OA in the mouse knee. First, we discuss the development of the load-induced OA model, its different loading configurations, and other techniques used by research laboratories around the world. Next, we review the lessons learned regarding the mechanobiological mechanisms of load-induced OA and relate these findings to the current understanding of the disease. Then, we discuss the role of specific genetic and cellular pathways involved in load-induced OA progression and the contribution of altered tissue properties to the joint response to mechanical loading. Finally, we propose using this approach to test the therapeutic efficacy of novel treatment strategies for OA. Ultimately, elucidating the mechanobiological mechanisms of load-induced OA will aid in developing targeted treatments for this disabling disease.
Collapse
Affiliation(s)
| | - Derek T Holyoak
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, 113 Weill Hall, Ithaca, NY 14853.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853.,Research Division, Hospital for Special Surgery, New York, NY 10021 e-mail:
| |
Collapse
|
6
|
Hunt MA, Charlton JM, Esculier JF. Osteoarthritis year in review 2019: mechanics. Osteoarthritis Cartilage 2020; 28:267-274. [PMID: 31877382 DOI: 10.1016/j.joca.2019.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 02/02/2023]
Abstract
Mechanics play a critical - but not sole - role in the pathogenesis of osteoarthritis, and recent research has highlighted how mechanical constructs are relevant at the cellular, joint, and whole-body level related to osteoarthritis outcomes. This review examined papers from April 2018 to April 2019 that reported on the role of mechanics in osteoarthritis etiology, with a particular emphasis on studies that focused on the interaction between movement and tissue biomechanics with other clinical outcomes relevant to the pathophysiology of osteoarthritis. Studies were grouped by themes that were particularly prevalent from the past year. Results of the search highlighted the large exposure of knee-related research relative to other body areas, as well as studies utilizing laboratory-based motion capture technology. New research from this past year highlighted the important role that rate of exerted loads and rate of muscle force development - rather than simply force capacity (strength) - have in OA etiology and treatment. Further, the role of muscle activation patterns in functional and structural aspects of joint health has received much interest, though findings remain equivocal. Finally, new research has identified potential mechanical outcome measures that may be related to osteoarthritis disease progression. Future research should continue to combine knowledge of mechanics with other relevant research techniques, and to identify mechanical markers of joint health and structural and functional disease progression that are needed to best inform disease prevention, monitoring, and treatment.
Collapse
Affiliation(s)
- M A Hunt
- Motion Analysis and Biofeedback Laboratory, University of British Columbia, Vancouver, BC, Canada; Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.
| | - J M Charlton
- Motion Analysis and Biofeedback Laboratory, University of British Columbia, Vancouver, BC, Canada; Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - J-F Esculier
- Motion Analysis and Biofeedback Laboratory, University of British Columbia, Vancouver, BC, Canada; Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
A multiscale framework for evaluating three-dimensional cell mechanics in fibril-reinforced poroelastic tissues with anatomical cell distribution – Analysis of chondrocyte deformation behavior in mechanically loaded articular cartilage. J Biomech 2020; 101:109648. [DOI: 10.1016/j.jbiomech.2020.109648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/03/2019] [Accepted: 01/16/2020] [Indexed: 11/24/2022]
|
8
|
Mills K, Dudley D, Collins NJ. Do the benefits of participation in sport and exercise outweigh the negatives? An academic review. Best Pract Res Clin Rheumatol 2019; 33:172-187. [PMID: 31431271 DOI: 10.1016/j.berh.2019.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Public health campaigns promote regular exercise and physical activity. These campaigns are founded on global recommendations that a combination of aerobic and resistance exercise is required, on a weekly basis, to maximise physical and mental health. However, participation in all forms of sports and physical activity has inherent risks that need to be considered by both health practitioners making activity recommendations and the people participating. This review examines biological, psychological and social benefits and harms of the three highest participation physical activities: walking/running, multidirectional sports and resistance exercise. While the remaining evidence indicates that the positives do outweigh the negatives, it demonstrates that moderate amounts of exercise provide the most optimal balance and that potential harms are typically associated with low or high participation.
Collapse
Affiliation(s)
- Kathryn Mills
- Discipline of Physiotherapy, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - Dean Dudley
- Centre of Children's Learning in a Social World, Department of Educational Studies, Faculty of Human Sciences, Macquarie University, Sydney, Australia.
| | - Natalie J Collins
- Physiotherapy, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Australia.
| |
Collapse
|
9
|
Brial C, McCarthy M, Adebayo O, Wang H, Chen T, Warren R, Maher S. Lateral Meniscal Graft Transplantation: Effect of Fixation Method on Joint Contact Mechanics During Simulated Gait. Am J Sports Med 2019; 47:2437-2443. [PMID: 31314996 PMCID: PMC7063591 DOI: 10.1177/0363546519860113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Controversy exists regarding the optimal bony fixation technique for lateral meniscal allografts. PURPOSE/HYPOTHESIS The objective was to quantify knee joint contact mechanics across the lateral plateau for keyhole and bone plug meniscal allograft transplant fixation techniques throughout simulated gait. It was hypothesized that both methods of fixation would improve contact mechanics relative to the meniscectomized condition, while keyhole fixation would restore the distribution of contact stress closer to that of the intact knee. STUDY DESIGN Controlled laboratory study. METHODS Six human cadaveric knees were mounted on a multidirectional dynamic simulator and subjected to the following conditions: (1) native intact meniscus, (2) keyhole fixation of the native meniscus, (3) bone plug fixation of the native meniscus, and (4) meniscectomy. Contact area, peak contact stress, and the distribution of stress across the tibial plateau were computed at 14% and 45% of the gait cycle, at which axial forces are at their highest. Translation of the weighted center of contact stress throughout simulated gait was computed. RESULTS Both bony fixation techniques improved contact mechanics relative to the meniscectomized condition. The keyhole technique was not significantly different from the intact condition for the following metrics: contact area, peak contact stress, distribution of force between the meniscal footprint and cartilage-to-cartilage contact, and the position of the weighted center of contact. In contrast, bone plug fixation resulted in a significant decrease of 21% to 28% in contact area at 14% and 45% of the simulated gait cycle, a significant increase in peak contact stresses of 34% at 45% of the gait cycle, and a shift in the weighted center of contact, which increased forces in the cartilage-to-cartilage contact area at 45% of the gait cycle. CONCLUSION While both keyhole and bone plug fixation methods improved lateral compartment contact mechanics relative to the meniscectomized knee, keyhole fixation restored contact mechanics closer to that of the intact knee. CLINICAL RELEVANCE Method of meniscal fixation is under the direct control of the surgeon. From a biomechanics perspective, keyhole fixation is advocated for its ability to mimic intact knee joint contact mechanics.
Collapse
Affiliation(s)
- Caroline Brial
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA
| | - Moira McCarthy
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA
| | - Olufunmilayo Adebayo
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA
| | - Hongsheng Wang
- Orthopaedic Soft Tissue Research Program, Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Tony Chen
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA.,Orthopaedic Soft Tissue Research Program, Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Russell Warren
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA.,Orthopaedic Soft Tissue Research Program, Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Suzanne Maher
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA.,Orthopaedic Soft Tissue Research Program, Research Institute, Hospital for Special Surgery, New York, New York, USA.,Address correspondence to Suzanne Maher, PhD, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA, ()
| |
Collapse
|
10
|
Rutherford D, Buckingham L, Moreside J, Wong I, Richardson G. Knee motion and muscle activation patterns are altered in hip osteoarthritis: The effect of severity on walking mechanics. Clin Biomech (Bristol, Avon) 2018; 59:1-7. [PMID: 30099241 DOI: 10.1016/j.clinbiomech.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 07/17/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Knee function is impaired in individuals with moderate hip osteoarthritis. How this extends to those undergoing total hip arthroplasty is unknown despite the common requirement for knee arthroplasty in this population. The study purpose was to determine whether sagittal plane knee joint movements and quadriceps and hamstring activation patterns differ between individuals with either moderate or severe unilateral hip osteoarthritis, and between ipsilateral and contralateral knees. METHODS 20 individuals with moderate osteoarthritis and 20 with severe osteoarthritis were recruited. Sagittal knee motion and surface electromyograms from the hamstrings and quadriceps were collected during treadmill walking at a self-selected speed. Principal component analysis captured amplitude and temporal sagittal plane motion and EMG waveform features. Student's t-tests and Analysis of Variance determined between group differences and within/between group leg differences. FINDINGS The severe groups' contralateral knee was in greater flexion at initial contact and demonstrated a movement profile of a longer stance phase (p < 0.001). The severe group had reduced sagittal plane knee motion (p < 0.0001); more so in the ipsilateral knee (p < 0.0001). The severe group had greater hamstring (p = 0.009) and quadriceps activation (p < 0.001) overall, specifically mid-stance quadriceps bilaterally (p = 0.002). Ipsilateral sagittal plane knee motion was reduced in both groups. Compared with those with moderate osteoarthritis, individuals with severe osteoarthritis walk with reduced sagittal plane knee motion bilaterally, suggesting prolonged contralateral stance, and elevated mid-stance hamstring and quadriceps activation. INTERPRETATION Altered kinematics and muscle activity could contribute to a greater mechanical demand on the contralateral knee in those with more severe hip osteoarthritis.
Collapse
Affiliation(s)
- Derek Rutherford
- School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada; School of Biomedical Engineering, Faculty of Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Lindsey Buckingham
- School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Janice Moreside
- School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada; School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Ivan Wong
- Department of Surgery, Division of Orthopaedics, Nova Scotia Health Authority, Halifax, NS B3H 3G1, Canada.
| | - Glen Richardson
- Department of Surgery, Division of Orthopaedics, Nova Scotia Health Authority, Halifax, NS B3H 3G1, Canada.
| |
Collapse
|
11
|
Abstract
Menisci in the knee joint are thought to provide stability, increased contact area, decreased contact pressures, and offer protection to the underlying articular cartilage and bone during joint loading. Meniscal loss or injury is typically accompanied by degenerative changes in the knee, leading to an increased risk for osteoarthritis in animals including humans. However, the detailed mechanisms underlying joint degeneration and the development of osteoarthritis remain largely unknown, and the acute effects of meniscal loss have not been studied systematically. We developed a microscopy-based system to study microscale joint mechanics in living mice loaded by controlled muscular contractions. Here, we show how meniscal loss is associated with rapid chondrocyte death (necrosis) in articular cartilage within hours of injury, and how intact menisci protect chondrocytes in vivo in the presence of intense muscle-based joint loading and/or injury to the articular cartilage. Our findings suggest that loading the knee after meniscal loss is associated with extensive cell death in intact and injured knees, and that early treatment interventions should be aimed at preventing chondrocyte death.
Collapse
|
12
|
Komeili A, Abusara Z, Federico S, Herzog W. A compression system for studying depth-dependent mechanical properties of articular cartilage under dynamic loading conditions. Med Eng Phys 2018; 60:103-108. [PMID: 30061065 DOI: 10.1016/j.medengphy.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 06/30/2018] [Accepted: 07/15/2018] [Indexed: 10/28/2022]
Abstract
The biological activities of chondrocytes are influenced by the mechanical characteristics of their environment. The overall real-time mechanical response of cartilage has been investigated earlier. However, the instantaneous local mechano-biology of cartilage has not been investigated in detail under dynamic loading conditions. In order to address this gap in the literature, we designed a compression testing device and implemented a dual photon microscopy technique with the goal of measuring local mechanical and biological responses of articular cartilage under dynamic loading conditions. The details of the compression system and results of a pilot study are presented here. A 15% ramp compression at a rate of 0.003/s with a subsequent stress relaxation phase was applied to the cartilage explant samples. The extra cellular matrix was imaged throughout the entire thickness of the cartilage sample, and local tissue strains were measured during the compression and relaxation phase. The axial compressive strains in the middle and superficial zones of cartilage were observed to increase during the relaxation phase: this was a new finding, suggesting the importance of further investigations on the real-time local behavior of cartilage. The compression system showed promising results for investigating the dynamic, real-time mechanical response of articular cartilage, and can now be used to reveal the instantaneous mechanical and biological responses of chondrocytes in response to dynamic loading conditions.
Collapse
Affiliation(s)
- Amin Komeili
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Canada 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Ziad Abusara
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Canada 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Salvatore Federico
- Department of Mechanical and Manufacturing Engineering, The University of Calgary, Calgary, Canada 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada; Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Canada 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Canada 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
13
|
Herzog W. Skeletal muscle mechanics: questions, problems and possible solutions. J Neuroeng Rehabil 2017; 14:98. [PMID: 28915834 PMCID: PMC5603017 DOI: 10.1186/s12984-017-0310-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle mechanics have been studied ever since people have shown an interest in human movement. However, our understanding of muscle contraction and muscle mechanical properties has changed fundamentally with the discovery of the sliding filament theory in 1954 and associated cross-bridge theory in 1957. Nevertheless, experimental evidence suggests that our knowledge of the mechanisms of contraction is far from complete, and muscle properties and muscle function in human movement remain largely unknown.In this manuscript, I am trying to identify some of the crucial challenges we are faced with in muscle mechanics, offer possible solutions to questions, and identify problems that might be worthwhile exploring in the future. Since it is impossible to tackle all (worthwhile) problems in a single manuscript, I identified three problems that are controversial, important, and close to my heart. They may be identified as follows: (i) mechanisms of muscle contraction, (ii) in vivo whole muscle mechanics and properties, and (iii) force-sharing among synergistic muscles. These topics are fundamental to our understanding of human movement and movement control, and they contain a series of unknowns and challenges to be explored in the future.It is my hope that this paper may serve as an inspiration for some, may challenge current beliefs in selected areas, tackle important problems in the area of muscle mechanics, physiology and movement control, and may guide and focus some of the thinking of future muscle mechanics research.
Collapse
Affiliation(s)
- Walter Herzog
- Faculty of Kinesiology, University of Calgary, 2500 University Dr, Calgary, AB, T2N-1N4, Canada.
| |
Collapse
|
14
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
15
|
Ghosh S, Cimino JG, Scott AK, Damen FW, Phillips EH, Veress AI, Neu CP, Goergen CJ. In Vivo Multiscale and Spatially-Dependent Biomechanics Reveals Differential Strain Transfer Hierarchy in Skeletal Muscle. ACS Biomater Sci Eng 2017; 3:2798-2805. [PMID: 29276759 DOI: 10.1021/acsbiomaterials.6b00772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biological tissues have a complex hierarchical architecture that spans organ to subcellular scales and comprises interconnected biophysical and biochemical machinery. Mechanotransduction, gene regulation, gene protection, and structure-function relationships in tissues depend on how force and strain are modulated from macro to micro scales, and vice versa. Traditionally, computational and experimental techniques have been used in common model systems (e.g., embryos) and simple strain measures were applied. But the hierarchical transfer of mechanical parameters like strain in mammalian systems is largely unexplored in vivo. Here, we experimentally probed complex strain transfer processes in mammalian skeletal muscle tissue over multiple biological scales using complementary in vivo ultrasound and optical imaging approaches. An iterative hyperelastic warping technique quantified the spatially-dependent strain distributions in tissue, matrix, and subcellular (nuclear) structures, and revealed a surprising increase in strain magnitude and heterogeneity in active muscle as the spatial scale also increased. The multiscale strain heterogeneity indicates tight regulation of mechanical signals to the nuclei of individual cells in active muscle, and an emergent behavior appearing at larger (e.g. tissue) scales characterized by dramatically increased strain complexity.
Collapse
Affiliation(s)
- Soham Ghosh
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - James G Cimino
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - Adrienne K Scott
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - Alexander I Veress
- Department of Mechanical Engineering, University of Washington, 352600 Stevens Way, Seattle, Washington 98195, United States
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States.,Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|