1
|
Reichhardt MP, Lundin K, Lokki AI, Recher G, Vuoristo S, Katayama S, Tapanainen JS, Kere J, Meri S, Tuuri T. Complement in Human Pre-implantation Embryos: Attack and Defense. Front Immunol 2019; 10:2234. [PMID: 31620138 PMCID: PMC6759579 DOI: 10.3389/fimmu.2019.02234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
It is essential for early human life that mucosal immunological responses to developing embryos are tightly regulated. An imbalance of the complement system is a common feature of pregnancy complications. We hereby present the first full analysis of the expression and deposition of complement molecules in human pre-implantation embryos. Thus, far, immunological imbalance has been considered in stages of pregnancy following implantation. We here show that complement activation against developing human embryos takes place already at the pre-implantation stage. Using confocal microscopy, we observed deposition of activation products on healthy developing embryos, which highlights the need for strict complement regulation. We show that embryos express complement membrane inhibitors and bind soluble regulators. These findings show that mucosal complement targets human embryos, and indicate potential adverse pregnancy outcomes, if regulation of activation fails. In addition, single-cell RNA sequencing revealed cellular expression of complement activators. This shows that the embryonic cells themselves have the capacity to express and activate C3 and C5. The specific local embryonic expression of complement components, regulators, and deposition of activation products on the surface of embryos suggests that complement has immunoregulatory functions and furthermore may impact cellular homeostasis and differentiation at the earliest stages of life.
Collapse
Affiliation(s)
- Martin P Reichhardt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.,Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - A Inkeri Lokki
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Gaëlle Recher
- Institut d'Optique Graduate School, CNRS - Université de Bordeaux, Talence, France
| | - Sanna Vuoristo
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,PEDEGO Research Unit, Department of Obstetrics and Gynecology, University of Oulu and Oulu University Hospital, Medical Research Center, Oulu, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden.,School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,Stem Cells and Metabolism Research Program, Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Zhang S, Huo X, Zhang Y, Lu X, Xu C, Xu X. The association of PM 2.5 with airway innate antimicrobial activities of salivary agglutinin and surfactant protein D. CHEMOSPHERE 2019; 226:915-923. [PMID: 31509921 DOI: 10.1016/j.chemosphere.2019.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 02/05/2023]
Abstract
Fine particulate matter ≤2.5 μm (PM2.5) is a prominent global public health risk factor that can cause respiratory infection by downregulating the amounts of antimicrobial proteins and peptides (AMPs). Both salivary agglutinin (SAG) and surfactant protein D (SPD) are important AMPs in respiratory mucosal fluid, providing protection against airway pathogen invasion and infection by inducing microbial aggregation and enhancing pathogen clearance. However, the relationship between PM2.5 and these AMPs is unclear. To better understand the relationship between PM2.5 and airway innate immune defenses, we review the respiratory antimicrobial activities of SAG and SPD, as well as the adverse effects of PM2.5 on airway innate antimicrobial defense. We speculate there exists a dual effect between PM2.5 and respiratory antimicrobial activity, which means that PM2.5 suppresses respiratory antimicrobial activity through downregulating airway AMPs, while airway AMPs accelerate PM2.5 clearance by inducing PM2.5 microbial aggregation. We propose further research on the relationship between PM2.5 and these AMPs.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Cheng Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
3
|
Oho T, Nagata E. DMBT1 involvement in the human aortic endothelial cell response to Streptococcus mutans. Mol Oral Microbiol 2019; 34:108-117. [PMID: 30861638 DOI: 10.1111/omi.12257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022]
Abstract
Streptococcus mutans is a causative organism of dental caries and has been reported to be associated with the development of cardiovascular disease (CVD). Previous studies have demonstrated that S. mutans invades human aortic endothelial cells (HAECs) and HAECs invaded by S. mutans produce higher levels of CVD-related cytokines than non-invaded HAECs. DMBT1 (deleted in malignant brain tumors 1), also known as salivary agglutinin or gp-340, belongs to the scavenger receptor cysteine-rich superfamily. DMBT1 is expressed in epithelial and non-epithelial tissues and has multiple functions. The interaction between S. mutans and DMBT1 has been demonstrated in cariogenesis, but DMBT1 involvement in CVD has not been examined. In this study, we investigated DMBT1 expression in HAECs stimulated with S. mutans and examined the role of DMBT1 in the interaction between S. mutans and HAECs. All of the tested S. mutans strains induced higher production levels of DMBT1 in HAECs than those in unstimulated HAECs. More S. mutans cells adhered to DMBT1 knock down HAECs than to DMBT1-producing HAECs. Invasion of DMBT1 knock down HAECs by S. mutans was stronger than that of DMBT1-producing HAECs, and externally added DMBT1 reduced bacterial invasion. Cytokine production by DMBT1 knock down HAECs by S. mutans stimulation was higher than that by DMBT1-producing HAECs. These phenomena seemed to be due to the effect of released DMBT1, namely, the inhibition of bacterial adherence to HAECs by DMBT1. These results suggest that DMBT1 plays a protective role against the S. mutans-induced CVD process in HAECs.
Collapse
Affiliation(s)
- Takahiko Oho
- Department of Preventive Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Emi Nagata
- Division of Preventive Dentistry, Kagoshima University Hospital, Kagoshima, Japan
| |
Collapse
|
4
|
Zhang S, Huo X, Zhang Y, Huang Y, Zheng X, Xu X. Ambient fine particulate matter inhibits innate airway antimicrobial activity in preschool children in e-waste areas. ENVIRONMENT INTERNATIONAL 2019; 123:535-542. [PMID: 30622078 DOI: 10.1016/j.envint.2018.12.061] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/12/2018] [Accepted: 12/28/2018] [Indexed: 02/05/2023]
Abstract
Ambient fine particulate matter (PM2.5) is a risk factor for respiratory diseases. Previous studies suggest that PM2.5 exposure may down-regulate airway antimicrobial proteins and peptides (AMPs), thereby accelerating airway pathogen infection. However, epidemiological research is scarce. Hence, we estimated the associations between individual PM2.5 chronic daily intake (CDI) and the levels of the airway AMP salivary agglutinin (SAG), as well as peripheral leukocyte counts and pro-inflammatory cytokines, of preschool children in Guiyu (an e-waste area) and Haojiang (a reference area located 31.6 km to the east of Guiyu). We recruited 581 preschool children from Guiyu and Haojiang, of which 222 were included in this study for a matching design (Guiyu: n = 110 vs. Haojiang: n = 112). Air PM2.5 pollution data was collected to calculate individual PM2.5 CDI. The mean concentration of PM2.5 in Guiyu was higher than in Haojiang, resulting in a higher individual PM2.5 CDI. Concomitantly, saliva SAG levels were lower in Guiyu children (5.05 ng/mL) than in Haojiang children (8.68 ng/mL), and were negatively correlated with CDI. Additionally, peripheral counts of white blood cells, and the concentrations of interleukin-8 and tumor necrosis factor-alpha, in Guiyu children were greater than in Haojiang children, and were positively associated with CDI. Similar results were found for neutrophils and monocytes. To our knowledge, this is the first study on the relationship between PM2.5 exposure and innate airway antimicrobial activity in children, in an e-waste area, showing that PM2.5 pollution may weaken airway antimicrobial activity by down-regulation of saliva SAG levels, which might accelerate airway pathogen infection in children.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511486, Guangdong, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, GZ, the Netherlands
| | - Yu Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
5
|
Reichhardt MP, Meri S. Intracellular complement activation-An alarm raising mechanism? Semin Immunol 2018; 38:54-62. [PMID: 29631809 DOI: 10.1016/j.smim.2018.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
It has become increasingly apparent that the complement system, being an ancient defense mechanism, is not operative only in the extracellular milieu but also intracellularly. In addition to the known synthetic machinery in the liver and by macrophages, many other cell types, including lymphocytes, adipocytes and epithelial cells produce selected complement components. Activation of e.g. C3 and C5 inside cells may have multiple effects ranging from direct antimicrobial defense to cell differentiation and possible influence on metabolism. Intracellular activation of C3 and C5 in T cells is involved in the maintenance of immunological tolerance and promotes differentiation of T helper cells into Th1-type cells that activate cell-mediated immune responses. Adipocytes are unique in producing many complement sensor proteins (like C1q) and Factor D (adipsin), the key enzyme in promoting alternative pathway amplification. The effects of complement activation products are mediated by intracellular and cell membrane receptors, like C3aR, C5aR1, C5aR2 and the complement regulator MCP/CD46, often jointly with other receptors like the T cell receptor, Toll-like receptors and those of the inflammasomes. These recent observations link complement activation to cellular metabolic processes, intracellular defense reactions and to diverse adaptive immune responses. The complement components may thus be viewed as intracellular alarm molecules involved in the cellular danger response.
Collapse
Affiliation(s)
- M P Reichhardt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| | - S Meri
- Department of Bacteriology and Immunology, Haartman Institute, Immunobiology Research Program, University of Helsinki, Helsinki, Finland; Helsinki University Central Hospital Laboratory (HUSLAB), Helsinki, Finland.
| |
Collapse
|
6
|
Reichhardt M, Holmskov U, Meri S. SALSA—A dance on a slippery floor with changing partners. Mol Immunol 2017; 89:100-110. [DOI: 10.1016/j.molimm.2017.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
|
7
|
Lokki AI, Kaartokallio T, Holmberg V, Onkamo P, Koskinen LLE, Saavalainen P, Heinonen S, Kajantie E, Kere J, Kivinen K, Pouta A, Villa PM, Hiltunen L, Laivuori H, Meri S. Analysis of Complement C3 Gene Reveals Susceptibility to Severe Preeclampsia. Front Immunol 2017; 8:589. [PMID: 28611769 PMCID: PMC5446983 DOI: 10.3389/fimmu.2017.00589] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/03/2017] [Indexed: 11/29/2022] Open
Abstract
Preeclampsia (PE) is a common vascular disease of pregnancy with genetic predisposition. Dysregulation of the complement system has been implicated, but molecular mechanisms are incompletely understood. In this study, we determined the potential linkage of severe PE to the most central complement gene, C3. Three cohorts of Finnish patients and controls were recruited for a genetic case-control study. Participants were genotyped using Sequenom genotyping and Sanger sequencing. Initially, we studied 259 Finnish patients with severe PE and 426 controls from the Southern Finland PE and the Finnish population-based PE cohorts. We used a custom-made single nucleotide polymorphism (SNP) genotyping assay consisting of 98 SNPs in 18 genes that encode components of the complement system. Following the primary screening, C3 was selected as the candidate gene and consequently Sanger sequenced. Fourteen SNPs from C3 were also genotyped by a Sequenom panel in 960 patients with severe PE and 705 controls, including already sequenced individuals. Three of the 43 SNPs observed within C3 were associated with severe PE: rs2287845 (p = 0.038, OR = 1.158), rs366510 (p = 0.039, OR = 1.158), and rs2287848 (p = 0.041, OR = 1.155). We also discovered 16 SNP haplotypes with extreme linkage disequilibrium in the middle of the gene with a protective (p = 0.044, OR = 0.628) or a predisposing (p = 0.011, OR = 2.110) effect to severe PE depending on the allele combination. Genetic variants associated with PE are located in key domains of C3 and could thereby influence the function of C3. This is, as far as we are aware, the first candidate gene in the complement system with an association to a clinically relevant PE subphenotype, severe PE. The result highlights a potential role for the complement system in the pathogenesis of PE and may help in defining prognostic and therapeutic subgroups of preeclamptic women.
Collapse
Affiliation(s)
- A Inkeri Lokki
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Tea Kaartokallio
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Holmberg
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Clinic of Infectious Diseases, HYKS Inflammation Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Lotta L E Koskinen
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Päivi Saavalainen
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Seppo Heinonen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Eero Kajantie
- Chronic Disease Prevention Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,PEDEGO Research Unit, MRC Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Folkhälsan Institute of Genetics, Helsinki, Finland.,Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Katja Kivinen
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Anneli Pouta
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Government Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Pia M Villa
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Jääskeläinen T, Heinonen S, Kajantie E, Kere J, Kivinen K, Pouta A, Laivuori H. Cohort profile: the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC). BMJ Open 2016; 6:e013148. [PMID: 28067621 PMCID: PMC5129003 DOI: 10.1136/bmjopen-2016-013148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The Finnish Genetics of Pre-eclampsia Consortium (FINNPEC) Study was established to set up a nationwide clinical and DNA database on women with and without pre-eclampsia (PE), including their partners and infants, in order to identify genetic risk factors for PE. PARTICIPANTS FINNPEC is a cross-sectional case-control cohort collected from 5 university hospitals in Finland during 2008-2011. A total of 1450 patients with PE and 1065 pregnant control women without PE (aged 18-47 years) were recruited. Altogether, there were 1377 full triads (625 PE and 752 control triads). FINDINGS TO DATE The established cohort holds both clinical and genetic information of mother-infant-father triads representing a valuable resource for studying the pathogenesis of the disease. Furthermore, maternal biological samples (first and third trimester serum and placenta) will provide additional information for PE research. Until now, research has encompassed studies on candidate genes, Sanger and next-generation sequencing, and various studies on the placenta. FINNPEC has also participated in the InterPregGen study, which is the largest investigation on maternal and fetal genetic factors underlying PE until now. FUTURE PLANS Ongoing studies focus on elucidating the role of immunogenetic and metabolic factors in PE. Data on morbidity and mortality will be collected from mothers and fathers through links to the nationwide health registers.
Collapse
Affiliation(s)
- Tiina Jääskeläinen
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Seppo Heinonen
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki Finland
| | - Eero Kajantie
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
- Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Katja Kivinen
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Anneli Pouta
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Government Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| |
Collapse
|