1
|
Monberg MJ, Keefe S, Karantza V, Tryfonidis K, Toker S, Mejia J, Orlowski R, Haiderali A, Prabhu VS, Aktan G. A Narrative Review of the Clinical, Humanistic, and Economic Value of Pembrolizumab-Based Immunotherapy for the Treatment of Breast and Gynecologic Cancers. Oncol Ther 2024:10.1007/s40487-024-00308-0. [PMID: 39453600 DOI: 10.1007/s40487-024-00308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024] Open
Abstract
Breast and gynecologic cancers are common across the world and are associated with substantial societal and economic burden. Pembrolizumab was among the first immune checkpoint inhibitors targeting programmed cell death protein 1 to be approved for the treatment of patients with triple-negative breast cancer, cervical cancer, and endometrial cancer. Recent clinical trials have established pembrolizumab regimens as a standard of care treatment for these tumor types. Clinical data are further supported by patient-reported outcome, cost-effectiveness, and real-world evidence. Pembrolizumab monotherapy and combination regimens do not negatively influence health-related quality of life and are cost-effective relative to comparators. Ongoing phase 3 studies with pembrolizumab will expand the current understanding of its use in breast and gynecologic cancers. Several of these studies are in patients with early-stage disease with the hope of curing patients. The main objective of this review is to summarize the clinical, humanistic, and economic value of pembrolizumab in these settings and to describe the future challenges for patients, caregivers, clinicians, and payers.
Collapse
Affiliation(s)
| | - Steve Keefe
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | | | - Sarper Toker
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | - Jaime Mejia
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | - Amin Haiderali
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | - Gursel Aktan
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| |
Collapse
|
2
|
Xu AM, Haro M, Walts AE, Hu Y, John J, Karlan BY, Merchant A, Orsulic S. Spatiotemporal architecture of immune cells and cancer-associated fibroblasts in high-grade serous ovarian carcinoma. SCIENCE ADVANCES 2024; 10:eadk8805. [PMID: 38630822 PMCID: PMC11023532 DOI: 10.1126/sciadv.adk8805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
High-grade serous ovarian carcinoma (HGSOC), the deadliest form of ovarian cancer, is typically diagnosed after it has metastasized and often relapses after standard-of-care platinum-based chemotherapy, likely due to advanced tumor stage, heterogeneity, and immune evasion and tumor-promoting signaling from the tumor microenvironment. To understand how spatial heterogeneity contributes to HGSOC progression and early relapse, we profiled an HGSOC tissue microarray of patient-matched longitudinal samples from 42 patients. We found spatial patterns associated with early relapse, including changes in T cell localization, malformed tertiary lymphoid structure (TLS)-like aggregates, and increased podoplanin-positive cancer-associated fibroblasts (CAFs). Using spatial features to compartmentalize the tissue, we found that plasma cells distribute in two different compartments associated with TLS-like aggregates and CAFs, and these distinct microenvironments may account for the conflicting reports about the role of plasma cells in HGSOC prognosis.
Collapse
Affiliation(s)
- Alexander M. Xu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marcela Haro
- Department of Obstetrics and Gynecology and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ann E. Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ye Hu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joshi John
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Medicine, Division of Geriatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Akil Merchant
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Bryant A, Hiu S, Kunonga PT, Gajjar K, Craig D, Vale L, Winter-Roach BA, Elattar A, Naik R. Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery. Cochrane Database Syst Rev 2022; 9:CD015048. [PMID: 36161421 PMCID: PMC9512080 DOI: 10.1002/14651858.cd015048.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ovarian cancer is the seventh most common cancer among women and a leading cause of death from gynaecological malignancies. Epithelial ovarian cancer is the most common type, accounting for around 90% of all ovarian cancers. This specific type of ovarian cancer starts in the surface layer covering the ovary or lining of the fallopian tube. Surgery is performed either before chemotherapy (upfront or primary debulking surgery (PDS)) or in the middle of a course of treatment with chemotherapy (neoadjuvant chemotherapy (NACT) and interval debulking surgery (IDS)), with the aim of removing all visible tumour and achieving no macroscopic residual disease (NMRD). The aim of this review is to investigate the prognostic impact of size of residual disease nodules (RD) in women who received upfront or interval cytoreductive surgery for advanced (stage III and IV) epithelial ovarian cancer (EOC). OBJECTIVES To assess the prognostic impact of residual disease after primary surgery on survival outcomes for advanced (stage III and IV) epithelial ovarian cancer. In separate analyses, primary surgery included both upfront primary debulking surgery (PDS) followed by adjuvant chemotherapy and neoadjuvant chemotherapy followed by interval debulking surgery (IDS). Each residual disease threshold is considered as a separate prognostic factor. SEARCH METHODS We searched CENTRAL (2021, Issue 8), MEDLINE via Ovid (to 30 August 2021) and Embase via Ovid (to 30 August 2021). SELECTION CRITERIA We included survival data from studies of at least 100 women with advanced EOC after primary surgery. Residual disease was assessed as a prognostic factor in multivariate prognostic models. We excluded studies that reported fewer than 100 women, women with concurrent malignancies or studies that only reported unadjusted results. Women were included into two distinct groups: those who received PDS followed by platinum-based chemotherapy and those who received IDS, analysed separately. We included studies that reported all RD thresholds after surgery, but the main thresholds of interest were microscopic RD (labelled NMRD), RD 0.1 cm to 1 cm (small-volume residual disease (SVRD)) and RD > 1 cm (large-volume residual disease (LVRD)). DATA COLLECTION AND ANALYSIS Two review authors independently abstracted data and assessed risk of bias. Where possible, we synthesised the data in meta-analysis. To assess the adequacy of adjustment factors used in multivariate Cox models, we used the 'adjustment for other prognostic factors' and 'statistical analysis and reporting' domains of the quality in prognosis studies (QUIPS) tool. We also made judgements about the certainty of the evidence for each outcome in the main comparisons, using GRADE. We examined differences between FIGO stages III and IV for different thresholds of RD after primary surgery. We considered factors such as age, grade, length of follow-up, type and experience of surgeon, and type of surgery in the interpretation of any heterogeneity. We also performed sensitivity analyses that distinguished between studies that included NMRD in RD categories of < 1 cm and those that did not. This was applicable to comparisons involving RD < 1 cm with the exception of RD < 1 cm versus NMRD. We evaluated women undergoing PDS and IDS in separate analyses. MAIN RESULTS We found 46 studies reporting multivariate prognostic analyses, including RD as a prognostic factor, which met our inclusion criteria: 22,376 women who underwent PDS and 3697 who underwent IDS, all with varying levels of RD. While we identified a range of different RD thresholds, we mainly report on comparisons that are the focus of a key area of clinical uncertainty (involving NMRD, SVRD and LVRD). The comparison involving any visible disease (RD > 0 cm) and NMRD was also important. SVRD versus NMRD in a PDS setting In PDS studies, most showed an increased risk of death in all RD groups when those with macroscopic RD (MRD) were compared to NMRD. Women who had SVRD after PDS had more than twice the risk of death compared to women with NMRD (hazard ratio (HR) 2.03, 95% confidence interval (CI) 1.80 to 2.29; I2 = 50%; 17 studies; 9404 participants; moderate-certainty). The analysis of progression-free survival found that women who had SVRD after PDS had nearly twice the risk of death compared to women with NMRD (HR 1.88, 95% CI 1.63 to 2.16; I2 = 63%; 10 studies; 6596 participants; moderate-certainty). LVRD versus SVRD in a PDS setting When we compared LVRD versus SVRD following surgery, the estimates were attenuated compared to NMRD comparisons. All analyses showed an overall survival benefit in women who had RD < 1 cm after surgery (HR 1.22, 95% CI 1.13 to 1.32; I2 = 0%; 5 studies; 6000 participants; moderate-certainty). The results were robust to analyses of progression-free survival. SVRD and LVRD versus NMRD in an IDS setting The one study that defined the categories as NMRD, SVRD and LVRD showed that women who had SVRD and LVRD after IDS had more than twice the risk of death compared to women who had NMRD (HR 2.09, 95% CI 1.20 to 3.66; 310 participants; I2 = 56%, and HR 2.23, 95% CI 1.49 to 3.34; 343 participants; I2 = 35%; very low-certainty, for SVRD versus NMRD and LVRD versus NMRD, respectively). LVRD versus SVRD + NMRD in an IDS setting Meta-analysis found that women who had LVRD had a greater risk of death and disease progression compared to women who had either SVRD or NMRD (HR 1.60, 95% CI 1.21 to 2.11; 6 studies; 1572 participants; I2 = 58% for overall survival and HR 1.76, 95% CI 1.23 to 2.52; 1145 participants; I2 = 60% for progression-free survival; very low-certainty). However, this result is biased as in all but one study it was not possible to distinguish NMRD within the < 1 cm thresholds. Only one study separated NMRD from SVRD; all others included NMRD in the SVRD group, which may create bias when comparing with LVRD, making interpretation challenging. MRD versus NMRD in an IDS setting Women who had any amount of MRD after IDS had more than twice the risk of death compared to women with NMRD (HR 2.11, 95% CI 1.35 to 3.29, I2 = 81%; 906 participants; very low-certainty). AUTHORS' CONCLUSIONS In a PDS setting, there is moderate-certainty evidence that the amount of RD after primary surgery is a prognostic factor for overall and progression-free survival in women with advanced ovarian cancer. We separated our analysis into three distinct categories for the survival outcome including NMRD, SVRD and LVRD. After IDS, there may be only two categories required, although this is based on very low-certainty evidence, as all but one study included NMRD in the SVRD category. The one study that separated NMRD from SVRD showed no improved survival outcome in the SVRD category, compared to LVRD. Further low-certainty evidence also supported restricting to two categories, where women who had any amount of MRD after IDS had a significantly greater risk of death compared to women with NMRD. Therefore, the evidence presented in this review cannot conclude that using three categories applies in an IDS setting (very low-certainty evidence), as was supported for PDS (which has convincing moderate-certainty evidence).
Collapse
Affiliation(s)
- Andrew Bryant
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Shaun Hiu
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Patience T Kunonga
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, 1st Floor Maternity Unit, City Hospital Campus, Nottingham, UK
| | - Dawn Craig
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Luke Vale
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Brett A Winter-Roach
- The Department of Surgery, Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Ahmed Elattar
- City Hospital & Birmingham Treatment Centre, Birmingham, UK
| | - Raj Naik
- Gynaecological Oncology, Northern Gynaecological Oncology Centre, Gateshead, UK
| |
Collapse
|
4
|
Chen HZ, Wang XR, Zhao FM, Chen XJ, Li XS, Ning G, Guo YK. A CT-based radiomics nomogram for predicting early recurrence in patients with high-grade serous ovarian cancer. Eur J Radiol 2021; 145:110018. [PMID: 34773830 DOI: 10.1016/j.ejrad.2021.110018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To develop and validate a radiomics nomogram for predicting early recurrence in high-grade serous ovarian cancer (HGSOC) patients. MATERIALS AND METHODS From May 2008 to December 2019, 256 eligible HGSOC patients were enrolled and divided into training (n = 179) and test cohorts (n = 77) in a 7:3 ratio. A radiomics signature (Radscore) was selected by using recursive feature elimination based on a support vector machine (SVM-RFE) and building a radiomics model for recurrence prediction. Independent clinical risk factors were generated by univariable and multivariable Cox regression analyses. A combined model was developed based on the Radscore and independent clinical risk factors and presented as a radiomics nomogram. Its performance was assessed by AUC, Kaplan-Meier survival analysis and decision curve analysis. RESULTS Seven radiomics features were selected. The radiomics model yielded AUCs of 0.715 (95% CI: 0.640, 0.790) and 0.717 (95% CI: 0.600, 0.834) in the training and test cohorts, respectively. The clinical model (FIGO stage and residual disease) yielded AUCs of 0.632 and 0.691 in the training and test cohorts, respectively. The combined model demonstrated AUCs of 0.749 (95% CI: 0.678, 0.821) and 0.769 (95% CI: 0.662, 0.877) in the training and test cohorts, respectively. In the combined model, PFS was significantly shorter in the high-risk group than in the low-risk group (P < 0.0001). CONCLUSIONS The radiomics nomogram performed well for early individualized recurrence prediction in patients with HGSOC and can also be used to differentiate high-risk patients from low-risk patients.
Collapse
Affiliation(s)
- Hui-Zhu Chen
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xin-Rong Wang
- Bayer Healthcare Company Limited, Radiology, Guangzhou, China
| | - Fu-Min Zhao
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xi-Jian Chen
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xue-Sheng Li
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gang Ning
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Li Y, Zhu X, Liu C, Han Q, Chen X, Liu Y, Yin Y, He A, Xia F. Low FOXJ2 expression is associated with unfavorable postoperative prognosis of patients with epithelial ovarian cancer. Medicine (Baltimore) 2021; 100:e24759. [PMID: 33725831 PMCID: PMC7969229 DOI: 10.1097/md.0000000000024759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
The forkhead box (FOX) family is a large and diverse group of transcription factors. Forkhead box J2 (FOXJ2) is a member of the FOX family that is aberrantly expressed in a variety of cancers. However, its role in epithelial ovarian cancer (EOC) remains elusive. The purpose of this study was to evaluate the prognostic value of FOXJ2 expression in patients with epithelial ovarian cancer.The current study retrospectively included 151 patients with EOC from January 2013 to September 2016. FOXJ2 expression was analyzed by immunohistochemistry based on tissue microarrays. Then, the prognostic value of FOXJ2 expression and clinical outcomes were evaluated by Kaplan-Meier and cox regression analysis.Low FOXJ2 expression was associated with high International Federation of Gynecology and Obstetrics (FIGO) stage. Kaplan-Meier curves showed that high FOXJ2 expression was associated with improved median overall survival (OS, 57.9 vs 31.9 months; P = .037) and longer median progression-free survival (PFS, 31.8 vs 18.1 months; P = .012). Univariate analysis demonstrated that FOXJ2 expression was significantly correlated with OS and PFS in patients with epithelial ovarian cancer. Multivariate analysis revealed FOXJ2 expression as an independent prognostic factor of progression-free survival of epithelial ovarian cancer patients.Low FOXJ2 expression is a novel adverse prognostic factor of clinical outcome in epithelial ovarian cancer.
Collapse
Affiliation(s)
- Yong Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou
- Department of Gynecological Oncology
| | - Xinghua Zhu
- Department of Pathology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University
| | | | - Qing Han
- Department of Gynecological Oncology
| | | | - Yushan Liu
- Department of Pathology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University
| | - Yi Yin
- Department of Gynecology and Obstetrics, Medical College of Nantong University, Nantong
| | - Aiqin He
- Department of Gynecological Oncology
| | - Fei Xia
- Department of Gynecology and Obstetrics, Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Hoarau-Véchot J, Touboul C, Halabi N, Blot-Dupin M, Lis R, Abi Khalil C, Rafii S, Rafii A, Pasquier J. Akt-activated endothelium promotes ovarian cancer proliferation through notch activation. J Transl Med 2019; 17:194. [PMID: 31182109 PMCID: PMC6558713 DOI: 10.1186/s12967-019-1942-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background One main challenge in ovarian cancer rests on the presence of a relapse and an important metastatic disease, despite extensive surgical debulking and chemotherapy. The difficulty in containing metastatic cancer is partly due to the heterotypic interaction of tumor and its microenvironment. In this context, evidence suggests that endothelial cells (EC) play an important role in ovarian tumor growth and chemoresistance. Here, we studied the role of tumor endothelium on ovarian cancer cells (OCCs). Methods We evaluated the effect of activated endothelial cells on ovarian cancer cell proliferation and resistance to chemotherapy and investigated the survival pathways activated by endothelial co-culture. Results The co-culture between OCCs and E4+ECs, induced an increase of OCCs proliferation both in vitro and in vivo. This co-culture induced an increase of Notch receptors expression on OCC surface and an increase of Jagged 1 expression on E4+ECs surface and activation of survival pathways leading to chemoresistance by E4+ECs. Conclusion The targeting of aberrant NOTCH signaling could constitute a strategy to disrupt the pro-tumoral endothelial niche.
Collapse
Affiliation(s)
- Jessica Hoarau-Véchot
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar.,Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar
| | - Cyril Touboul
- INSERM U955, Equipe 7, Créteil, France.,Faculté de Médecine de Créteil UPEC-Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000, Créteil, France
| | - Najeeb Halabi
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Morgane Blot-Dupin
- Faculté de Médecine de Créteil UPEC-Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000, Créteil, France
| | - Raphael Lis
- Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA. .,Department of Gynecologic Oncology, Hospital Foch, Surresnes, France. .,Department of Genetic Medicine and Obstetrics and Gynecology, Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Qatar-Foundation, PO: 24144, Doha, Qatar.
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar. .,INSERM U955, Equipe 7, Créteil, France.
| |
Collapse
|
7
|
Uddin MJ, Wilson AJ, Crews BC, Malerba P, Uddin MI, Kingsley PJ, Ghebreselasie K, Daniel CK, Nickels ML, Tantawy MN, Jashim E, Manning HC, Khabele D, Marnett LJ. Discovery of Furanone-Based Radiopharmaceuticals for Diagnostic Targeting of COX-1 in Ovarian Cancer. ACS OMEGA 2019; 4:9251-9261. [PMID: 31172046 PMCID: PMC6545551 DOI: 10.1021/acsomega.9b01093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/09/2019] [Indexed: 05/03/2023]
Abstract
In vivo targeting and visualization of cyclooxygenase-1 (COX-1) using multimodal positron emission tomography/computed tomography imaging represents a unique opportunity for early detection and/or therapeutic evaluation of ovarian cancer because overexpression of COX-1 has been characterized as a pathologic hallmark of the initiation and progression of this disease. The furanone core is a common building block of many synthetic and natural products that exhibit a wide range of biological activities. We hypothesize that furanone-based COX-1 inhibitors can be designed as imaging agents for the early detection, delineation of tumor margin, and evaluation of treatment response of ovarian cancer. We report the discovery of 3-(4-fluorophenyl)-5,5-dimethyl-4-(p-tolyl)furan-2(5H)-one (FDF), a furanone-based novel COX-1-selective inhibitor that exhibits adequate in vivo stability, plasma half-life, and pharmacokinetic properties for use as an imaging agent. We describe a novel synthetic scheme in which a Lewis acid-catalyzed nucleophilic aromatic deiodo[18F]fluorination reaction is utilized for the radiosynthesis of [18F]FDF. [18F]FDF binds efficiently to COX-1 in vivo and enables sensitive detection of ovarian cancer in subcutaneous and peritoneal xenograft models in mice. These results provide the proof of principle for COX-1-targeted imaging of ovarian cancer and identify [18F]FDF as a promising lead compound for further preclinical and clinical development.
Collapse
Affiliation(s)
- Md. Jashim Uddin
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- E-mail: . Phone: 615-484-8674. Fax: 615.343-0704 (M.J.U.)
| | - Andrew J. Wilson
- Department of Obstetrics & Gynecology, Women’s
Reproductive
Health Research Center, and Department of Ophthalmology and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Brenda C. Crews
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Paola Malerba
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department
of Pharmacy & Pharmaceutical Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Md. Imam Uddin
- Department of Obstetrics & Gynecology, Women’s
Reproductive
Health Research Center, and Department of Ophthalmology and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Philip J. Kingsley
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kebreab Ghebreselasie
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Cristina K. Daniel
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Michael L. Nickels
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Mohammed N. Tantawy
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Elma Jashim
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Martin Luther
King Jr. Academic Magnet School of Health Sciences and Engineering, 613 17th Avenue North, Nashville, Tennessee 37203, United States
| | - H. Charles Manning
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Dineo Khabele
- Department of Obstetrics & Gynecology, Women’s
Reproductive
Health Research Center, and Department of Ophthalmology and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Department
of Obstetrics and Gynecology, University
of Kansas School of Medicine, Kansas
City, Kansas 66160, United States
| | - Lawrence J. Marnett
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- E-mail: (L.J.M.)
| |
Collapse
|
8
|
Pasquier J, Vidal F, Hoarau-Véchot J, Bonneau C, Daraï E, Touboul C, Rafii A. Surgical peritoneal stress creates a pro-metastatic niche promoting resistance to apoptosis via IL-8. J Transl Med 2018; 16:271. [PMID: 30285881 PMCID: PMC6171219 DOI: 10.1186/s12967-018-1643-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Background The mainstay of treatment of advanced ovarian cancer (AOC) involves chemotherapy, and debulking surgery. However, despite optimal surgical procedure and adjuvant chemotherapy, 60% of patients with AOC will relapse within 5 years. Most recurrences occur in the peritoneal cavity, suggesting the existence of occult sanctuaries where ovarian cancer cells (OCC) are protected. In murine models, surgical stress favors tumor growth; however, it has never been established that surgery may affect OCC sensitivity to subsequent chemotherapy. In this study, we investigated how the surgical stress could affect the chemosensitivity of OCC. Methods To avoid bias due to tumor burden in peritoneal cavity and duration of surgery, we used peritoneal biopsies from patients without a malignancy at precise time points. During laparotomies, peritoneal biopsies at the incision site were performed at the time of incision (H0 sample) and 1 h after initiation of surgery (H1 sample). We evaluated the chemoresistance to Taxol (0–20 µM) induced by H0 or H1 incubation (24 h) in two ovarian cancer cell lines OVCAR3 and SKOV3 and a primary cancer cell lines derived in our laboratory. Results Our results indicate that stressed peritoneum overexpressed cytokines, resulting in OCC increased resistance to therapy. Among these cytokines, IL8 was responsible for the resistance to apoptosis through the AKT pathway activation. Chemoresistance in OCC persists through the establishment of an autocrine IL8 loop. Finally, in a cohort of 32 patients, we showed an impact of IL8 tumoral overexpression on chemosensitivity and survival outcomes with a significant association to earlier recurrence. Conclusions Our study demonstrated that precision surgery where targeted treatment would be used in combination with surgery is essential to obtain better tumor control. Electronic supplementary material The online version of this article (10.1186/s12967-018-1643-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO: 24144, Doha, Qatar.,Department Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.,INSERM U955, Equipe 7, Créteil, France
| | - Fabien Vidal
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO: 24144, Doha, Qatar.,Department Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jessica Hoarau-Véchot
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO: 24144, Doha, Qatar
| | - Claire Bonneau
- Service de Gynécologie Obstétrique, Hopital Tenon (Assistance Publique-Hôpitaux de Paris), 4 rue de la Chine, 75020, Paris, France
| | - Emile Daraï
- Service de Gynécologie Obstétrique, Hopital Tenon (Assistance Publique-Hôpitaux de Paris), 4 rue de la Chine, 75020, Paris, France
| | - Cyril Touboul
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Faculté de médecine de Créteil UPEC-Paris XII, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000, Créteil, France
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, PO: 24144, Doha, Qatar. .,Department Genetic Medicine, Weill Cornell Medical College, New York, NY, USA. .,Service de chirurgie Gynécologique, Hôpital Foch, 92100, Suresnes, France.
| |
Collapse
|
9
|
Soyama H, Takano M, Miyamoto M, Yoshikawa T, Aoyama T, Goto T, Hirata J, Suzuki A, Sasa H, Furuya K. Factors favouring long-term survival following recurrence in ovarian cancer. Mol Clin Oncol 2017; 7:42-46. [PMID: 28685073 DOI: 10.3892/mco.2017.1266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/06/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to identify clinicopathological factors in long-term survivors following ovarian cancer recurrence. The patients who achieved longer survival after recurrence (n=18) and those who succumbed to the disease earlier (n=47) were identified and analyzed. There were no significant differences in age, performance status, stage distribution or histology between the two groups. Additionally, no significant difference was observed in progression-free survival after primary therapy. Multivariate analyses revealed that the predictive factors for long-term survival were i) secondary debulking surgery (OR=13.3; 95% CI: 1.39-226.7), ii) favourable response rate of second-line chemotherapy (OR=46.5; 95% CI: 1.84-313-4), and iii) ≥3 regimens after first recurrence (OR=9.01; 95% CI: 1.28-117.7). This study revealed that prolonged post-progression survival was associated with post-recurrence treatment. Therefore, appropriate selection of secondary debulking surgery and better chemotherapeutic response may lead to prolonged post-progression survival in recurrent ovarian cancer patients.
Collapse
Affiliation(s)
- Hiroaki Soyama
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Masashi Takano
- Department of Clinical Oncology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Morikazu Miyamoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Tomoyuki Yoshikawa
- Department of Clinical Oncology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Tadashi Aoyama
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Tomoko Goto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Junko Hirata
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Ayako Suzuki
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Hidenori Sasa
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| | - Kenichi Furuya
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|