1
|
Riddick EW. Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials. INSECTS 2024; 15:956. [PMID: 39769558 PMCID: PMC11678172 DOI: 10.3390/insects15120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Flavonoids have multiple functions, including host-plant defense against attacks from herbivorous insects. This manuscript reviewed and analyzed the scientific literature to test the hypothesis that flavonoids can be utilized to manage pests without causing significant harm to beneficials. The methodology involved using recognized literature databases, e.g., Web of Science, Scopus, and CAB Abstracts, via the USDA-ARS, National Agricultural Library, DigiTop literature retrieval system. Data were compiled in tables and subjected to statistical analysis, when appropriate. Flavonoids were generally harmful to true bugs and true flies but harmless to honey bees. Flavonoid glycosides showed a tendency to harm true bugs (Heteroptera) and true flies (Diptera). Flavonoid glycosides were harmless to sawflies. Flavonoids and flavonoid glycosides produced a mixture of harmful and harmless outcomes to herbivorous beetles, depending on the species. Flavonoid glycosides were harmless to butterflies. In conclusion, specific flavonoids could function as feeding stimulants or deterrents, oviposition stimulants or deterrents, chemical protectants from pesticides, mating attractants, less-toxic insecticides, and other functions. Flavonoids could manage some insect pests without causing significant harm to beneficials (e.g., honey bees). Flavonoid-based insecticides could serve as environmentally benign alternatives to broad-spectrum insecticides against some pests, but field testing is necessary.
Collapse
Affiliation(s)
- Eric Wellington Riddick
- Biological Control of Pests Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, MS 38776, USA
| |
Collapse
|
2
|
Bischoff K, Moiseff J. The role of the veterinary diagnostic toxicologist in apiary health. J Vet Diagn Invest 2023; 35:597-616. [PMID: 37815239 PMCID: PMC10621547 DOI: 10.1177/10406387231203965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Susceptibility of individuals and groups to toxicants depends on complex interactions involving the host, environment, and other exposures. Apiary diagnostic investigation and honey bee health are truly population medicine: the colony is the patient. Here we provide basic information on the application of toxicology to the testing of domestic honey bees, and, in light of recent research, expand on some of the challenges of interpreting analytical chemistry findings as they pertain to hive health. The hive is an efficiently organized system of wax cells used to store brood, honey, and bee bread, and is protected by the bee-procured antimicrobial compound propolis. Toxicants can affect individual workers outside or inside the hive, with disease processes that range from acute to chronic and subclinical to lethal. Toxicants can impact brood and contaminate honey, bee bread, and structural wax. We provide an overview of important natural and synthetic toxicants to which honey bees are exposed; behavioral, husbandry, and external environmental factors influencing exposure; short- and long-term impacts of toxicant exposure on individual bee and colony health; and the convergent impacts of stress, nutrition, infectious disease, and toxicant exposures on colony health. Current and potential future toxicology testing options are included. Common contaminants in apiary products consumed or used by humans (honey, wax, pollen), their sources, and the potential need for product testing are also noted.
Collapse
Affiliation(s)
- Karyn Bischoff
- New York State Animal Health Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jennifer Moiseff
- New York State Animal Health Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Zhu JJ, Guo T, Zhang ZW, Qian H, Tian P, Yu KY, Wu WJ, Zhang JW. Design, Synthesis, Insecticidal Activities and Molecular Docking of Sulfonamide Derivatives Containing Propargyloxy or Pyridine Groups. Chem Biodivers 2023; 20:e202201020. [PMID: 36536172 DOI: 10.1002/cbdv.202201020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The discovery of new highly active molecules from natural products is a common method to create new pesticides. Celangulin V targeting Mythimna separate (M. separate) midgut V-ATPase H subunit, has received considerable attention for its excellent insecticidal activity and unique mechanism of action. Therefore, combined with our preliminary work, thirty-seven sulfonamide derivatives bearing propargyloxy or pyridine groups were systematically synthesized to search for insecticidal candidate compounds with low cost and high efficiency on the H subunit of V-ATPase. Bioactive results showed that compounds A2-A4 and A6-A7 exhibited a better bioactivity with median effective concentration (LC50 ) values (2.78, 3.11, 3.34, 3.54 and 2.48 mg/mL, respectively) against third-instar larvae of M. separate than Celangulin V (LC50 =18.1 mg/mL). Additionally, molecular docking experiments indicated that these molecules may act on the H subunit of V-ATPase. Based on the above results, these compounds provide new ideas for the discovery of insecticides.
Collapse
Affiliation(s)
- Jian-Jun Zhu
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Tao Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Zi-Wei Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Hao Qian
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Peng Tian
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Ke-Yin Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China
| | - Wen-Jun Wu
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, China
| | - Ji-Wen Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, China.,Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, China
| |
Collapse
|
4
|
Shakya M, Nandi A, Fular A, Kumar S, Bisht N, Sharma AK, Singh K, Kumar R, Kumar S, Juliet S, Ghosh S. Synergistic property of piperonyl butoxide, diethyl maleate, triphenyl phosphate and verapamil hydrochloride with deltamethrin and ivermectin against Rhipicephalus microplus ticks. Ticks Tick Borne Dis 2022; 13:102006. [PMID: 35917692 DOI: 10.1016/j.ttbdis.2022.102006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/16/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
The present study was taken up to evaluate the synergistic properties of piperonyl butoxide (PBO), diethyl maleate (DEM), triphenyl phosphate (TPP) and verapamil (VER) with deltamethrin (DLM) and ivermectin (IVM) against DLM and IVM resistant tick populations collected from Madhya Pradesh and Punjab states of India. The collected field tick populations were resistant to DLM (Resistance Factor [RF] in the range of 21.71-32.98) and IVM (RF in the range of 1.89-4.98). A strong synergism between DLM and, IVM with PBO and IVM with VER was noticed. The synergistic efficacy of PBO and VER with IVM in reducing the lethal concentration 50 (LC50) value (1.69-5.72 times for PBO and 3.00-10.62 times for VER) of IVM in resistant ticks suggest that a combination of these synergists with IVM can significantly enhance the effectiveness of IVM against IVM-resistant Rhipicephlaus microplus populations gradually establishing in the different parts of the country. The synergistic efficiency of PBO with DLM in reducing the LC50 value was 2.65 and 18.01 times, respectively, against DLM- resistant two R. microplus populations (KTN and LDH). The study revealed the gradual establishment of DLM and IVM resistant populations in the surveyed states suggesting the need to adopt required resistance management strategies. The use of synergists with DLM and IVM has emerged as an effective approach for controlling the acaricide-resistant ticks.
Collapse
Affiliation(s)
- Mukesh Shakya
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Abhijit Nandi
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Ashutosh Fular
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Sachin Kumar
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Nisha Bisht
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Anil Kumar Sharma
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Kaushlendra Singh
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Satyanshu Kumar
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Boriavi, Anand, Gujarat 387310, India
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala 673 576, India
| | - Srikanta Ghosh
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243112, India.
| |
Collapse
|
5
|
One Health, One Hive: A scoping review of honey bees, climate change, pollutants, and antimicrobial resistance. PLoS One 2022; 17:e0242393. [PMID: 35171904 PMCID: PMC8849492 DOI: 10.1371/journal.pone.0242393] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Anthropogenic climate change and increasing antimicrobial resistance (AMR) together threaten the last 50 years of public health gains. Honey bees are a model One Health organism to investigate interactions between climate change and AMR. The objective of this scoping review was to examine the range, extent, and nature of published literature on the relationship between AMR and honey bees in the context of climate change and environmental pollutants. The review followed systematic search methods and reporting guidelines. A protocol was developed a priori in consultation with a research librarian. Resulting Boolean search strings were used to search Embase® via Ovid®, MEDLINE®, Scopus®, AGRICOLA™ and Web of Science™ databases. Two independent reviewers conducted two-stage screening on retrieved articles. To be included, the article had to examine honey bees, AMR, and either climate change or environmental pollution. Data, in accordance with Joanna Briggs Institute guidelines, were extracted from relevant articles and descriptively synthesized in tables, figures, and narrative form. A total of 22 articles met the inclusion criteria, with half of all articles being published in the last five years (n = 11/22). These articles predominantly investigated hive immunocompetence and multi-drug resistance transporter downregulation (n = 11/22), susceptibility to pests (n = 16/22), especially American foulbrood (n = 9/22), and hive product augmentation (n = 3/22). This review identified key themes and gaps in the literature, including the need for future interdisciplinary research to explore the link between AMR and environmental change evidence streams in honey bees. We identified three potential linkages between pollutive and climatic factors and risk of AMR. These interconnections reaffirm the necessity of a One Health framework to tackle global threats and investigate complex issues that extend beyond honey bee research into the public health sector. It is integral that we view these “wicked” problems through an interdisciplinary lens to explore long-term strategies for change.
Collapse
|
6
|
Kovačević M, Hackenberger DK, Lončarić Ž, Hackenberger BK. Measurement of multixenobiotic resistance activity in enchytraeids as a tool in soil ecotoxicology. CHEMOSPHERE 2021; 279:130549. [PMID: 33878689 DOI: 10.1016/j.chemosphere.2021.130549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The multixenobiotic resistance (MXR) mechanism is the first defense line against xenobiotics. Enchytraeids, a model organism in soil ecotoxicology, are often exposed to various xenobiotics, some of which may influence MXR activity. Since MXR activity has not been studied in these organisms, the aim of this paper was to establish a methodology for the implementation of the dye assay in enchytraeids. Enchytraeus albidus and Enchytraeus crypticus were exposed to model chemosensitizers: cyclosporine A (CA), dexamethasone (DEX), ivermectin (IVM), rifampicin (RIF), verapamil (VER), and fungicide propiconazole (PCZ). Thereafter, a dye assay with specific fluorescent dyes rhodamine B and rhodamine 123 was performed. Changes in MXR activity caused by variations in dye accumulation were measured fluorometrically. CA, IVM, and VER were found to inhibit the MXR system and increase the fluorescence 2.2-fold, while DEX and RIF induced the MXR system and decreased the fluorescence. CA was the strongest inhibitor in both E. albidus (IC50 5.48 ± 1.25 μM) and E. crypticus (IC50 5.20 ± 3.10 μM). In the validation experiment, PCZ was found to inhibit the MXR system. The IC50 varied between species and exposure substrates: water (E. albidus - IC50 0.74 ± 0.24 mg/L; E. crypticus - 1.31 ± 0.24 mg/L) or soil (E. albidus - 1.79 ± 0.42 mg/kg; E. crypticus - 1.79 ± 0.17 mg/kg). In conclusion, the tested compounds changed the MXR activity, which confirms the applicability of this method as a valuable complementary biomarker in soil ecotoxicology.
Collapse
Affiliation(s)
- Marija Kovačević
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Davorka K Hackenberger
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | - Željka Lončarić
- University of Osijek, Department of Biology, Cara Hadrijana 8A, HR-31000, Osijek, Croatia
| | | |
Collapse
|
7
|
Liu J, Li Y, Zhang Z, Luo W, Cao L, Liu H. Low Concentration of Quercetin Reduces the Lethal and Sublethal Effects of Imidacloprid on Apis cerana (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1053-1064. [PMID: 33769525 DOI: 10.1093/jee/toab043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Large-scale use of systemic pesticides has been considered a potential factor for pollinator population decline. Phytochemicals, e.g., quercetin, have been demonstrated to increase the pesticide tolerance of Apis mellifera Linnaeus (Hymenoptera: Apidae), which is helpful to develop strategies to reduce the pesticides hazards to pollinators. In this study, we hypothesized phytochemicals could reduce the detrimental effects of imidacloprid on Apis cerana Fabricius. The lethal and sublethal effects of imidacloprid on A. cerana workers were investigated. The results showed that A. cerana workers chronically exposed to 100 μg/liter imidacloprid had a significantly shorter longevity by 10.81 d compared with control. Acute exposure to imidacloprid at 100 μg/liter impaired the sucrose responsiveness and memory retention of the workers, and 20 μg/liter reduced the sucrose responsiveness. The treatment with 37.8 mg/liter quercetin for 24 h could increase the longevity of A. cerana workers when chronically exposed to 100 μg/liter imidacloprid, and 75.6 mg/liter quercetin feeding treatment alleviated the impairment of sucrose responsiveness. However, workers treated with 151.2 mg/liter and 75.6 mg/liter quercetin had a significantly shorter longevity compared to that of bees chronically exposed to 100 μg/liter imidacloprid without quercetin treatment. Our results suggested that quercetin treatment could produce a biphasic influence on the lethal effects of imidacloprid on A. cerana. Quercetin at 37.8 mg/liter and 75.6 mg/liter in the diet before pesticide exposure was able to reduce the lethal and sublethal effects of imidacloprid, respectively, providing potential strategies to reduce the pesticides hazards to native honey bees (A. cerana).
Collapse
Affiliation(s)
- Jialin Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Department of Economic Animal, Chongqing Academy of Animal Sciences, Rongchang 402460, Chongqing, China
| | - Yaying Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Zihui Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wenhua Luo
- Department of Economic Animal, Chongqing Academy of Animal Sciences, Rongchang 402460, Chongqing, China
| | - Lan Cao
- Department of Economic Animal, Chongqing Academy of Animal Sciences, Rongchang 402460, Chongqing, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| |
Collapse
|
8
|
Mahefarisoa K, Simon Delso N, Zaninotto V, Colin M, Bonmatin J. The threat of veterinary medicinal products and biocides on pollinators: A One Health perspective. One Health 2021; 12:100237. [PMID: 33851001 PMCID: PMC8022246 DOI: 10.1016/j.onehlt.2021.100237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/19/2023] Open
Abstract
The One Health approach acknowledges that human health is firmly linked to animal and environmental health. It involves using animals such as bees and other pollinators as sentinels for environmental contamination or biological indicators. Beekeepers noticed intoxications of apiaries located in the vicinity of sheep and cattle farms, which led to the suspicion of bees' intoxication by the products used for livestock: veterinary medicinal products (VMPs) and Biocides, confirmed by laboratory analysis. We review the legal context of VMPs and Biocidal products considering Europe as a case study, and identify shortcomings at the environmental level. We describe the possible ways these products could intoxicate bees in the vicinity of livestock farms. We also illustrate the way they may impact non-target species. The cases of ivermectin and abamectin as VMPs, deltamethrin and permethrin as Biocides are considered as case studies. We show bees can be exposed to new and unrecognized routes of exposure to these chemicals, and demonstrate that their application in livestock farming can affect the survival of pollinators, such as bees. We conclude that: (1) figures on the marketing/use of these chemicals should be harmonized, centralized and publicly available, (2) research should be devoted to clarifying how pollinators are exposed to VMPs and Biocides, (3) toxicity studies on bees should be carried out, and (4) pollinators should be considered as non-targeted species concerning the environmental risk assessment before their marketing authorization. We propose the term "Multi-use substances" for active ingredients with versatile use.
Collapse
Key Words
- BTV, Bluetongue virus
- Bees
- ECHA, European Chemical Agency
- EIA, environmental impact assessment
- EMA, Environmental Medicine Agency
- ERA, environmental risk assessment
- Ecotoxicology
- Environmental health
- Livestock
- MA, market authorisation
- Multi-use substances
- PEC, predicted environmental concentration
- PNEC, predicted no effect concentration
- Pesticide
- RQ, risk quotient
- Risk assessment
- SPs, synthetic pyrethroids
- VICH, International Cooperation on Harmonization of Technical Requirements for Registration of Veterinary Medicinal Products.
- VMPs, veterinary medicinal products
Collapse
Affiliation(s)
- K.L. Mahefarisoa
- Catholic University of Louvain, Faculty of bioscience engineering, Place Croix du Sud 2, 1348 Ottignies-Louvain-la-Neuve, Belgium
| | - N. Simon Delso
- Beekeeping Center of Research and Information (CARI asbl), BeeLife European Beekeeping Coordination, Place Croix du Sud 1, 1348 Louvain la Neuve, Belgium
| | - V. Zaninotto
- Sorbonne University, CNRS, IRD, INRAE, University of Paris, UPEC, Institute of Ecology and Environmental Sciences-Paris (IEES-Paris), 75005 Paris, France
| | - M.E. Colin
- Montpellier Fédération Nationale des Organisations Sanitaires Apicoles Départementales (FNOSAD), 41 Rue Pernety, 75014 Paris, France
| | - J.M. Bonmatin
- Centre National de la Recherche Scientifique (CNRS), Centre de biophysique moléculaire, 45071 Orléans Cedex 02, France
| |
Collapse
|
9
|
Gang F, Li X, Yang C, Han L, Qian H, Wei S, Wu W, Zhang J. Synthesis and Insecticidal Activity Evaluation of Virtually Screened Phenylsulfonamides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11665-11671. [PMID: 32975932 DOI: 10.1021/acs.jafc.0c02153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fastest and most effective way to control pests is to use pesticides. However, with the accumulation of pesticide resistance and the difficulties of rapidly producing new pesticides, it is of great significance to create new pesticides through new synthetic methods. In this study, we report a computer-aided drug design (CADD)-assisted method to obtain two lead sulfonamides by homology modeling and virtual screening. On this basis, the lead compounds were synthesized from p-chlorocresol by four steps of esterification, sulfonation, sulfonamidation, and amidation. Further, 71 derivatives were synthesized by optimizing the lead compounds, and their insecticidal activities against Mythimna separata were evaluated by the leaf-dipping method. Notably, seven sulfonamides (5a, 5g, 5h, 5m, 6b, 6g, and 6m) with excellent insecticidal activity were obtained, and the possible binding modes between receptors and active groups in sulfonamides were verified by structure-activity relationship and docking simulation, which provided theoretical support for the subsequent development of these novel candidate insecticides.
Collapse
Affiliation(s)
- Fangli Gang
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xiaoting Li
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- Shanxi Normal University, Linfen, Shanxi 041004, P. R. China
| | - Chaofu Yang
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Lijuan Han
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Hao Qian
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shaopeng Wei
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Wenjun Wu
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Jiwen Zhang
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
10
|
Peterson EM, Green FB, Smith PN. Pesticides Used on Beef Cattle Feed Yards Are Aerially Transported into the Environment Via Particulate Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13008-13015. [PMID: 32936619 DOI: 10.1021/acs.est.0c03603] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Considering the recent discovery of veterinary pharmaceutical aerial transport from industrial cattle feeding operations via particulate matter, the objective of this study is to determine the extent to which insecticides are also transported into the environment by total suspended particulates emanating from beef cattle feed yards. Of 16 different pesticides quantified in particulate matter samples collected from beef cattle feed yards, permethrin was detected most frequently at >67% of particulate matter samples and at a mean concentration of 1211.7 ± 781.0 (SE) ng/m3. Imidacloprid was detected at a mean concentration of 62.8 ± 38.2 (SE) ng/m3 or equivalent to published concentrations in dust from treated seed planting activities. When insecticide concentrations observed in this study are projected to all United States of America feed yards, the resulting particulate matter (669,000 kg) could contain enough insecticides (active ingredient mass basis) to kill over a billion honeybees daily. Furthermore, a novel transport pathway for macrocyclic lactone entry into the environment was identified. These data raise concern that nontarget organisms may be exposed to potentially toxic levels of pesticides from beef cattle feed yards.
Collapse
Affiliation(s)
- Eric M Peterson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, United States
| | - Frank B Green
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, United States
| | - Philip N Smith
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
11
|
Peterson EM, Shaw KR, Smith PN. Toxicity of Agrochemicals Among Larval Painted Lady Butterflies (Vanessa cardui). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2629-2636. [PMID: 31397915 DOI: 10.1002/etc.4565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/21/2018] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
In the Southern High Plains of the United States, beef cattle feed yards and row crop agriculture are predominant sources of agrochemical usage. Beef cattle feed yards use large quantities of veterinary pharmaceuticals to promote cattle growth and health, along with insecticides to control insect pests, whereas row crop-based agriculture relies on herbicides, fungicides, and insecticides to increase yields. Previous studies have documented the occurrence of agrochemicals beyond feed yard and row crop agriculture boundaries in uncultivated, marginal areas, raising concern that migratory pollinators and pollinators indigenous to the Southern High Plains frequenting these remaining habitat corridors may become exposed to toxic agrochemicals. Larvae of the painted lady butterfly (Vanessa cardui) were used to investigate the potential toxicity of agrochemicals used on feed yards and in row crop agriculture among pollinators. Moxidectin, an antiparasiticide used on beef cattle feed yards, was determined to be extremely toxic to V. cardui larvae, with a lethal dose at which 50% of larvae died of 2.1 ± 0.1 ng/g. Pyraclostrobin, clothianidin, and permethrin all delayed V. cardui development. However, moxidectin was the only chemical that produced significant toxic effects at environmentally relevant concentrations. These results indicate that agrochemicals originating from feed yards have the potential to adversely impact the development of pollinator larvae occurring in the Southern High Plains. Environ Toxicol Chem 2019;38:2629-2636. © 2019 SETAC.
Collapse
Affiliation(s)
- Eric M Peterson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - Katherine R Shaw
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - Philip N Smith
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
12
|
Carnesecchi E, Svendsen C, Lasagni S, Grech A, Quignot N, Amzal B, Toma C, Tosi S, Rortais A, Cortinas-Abrahantes J, Capri E, Kramer N, Benfenati E, Spurgeon D, Guillot G, Dorne JLCM. Investigating combined toxicity of binary mixtures in bees: Meta-analysis of laboratory tests, modelling, mechanistic basis and implications for risk assessment. ENVIRONMENT INTERNATIONAL 2019; 133:105256. [PMID: 31683157 DOI: 10.1016/j.envint.2019.105256] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 05/21/2023]
Abstract
Bees are exposed to a wide range of multiple chemicals "chemical mixtures" from anthropogenic (e.g. plant protection products or veterinary products) or natural origin (e.g. mycotoxins, plant toxins). Quantifying the relative impact of multiple chemicals on bee health compared with other environmental stressors (e.g. varroa, viruses, and nutrition) has been identified as a priority to support the development of holistic risk assessment methods. Here, extensive literature searches and data collection of available laboratory studies on combined toxicity data for binary mixtures of pesticides and non-chemical stressors has been performed for honey bees (Apis mellifera), wild bees (Bombus spp.) and solitary bee species (Osmia spp.). From 957 screened publications, 14 publications provided 218 binary mixture toxicity data mostly for acute mortality (lethal dose: LD50) after contact exposure (61%), with fewer studies reporting chronic oral toxicity (20%) and acute oral LC50 values (19%). From the data collection, available dose response data for 92 binary mixtures were modelled using a Toxic Unit (TU) approach and the MIXTOX modelling tool to test assumptions of combined toxicity i.e. concentration addition (CA), and interactions (i.e. synergism, antagonism). The magnitude of interactions was quantified as the Model Deviation Ratio (MDR). The CA model applied to 17% of cases while synergism and antagonism were observed for 72% (MDR > 1.25) and 11% (MDR < 0.83) respectively. Most synergistic effects (55%) were observed as interactions between sterol-biosynthesis-inhibiting (SBI) fungicides and insecticide/acaricide. The mechanisms behind such synergistic effects of binary mixtures in bees are known to involve direct cytochrome P450 (CYP) inhibition, resulting in an increase in internal dose and toxicity of the binary mixture. Moreover, bees are known to have the lowest number of CYP copies and other detoxification enzymes in the insect kingdom. In the light of these findings, occurrence of these binary mixtures in relevant crops (frequency and concentrations) would need to be investigated. Addressing this exposure dimension remains critical to characterise the likelihood and plausibility of such interactions to occur under field realistic conditions. Finally, data gaps and further work for the development of risk assessment methods to assess multiple stressors in bees including chemicals and non-chemical stressors in bees are discussed.
Collapse
Affiliation(s)
- Edoardo Carnesecchi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, the Netherlands; Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156 Milano, Italy
| | - Claus Svendsen
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | | | | | | | | | - Cosimo Toma
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156 Milano, Italy
| | - Simone Tosi
- Epidemiology Unit, European Union Reference Laboratory (EURL) for Honeybee Health, University Paris Est, French Agency for Food, Environmental and Occupational Health and Safety, Paris, France
| | - Agnes Rortais
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks Unit, Parma, Italy
| | - Jose Cortinas-Abrahantes
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks Unit, Parma, Italy
| | - Ettore Capri
- Università Cattolica del Sacro Cuore, Dipartimento di Scienze e Tecnologie Alimentari per una filiera agro-alimentare Sostenibile (DiSTAS), Piacenza, Italy
| | - Nynke Kramer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, the Netherlands
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156 Milano, Italy
| | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Gilles Guillot
- International Prevention Research Institute, Lyon, France
| | - Jean Lou Christian Michel Dorne
- European Food Safety Authority (EFSA), Scientific Committee and Emerging Risks Unit, Parma, Italy; School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
13
|
Rossi M, De Battisti D, Niven JE. Transepithelial transport of P-glycoprotein substrate by the Malpighian tubules of the desert locust. PLoS One 2019; 14:e0223569. [PMID: 31593571 PMCID: PMC6782089 DOI: 10.1371/journal.pone.0223569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/24/2019] [Indexed: 01/11/2023] Open
Abstract
Extrusion of xenobiotics is essential for allowing animals to remove toxic substances present in their diet or generated as a biproduct of their metabolism. By transporting a wide range of potentially noxious substrates, active transporters of the ABC transporter family play an important role in xenobiotic extrusion. One such class of transporters are the multidrug resistance P-glycoprotein transporters. Here, we investigated P-glycoprotein transport in the Malpighian tubules of the desert locust (Schistocerca gregaria), a species whose diet includes plants that contain toxic secondary metabolites. To this end, we studied transporter physiology using a modified Ramsay assay in which ex vivo Malpighian tubules are incubated in different solutions containing the P-glycoprotein substrate dye rhodamine B in combination with different concentrations of the P-glycoprotein inhibitor verapamil. To determine the quantity of the P-glycoprotein substrate extruded we developed a simple and cheap method as an alternative to liquid chromatography–mass spectrometry, radiolabelled alkaloids or confocal microscopy. Our evidence shows that: (i) the Malpighian tubules contain a P-glycoprotein; (ii) tubule surface area is positively correlated with the tubule fluid secretion rate; and (iii) as the fluid secretion rate increases so too does the net extrusion of rhodamine B. We were able to quantify precisely the relationships between the fluid secretion, surface area, and net extrusion. We interpret these results in the context of the life history and foraging ecology of desert locusts. We argue that P-glycoproteins contribute to the removal of xenobiotic substances from the haemolymph, thereby enabling gregarious desert locusts to maintain toxicity through the ingestion of toxic plants without suffering the deleterious effects themselves.
Collapse
Affiliation(s)
- Marta Rossi
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail: (MR); (JEN)
| | - Davide De Battisti
- Department of Bioscience, Swansea University, Swansea, Singleton park, Wales, United Kingdom
| | - Jeremy Edward Niven
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail: (MR); (JEN)
| |
Collapse
|
14
|
Clerbaux LA, Paini A, Lumen A, Osman-Ponchet H, Worth AP, Fardel O. Membrane transporter data to support kinetically-informed chemical risk assessment using non-animal methods: Scientific and regulatory perspectives. ENVIRONMENT INTERNATIONAL 2019; 126:659-671. [PMID: 30856453 PMCID: PMC6441651 DOI: 10.1016/j.envint.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/10/2019] [Accepted: 03/01/2019] [Indexed: 06/01/2023]
Abstract
Humans are continuously exposed to low levels of thousands of industrial chemicals, most of which are poorly characterised in terms of their potential toxicity. The new paradigm in chemical risk assessment (CRA) aims to rely on animal-free testing, with kinetics being a key determinant of toxicity when moving from traditional animal studies to integrated in vitro-in silico approaches. In a kinetically informed CRA, membrane transporters, which have been intensively studied during drug development, are an essential piece of information. However, how existing knowledge on transporters gained in the drug field can be applied to CRA is not yet fully understood. This review outlines the opportunities, challenges and existing tools for investigating chemical-transporter interactions in kinetically informed CRA without animal studies. Various environmental chemicals acting as substrates, inhibitors or modulators of transporter activity or expression have been shown to impact TK, just as drugs do. However, because pollutant concentrations are often lower in humans than drugs and because exposure levels and internal chemical doses are not usually known in contrast to drugs, new approaches are required to translate transporter data and reasoning from the drug sector to CRA. Here, the generation of in vitro chemical-transporter interaction data and the development of transporter databases and classification systems trained on chemical datasets (and not only drugs) are proposed. Furtheremore, improving the use of human biomonitoring data to evaluate the in vitro-in silico transporter-related predicted values and developing means to assess uncertainties could also lead to increase confidence of scientists and regulators in animal-free CRA. Finally, a systematic characterisation of the transportome (quantitative monitoring of transporter abundance, activity and maintenance over time) would reinforce confidence in the use of experimental transporter/barrier systems as well as in established cell-based toxicological assays currently used for CRA.
Collapse
Affiliation(s)
| | - Alicia Paini
- European Commission, Joint Research Centre, Ispra, Italy.
| | - Annie Lumen
- National Center for Toxicological Research, US Food and Drug Administration (FDA), Jefferson, AR, USA
| | | | - Andrew P Worth
- European Commission, Joint Research Centre, Ispra, Italy
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environment et travail), UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
15
|
Vehovszky Á, Farkas A, Csikós V, Székács A, Mörtl M, Győri J. Neonicotinoid insecticides are potential substrates of the multixenobiotic resistance (MXR) mechanism in the non-target invertebrate, Dreissena sp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:148-155. [PMID: 30384196 DOI: 10.1016/j.aquatox.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Mussels are among the most frequently used invertebrate animals in aquatic toxicology to detect toxic exposure in the environment. The presence and activity of a cellular defence system, the multixenobiotic resistance (MXR) mechanism, was also established in these organisms. In isolated gill tissues of dreissenid mussels (D. bugensis) the MXR activity was assayed after treatment by commercially available insecticides (formulated products) which contain neonicotinoids as their active ingredients: Actara (thiamethoxam), Apacs (clothianidin), Calypso (thiacloprid) and Kohinor (imidacloprid), respectively. While applying the accumulation assay method, 0.5 μM rhodamine B was used as model substrate and 20 μM verapamil as model inhibitor of the MXR mechanism. In acute (in vitro) experiments when isolated gills were co-incubated in graded concentrations of insecticides and rhodamine B simultaneously, Calypso and Kohinor treatment resulted increasing rhodamine accumulation. Chemical analysis of gills in vitro incubated in insecticides demonstrated higher tissue concentrations of thiamethoxam, clothianidin and thiacloprid in the presence of verapamil suggesting that the active ingredients of Actara, Apacs and Calypso are potential substrates of the MXR mediated cellular efflux. In contrast, verapamil did significantly alter the accumulated imidacloprid concentrations in gills, suggesting that the active component of Kohinor is not transported by the MXR mechanism. Chronic (in vivo) exposures of the intact animals in lower, 1, 10 mg/L concentration of neonicotinoid products, resulted in a decreased level of both rhodamine accumulation and verapamil inhibition by the 12th-14th days of treatment. These results suggest an enhancement of MXR activity (chemostimulation), building up gradually in the animals exposed to Actara, Apacs and Kohinor, respectively. Neonicotinoid-type insecticides are generally considered as selective neurotoxins for insects, targeting the nicotinic type acetylcholine receptors (nAChRs) in their central nervous system. Our present results provide the first evidences that neonicotinoid insecticides are also able to alter the transmembrane transport mechanisms related to the MXR system.
Collapse
Affiliation(s)
- Ágnes Vehovszky
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary.
| | - Anna Farkas
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| | - Vivien Csikós
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| | - András Székács
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary
| | - János Győri
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| |
Collapse
|
16
|
Biphasic concentration-dependent interaction between imidacloprid and dietary phytochemicals in honey bees (Apis mellifera). PLoS One 2018; 13:e0206625. [PMID: 30383869 PMCID: PMC6211726 DOI: 10.1371/journal.pone.0206625] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022] Open
Abstract
Background The presence of the neonicotinoid imidacloprid in nectar, honey, pollen, beebread and beeswax has been implicated in declines worldwide in the health of the western honey bee Apis mellifera. Certain phytochemicals, including quercetin and p-coumaric acid, are ubiquitous in the honey bee diet and are known to upregulate cytochrome P450 genes encoding enzymes that detoxify insecticides. Thus, the possibility exists that these dietary phytochemicals interact with ingested imidacloprid to ameliorate toxicity by enhancing its detoxification. Approach Quercetin and p-coumaric acid were incorporated in a phytochemical-free artificial diet individually and together along with imidacloprid at a range of field-realistic concentrations. In acute toxicity bioassays, honey bee 24- and 48- hour imidacloprid LC50 values were determined in the presence of the phytochemicals. Additionally, chronic toxicity bioassays were conducted using varying concentrations of imidacloprid in diets with the phytochemicals to test impacts of phytochemicals on longevity. Results In acute toxicity bioassays, the phytochemicals had no effect on imidacloprid LC50 values. In chronic toxicity longevity bioassays, phytochemicals enhanced honey bee survival at low imidacloprid concentrations (15 and 45 ppb) but had a negative effect at higher concentrations (105 ppb and 135 ppb). p-Coumaric acid alone increased honey bee longevity at concentrations of 15 and 45 ppb imidacloprid (hazard ratio (HR): 0.83 and 0.70, respectively). Quercetin alone and in combination with p-coumaric acid similarly enhanced longevity at 45 ppb imidacloprid (HR:0.81 and HR:0.77, respectively). However, p-coumaric acid in combination with 105 ppb imidacloprid and quercetin in combination with 135 ppb imidacloprid increased honey bee HR by approximately 30% (HR:1.33 and HR:1.30, respectively). Conclusions The biphasic concentration-dependent response of honey bees to imidacloprid in the presence of two ubiquitous dietary phytochemicals indicates that there are limits to the protective effects of the natural diet of honey bees against neonicotinoids based on their own inherent toxicity.
Collapse
|
17
|
Diao Q, Li B, Zhao H, Wu Y, Guo R, Dai P, Chen D, Wang Q, Hou C. Enhancement of chronic bee paralysis virus levels in honeybees acute exposed to imidacloprid: A Chinese case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:487-494. [PMID: 29499530 DOI: 10.1016/j.scitotenv.2018.02.258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Though honeybee populations have not yet been reported to be largely lost in China, many stressors that affect the health of honeybees have been confirmed. Honeybees inevitably come into contact with environmental stressors that are not intended to target honeybees, such as pesticides. Although large-scale losses of honeybee colonies are thought to be associated with viruses, these viruses usually lead to covert infections and to not cause acute damage if the bees do not encounter outside stressors. To reveal the potential relationship between acute pesticides and viruses, we applied different doses of imidacloprid to adult bees that were primarily infected with low levels (4.3×105 genome copies) of chronic bee paralysis virus (CBPV) to observe whether the acute oral toxicity of imidacloprid was able to elevate the level of CBPV. Here, we found that the titer of CBPV was significantly elevated in adult bees after 96h of acute treatment with imidacloprid at the highest dose 66.9ng/bee compared with other treatments and controls. Our study provides clear evidence that exposure to acute high doses of imidacloprid in honeybees persistently infected by CBPV can exert a remarkably negative effect on honeybee survival. These results imply that acute environmental stressors might be one of the major accelerators causing rapid viral replication, which may progress to cause mass proliferation and dissemination and lead to colony decline. The present study will be useful for better understanding the harm caused by this pesticide, especially regarding how honeybee tolerance to the viral infection might be altered by acute pesticide exposure.
Collapse
Affiliation(s)
- Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Beibei Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, PR China
| | - Yanyan Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Rui Guo
- College of Bee Science, Fujian Agricultural and Forestry University, Fuzhou 350002, PR China
| | - Pingli Dai
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Dafu Chen
- College of Bee Science, Fujian Agricultural and Forestry University, Fuzhou 350002, PR China
| | - Qiang Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China.
| |
Collapse
|
18
|
Brandt A, Grikscheit K, Siede R, Grosse R, Meixner MD, Büchler R. Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin. Sci Rep 2017; 7:4673. [PMID: 28680118 PMCID: PMC5498664 DOI: 10.1038/s41598-017-04734-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/19/2017] [Indexed: 01/13/2023] Open
Abstract
Queen health is crucial to colony survival of honeybees, since reproduction and colony growth rely solely on the queen. Queen failure is considered a relevant cause of colony losses, yet few data exist concerning effects of environmental stressors on queens. Here we demonstrate for the first time that exposure to field-realistic concentrations of neonicotinoid pesticides can severely affect the immunocompetence of queens of western honeybees (Apis mellifera L.). In young queens exposed to thiacloprid (200 µg/l or 2000 µg/l) or clothianidin (10 µg/l or 50 µg/l), the total hemocyte number and the proportion of active, differentiated hemocytes was significantly reduced. Moreover, functional aspects of the immune defence namely the wound healing/melanisation response, as well as the antimicrobial activity of the hemolymph were impaired. Our results demonstrate that neonicotinoid insecticides can negatively affect the immunocompetence of queens, possibly leading to an impaired disease resistance capacity.
Collapse
Affiliation(s)
- Annely Brandt
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany.
| | - Katharina Grikscheit
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35032, Marburg, Germany
| | - Reinhold Siede
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany
| | - Robert Grosse
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35032, Marburg, Germany
| | | | - Ralph Büchler
- LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany
| |
Collapse
|
19
|
Benuszak J, Laurent M, Chauzat MP. The exposure of honey bees (Apis mellifera; Hymenoptera: Apidae) to pesticides: Room for improvement in research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:423-438. [PMID: 28256316 DOI: 10.1016/j.scitotenv.2017.02.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 05/23/2023]
Abstract
Losses of honey bees have been repeatedly reported from many places worldwide. The widespread use of synthetic pesticides has led to concerns regarding their environmental fate and their effects on pollinators. Based on a standardised review, we report the use of a wide variety of honey bee matrices and sampling methods in the scientific papers studying pesticide exposure. Matrices such as beeswax and beebread were very little analysed despite their capacities for long-term pesticide storage. Moreover, bioavailability and transfer between in-hive matrices were poorly understood and explored. Many pesticides were studied but interactions between molecules or with other stressors were lacking. Sampling methods, targeted matrices and units of measure should have been, to some extent, standardised between publications to ease comparison and cross checking. Data on honey bee exposure to pesticides would have also benefit from the use of commercial formulations in experiments instead of active ingredients, with a special assessment of co-formulants (quantitative exposure and effects). Finally, the air matrix within the colony must be explored in order to complete current knowledge on honey bee pesticide exposure.
Collapse
Affiliation(s)
- Johanna Benuszak
- Unit of Coordination and Support to Surveillance, ANSES, Scientific Affairs Department for Laboratories, Maisons-Alfort, France
| | - Marion Laurent
- Unit of Honeybee Pathology, ANSES, European Union and National Reference Laboratory for Honeybee Health, Sophia Antipolis, France
| | - Marie-Pierre Chauzat
- Unit of Coordination and Support to Surveillance, ANSES, Scientific Affairs Department for Laboratories, Maisons-Alfort, France; Unit of Honeybee Pathology, ANSES, European Union and National Reference Laboratory for Honeybee Health, Sophia Antipolis, France.
| |
Collapse
|
20
|
Gott RC, Kunkel GR, Zobel ES, Lovett BR, Hawthorne DJ. Implicating ABC Transporters in Insecticide Resistance: Research Strategies and a Decision Framework. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:667-677. [PMID: 28334260 DOI: 10.1093/jee/tox041] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Pest insects damage crops, transmit diseases, and are household nuisances. Historically, they have been controlled with insecticides, but overuse often leads to resistance to one or more of these chemicals. Insects gain resistance to insecticides through behavioral, metabolic, genetic, and physical mechanisms. One frequently overlooked strategy is through the use of ATP-binding cassette (ABC) transporters. ABC transporters, present in all domains of life, perform natural excretory functions, thus the exploitation of these transporters to excrete insecticides and contribute to resistance is highly plausible. Previous work has implicated ABC transporters in some cases of insecticide resistance. Proposed herein is a framework meant as a formal guide for more easily incorporating the analysis of ABC transporters into existing resistance monitoring using suggested simple research methods. This framework functions as a simple decision tree and its utility is demonstrated using case examples. Determining a role for ABC transporters in insecticide resistance would help to shape future resistance management plans and guide the design of new insecticides.
Collapse
Affiliation(s)
- Ryan C Gott
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 (; ; ; ; )
| | - Grace R Kunkel
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 (; ; ; ; )
| | - Emily S Zobel
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 (; ; ; ; )
| | - Brian R Lovett
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 (; ; ; ; )
| | - David J Hawthorne
- Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742 (; ; ; ; )
| |
Collapse
|
21
|
Disruption of quercetin metabolism by fungicide affects energy production in honey bees ( Apis mellifera). Proc Natl Acad Sci U S A 2017; 114:2538-2543. [PMID: 28193870 DOI: 10.1073/pnas.1614864114] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera, detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.
Collapse
|