1
|
Ma D, Yang F, Yu Q, Zhou X, Li Z, Wang Y, Chen J. Betulin gel alleviates esophageal stricture following endoscopic submucosal dissection: an animal study. Esophagus 2025; 22:105-114. [PMID: 39407007 DOI: 10.1007/s10388-024-01091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/16/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Esophageal stenosis is a troublesome complication after circumferential ESD. This study examined the efficacy of betulin gel in preventing esophageal stenosis after ESD in a porcine model. METHODS Twelve pigs were randomized to betulin group and control group evenly. At the distal esophagus, circumferential ESD was performed in all animals. In the betulin group, betulin gel was applied at days 1, 3, and 7. Endoscopy examination was performed at day 3, 1 week, 2 weeks, and 4 weeks post-ESD. Then pigs were killed for macroscopic and histologic esophageal evaluation. RESULTS The rate of esophageal stricture was lower in the betulin group (53.3 ± 12.5% vs 88.3% ± 2.9, p = 0.02). Betulin-treated pigs had lower dysphagia score (2.0 ± 0 vs 3.3 ± 0.5, p < 0.001), less weight loss (11.78% ± 2.16 vs 15.85% ± 3.63, p = 0.04), and better passability of the open and closed biopsies forceps (83.33% vs. 0%, p = 0.015, and 100% vs. 0%, p = 0.002) 4 weeks post-ESD. Histologically, better re-epithelization (63.2 ± 10.7 mm vs 22.8 ± 10.1 mm, p < 0.001), slighter submucosal fibrosis (0.95 ± 0.17 mm vs 2.32 ± 0.48 mm, p = 0.002), lower muscularis propria damage score (1 vs 3, p < 0.001), and less inflammatory cells (307 vs 675 per high-power field, p = 0.002) were noted in the betulin group. The expression levels of TGF-β1, collagen i, collagen III, and α-SMA were significantly lower in the betulin group compared to the control group (p < 0.05). CONCLUSIONS Betulin gel shows promise in reducing fibrosis, enhancing repair, and preventing esophageal stricture after ESD, suggesting a potential new strategy for prevention.
Collapse
Affiliation(s)
- Dan Ma
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, NO. 168, Changhai Road, Shanghai, 200433, China
| | - Fan Yang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, NO. 168, Changhai Road, Shanghai, 200433, China
- Department of Gastroenterology, People's Hospital of Leshan, Leshan, Sichuan, China
| | - Qihong Yu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, NO. 168, Changhai Road, Shanghai, 200433, China
| | - Xin Zhou
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, NO. 168, Changhai Road, Shanghai, 200433, China
| | - Yunfeng Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, NO. 168, Changhai Road, Shanghai, 200433, China.
| | - Jie Chen
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, NO. 168, Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Liu KC, Chen YC, Hsieh CF, Wang MH, Zhong MX, Cheng NC. Scaffold-free 3D culture systems for stem cell-based tissue regeneration. APL Bioeng 2024; 8:041501. [PMID: 39364211 PMCID: PMC11446583 DOI: 10.1063/5.0225807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Recent advances in scaffold-free three-dimensional (3D) culture methods have significantly enhanced the potential of stem cell-based therapies in regenerative medicine. This cutting-edge technology circumvents the use of exogenous biomaterial and prevents its associated complications. The 3D culture system preserves crucial intercellular interactions and extracellular matrix support, closely mimicking natural biological niches. Therefore, stem cells cultured in 3D formats exhibit distinct characteristics, showcasing their capabilities in promoting angiogenesis and immunomodulation. This review aims to elucidate foundational technologies and recent breakthroughs in 3D scaffold-free stem cell engineering, offering comprehensive guidance for researchers to advance this technology across various clinical applications. We first introduce the various sources of stem cells and provide a comparative analysis of two-dimensional (2D) and 3D culture systems. Given the advantages of 3D culture systems, we delve into the specific fabrication and harvesting techniques for cell sheets and spheroids. Furthermore, we explore their applications in pre-clinical studies, particularly in large animal models and clinical trials. We also discuss multidisciplinary strategies to overcome existing limitations such as insufficient efficacy, hostile microenvironments, and the need for scalability and standardization of stem cell-based products.
Collapse
Affiliation(s)
- Ke-Chun Liu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Yueh-Chen Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Chi-Fen Hsieh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Mu-Hui Wang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Meng-Xun Zhong
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Nai-Chen Cheng
- Author to whom correspondence should be addressed:. Tel.: 886 2 23123456 ext 265919. Fax: 886 2 23934358
| |
Collapse
|
3
|
Ye S, Hu J, Zhang D, Zhao S, Shi X, Li W, Wang J, Guan W, Yan L. Strategies for Preventing Esophageal Stenosis After Endoscopic Submucosal Dissection and Progress in Stem Cell-Based Therapies. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:522-529. [PMID: 38243787 DOI: 10.1089/ten.teb.2023.0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Endoscopic submucosal dissection (ESD) has been widely used in the early neoplasia of the esophagus. However, postoperative esophageal stenosis is a big problem, particularly when a large circumferential proportion of esophageal mucosa is resected. Currently, there are several methods available to prevent esophageal stenosis after ESD, including steroid administration, esophageal stent implantation, and endoscopic balloon dilation (EBD). However, the therapeutic effects of these are not yet satisfactory. Stem cell-based therapies has shown promising potential in reconstructing tissue structure and restoring tissue function. In this study, we discussed the current strategies for preventing esophageal stenosis after ESD and perspectives of stem cell-based therapies for the prevention of esophageal stenosis.
Collapse
Affiliation(s)
- Shujun Ye
- Department of Geriatric Gastroenterology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jingjing Hu
- Department of Geriatric Gastroenterology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Daxu Zhang
- Department of Geriatric Gastroenterology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Shuo Zhao
- Department of Geriatric Gastroenterology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaonan Shi
- Department of Geriatric Gastroenterology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Weilong Li
- Department of Geriatric Gastroenterology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jingyi Wang
- Department of Geriatric Gastroenterology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Weiping Guan
- Department of Geriatric Neurology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Li Yan
- Department of Geriatric Gastroenterology, the Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
4
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
5
|
Okubo Y, Ishihara R. Endoscopic Submucosal Dissection for Esophageal Cancer: Current and Future. Life (Basel) 2023; 13:life13040892. [PMID: 37109421 PMCID: PMC10140872 DOI: 10.3390/life13040892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Endoscopic submucosal dissection (ESD) has been widely used to treat superficial esophageal cancer. The advantages of esophageal ESD include a high en bloc resection rate and accurate pathological diagnosis. It enables local resection of the primary tumor and accurate identification of the risk factors for lymph node metastasis, including depth, vascular invasion, and types of invasion. Even in cases with clinical T1b-SM cancer, ESD and additional treatment can achieve radical cure, depending on the risk of lymph node metastasis. Esophageal ESD will be increasingly vital in minimally invasive and effective esophageal cancer treatment. This article describes the current status and prospects of esophageal ESD.
Collapse
|
6
|
Elia E, Brownell D, Chabaud S, Bolduc S. Tissue Engineering for Gastrointestinal and Genitourinary Tracts. Int J Mol Sci 2022; 24:ijms24010009. [PMID: 36613452 PMCID: PMC9820091 DOI: 10.3390/ijms24010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal and genitourinary tracts share several similarities. Primarily, these tissues are composed of hollow structures lined by an epithelium through which materials need to flow with the help of peristalsis brought by muscle contraction. In the case of the gastrointestinal tract, solid or liquid food must circulate to be digested and absorbed and the waste products eliminated. In the case of the urinary tract, the urine produced by the kidneys must flow to the bladder, where it is stored until its elimination from the body. Finally, in the case of the vagina, it must allow the evacuation of blood during menstruation, accommodate the male sexual organ during coitus, and is the natural way to birth a child. The present review describes the anatomy, pathologies, and treatments of such organs, emphasizing tissue engineering strategies.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - David Brownell
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 42282)
| |
Collapse
|
7
|
Advances in the application of regenerative medicine in prevention of post-endoscopic submucosal dissection for esophageal stenosis. J Transl Int Med 2022; 10:28-35. [PMID: 35702182 PMCID: PMC8997800 DOI: 10.2478/jtim-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Endoscopic submucosal dissection (ESD) is a curative treatment for superficial esophageal cancer with distinct advantages. However, esophageal stenosis after ESD remains a tough problem, especially after large circumferential proportion of esophageal mucosa is removed, which limits the wide use of ESD, especially in circumferential lesions. In this scenario, preventive procedures are highly recommended against post-ESD esophageal stenosis. However, the efficacy and safety of traditional prophylactic methods (steroids, metal and biodegradable stents, balloon dilation, radial incision, etc.) are not satisfactory and novel strategies need to be developed. Regenerative medicine has been showing enormous potential in the reconstruction of organs including the esophagus. In this review, we aimed to describe the current status of regenerative medicine in prevention of post-ESD esophageal stenosis. Cell injection, cell sheet transplantation, and extracellular matrix implantation have been proved effective. However, numerous obstacles still exist and further studies are necessary.
Collapse
|
8
|
Vasanthan KS, Srinivasan V, Mathur V, Agarwal P, Negi N, Kumari S. 3D Bioprinting for esophageal tissue regeneration: A review. JOURNAL OF MATERIALS RESEARCH 2022; 37:88-113. [DOI: 10.1557/s43578-021-00409-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2025]
|
9
|
Jones BC, Shibuya S, Durkin N, De Coppi P. Regenerative medicine for childhood gastrointestinal diseases. Best Pract Res Clin Gastroenterol 2021; 56-57:101769. [PMID: 35331401 DOI: 10.1016/j.bpg.2021.101769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/31/2023]
Abstract
Several paediatric gastrointestinal diseases result in life-shortening organ failure. For many of these conditions, current therapeutic options are suboptimal and may not offer a cure. Regenerative medicine is an inter-disciplinary field involving biologists, engineers, and clinicians that aims to produce cell and tissue-based therapies to overcome organ failure. Exciting advances in stem cell biology, materials science, and bioengineering bring engineered gastrointestinal cell and tissue therapies to the verge of clinical trial. In this review, we summarise the requirements for bioengineered therapies, the possible sources of the various cellular and non-cellular components, and the progress towards clinical translation of oesophageal and intestinal tissue engineering to date.
Collapse
Affiliation(s)
- Brendan C Jones
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Soichi Shibuya
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Natalie Durkin
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, United Kingdom.
| |
Collapse
|
10
|
Novel therapies using cell sheets engineered from allogeneic mesenchymal stem/stromal cells. Emerg Top Life Sci 2021; 4:677-689. [PMID: 33231260 PMCID: PMC7939697 DOI: 10.1042/etls20200151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 01/05/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) have long been recognized to help regenerate tissues, by exploiting their intrinsic potentials for differentiation and secretion of therapeutic paracrine factors together with feasibility for cell banking. These unique MSC properties are attractive to provide effective new cell-based therapies for unmet medical needs. Currently, the infusion of suspended MSCs is accepted as a promising therapy to treat systemic inflammatory diseases. However, low cell engraftment/retention in target organs and off-target entrapment using conventional cell infusion must be improved to provide reliable localized disease treatments. Cell sheet technology offers an alternative: three-dimensional (3D) tissue-like structures can be harvested from culture using mild temperature reduction, and transplanted directly onto target tissue sites without suturing, yielding stable cell engraftment and prolonged cell retention in situ without off-target losses. Engineered MSC sheets directly address two major cell therapy strategies based on their therapeutic benefits: (1) tissue replacements based on mult-ilineage differentiation capacities, focusing on cartilage regeneration in this review, and (2) enhancement of tissue recovery via paracrine signaling, employing their various secreted cytokines to promote neovascularization. MSCs also have production benefits as a promising allogeneic cell source by exploiting their reliable proliferative capacity to facilitate expansion and sustainable cell banking for off-the-shelf therapies. This article reviews the advantages of both MSCs as allogeneic cell sources in contrast with autologous cell sources, and allogeneic MSC sheets engineered on thermo-responsive cell dishes as determined in basic studies and clinical achievements, indicating promise to provide robust new cell therapies to future patients.
Collapse
|
11
|
Coffin E, Grangier A, Perrod G, Piffoux M, Marangon I, Boucenna I, Berger A, M'Harzi L, Assouline J, Lecomte T, Chipont A, Guérin C, Gazeau F, Wilhelm C, Cellier C, Clément O, Silva AKA, Rahmi G. Extracellular vesicles from adipose stromal cells combined with a thermoresponsive hydrogel prevent esophageal stricture after extensive endoscopic submucosal dissection in a porcine model. NANOSCALE 2021; 13:14866-14878. [PMID: 34533159 DOI: 10.1039/d1nr01240a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we investigated the combination of extracellular (nano) vesicles (EVs) from pig adipose tissue-derived stromal cells (ADSCs) and a thermoresponsive gel, Pluronic® F-127 (PF-127), to prevent stricture formation after endoscopic resection in a porcine model. ADSC EVs were produced at a liter scale by a high-yielding turbulence approach from ADSCs 3D cultured in bioreactors and characterized in terms of size, morphology and membrane markers. The thermoresponsive property of the PF-127 gel was assessed by rheology. The pro-regenerative potency of ADSC EVs was investigated ex vivo in esophageal biopsies under starvation. In vivo tests were performed in a porcine model after extended esophageal endoscopic mucosal dissection (ESD). Pigs were randomized into 3 groups: control (n = 6), gel (n = 6) or a combination of 1.45 × 1012 EVs + gel (n = 6). Application of gel ± EVs was performed just after ESD with a follow-up finalized on day 21 post-ESD. There was a trend towards less feeding disorder in the EV + gel group in comparison with the gel and the control groups (16.67% vs. 66.7% vs. 83.33%, respectively) but without reaching a statistically significant difference. A significant decrease in the esophageal stricture rate was confirmed by endoscopic, radiological and histological examination for the EV + gel group. A decrease in the mean fibrosis area and larger regenerated muscularis mucosae were observed for the EV + gel group. In summary, the application of EVs + gel after extended esophageal endoscopic resection succeeded in preventing stricture formation with an anti-fibrotic effect. This nano-therapy may be of interest to tackle an unmet medical need considering that esophageal stricture is the most challenging delayed complication after extended superficial cancer resection by endoscopy.
Collapse
Affiliation(s)
- Elise Coffin
- Laboratoire Imagerie de l'Angiogénèse, Plateforme d'Imagerie du Petit Animal, PARCC, INSERM U970, Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, 56 rue Leblanc, 75015, Paris, France
| | - Alice Grangier
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris, UMR 7057 CNRS, 75205 Paris cedex 13, France.
| | - Guillaume Perrod
- Laboratoire Imagerie de l'Angiogénèse, Plateforme d'Imagerie du Petit Animal, PARCC, INSERM U970, Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, 56 rue Leblanc, 75015, Paris, France
| | - Max Piffoux
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris, UMR 7057 CNRS, 75205 Paris cedex 13, France.
| | - Iris Marangon
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris, UMR 7057 CNRS, 75205 Paris cedex 13, France.
| | - Imane Boucenna
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris, UMR 7057 CNRS, 75205 Paris cedex 13, France.
| | - Arthur Berger
- Laboratoire Imagerie de l'Angiogénèse, Plateforme d'Imagerie du Petit Animal, PARCC, INSERM U970, Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, 56 rue Leblanc, 75015, Paris, France
| | - Leila M'Harzi
- Department of Surgery, Hôpital Européen Georges Pompidou, Assistance Publique des Hôpitaux de Paris, Université de Paris, 20 rue Leblanc 75015, France
| | - Jessica Assouline
- Departement of Radiology, Hôpital Saint Louis, Assistance Publique des Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Thierry Lecomte
- CIRE Plateform, UMR 0085, Physiologie de la Reproduction et des comportements, INRA, Centre Val De Loire, 37380 Nouzilly, France
| | | | | | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris, UMR 7057 CNRS, 75205 Paris cedex 13, France.
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris, UMR 7057 CNRS, 75205 Paris cedex 13, France.
| | - Christophe Cellier
- Gastro-Enteroloy and Endoscopy Department, Hôpital Européen Georges Pompidou, Assistance Publique des Hôpitaux de Paris, Université de Paris, 20 rue Leblanc 75015, France.
| | - Olivier Clément
- Department of Radiology, Hôpital Européen Georges Pompidou, Assistance Publique des Hôpitaux de Paris, Université de Paris, 20 rue Leblanc 75015, France
| | - Amanda Karine Andriola Silva
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris, UMR 7057 CNRS, 75205 Paris cedex 13, France.
| | - Gabriel Rahmi
- Laboratoire Imagerie de l'Angiogénèse, Plateforme d'Imagerie du Petit Animal, PARCC, INSERM U970, Laboratoire de Recherches Biochirugicales (Fondation Carpentier), Université de Paris, 56 rue Leblanc, 75015, Paris, France
- Gastro-Enteroloy and Endoscopy Department, Hôpital Européen Georges Pompidou, Assistance Publique des Hôpitaux de Paris, Université de Paris, 20 rue Leblanc 75015, France.
| |
Collapse
|
12
|
Levenson G, Berger A, Demma J, Perrod G, Domet T, Arakelian L, Bruneval P, Broudin C, Jarraya M, Setterblad N, Rahmi G, Larghero J, Cattan P, Faivre L, Poghosyan T. Circumferential esophageal replacement by a decellularized esophageal matrix in a porcine model. Surgery 2021; 171:384-392. [PMID: 34392978 DOI: 10.1016/j.surg.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tissue engineering is an attractive alternative to conventional esophageal replacement techniques using intra-abdominal organs which are associated with a substantial morbidity. The objective was to evaluate the feasibility of esophageal replacement by an allogenic decellularized esophagus in a porcine model. Secondary objectives were to evaluate the benefit of decellularized esophagus recellularization with autologous bone marrow mesenchymal stromal cells and omental maturation of the decellularized esophagus. METHODS Eighteen pigs divided into 4 experimental groups according to mesenchymal stromal cells recellularization and omental maturation underwent a 5-cm long circumferential replacement of the thoracic esophagus. Turbo green florescent protein labelling was used for in vivo mesenchymal stromal cells tracking. The graft area was covered by a stent for 3 months. Clinical and histologic outcomes were analyzed over a 6-month period. RESULTS The median follow-up was 112 days [5; 205]. Two animals died during the first postoperative month, 2 experienced an anastomotic leakage, 13 experienced a graft area stenosis following stent migration of which 3 were sacrificed as initially planned after successful endoscopic treatment. The stent could be removed in 2 animals: the graft area showed a continuous mucosa without stenosis. After 3 months, the graft area showed a tissue specific regeneration with a mature epithelium and muscular cells. Clinical and histologic results were similar across experimental groups. CONCLUSION Circumferential esophageal replacement by a decellularized esophagus was feasible and allowed tissue remodeling toward an esophageal phenotype. We could not demonstrate any benefit provided by the omental maturation of the decellularized esophagus nor its recellularization with mesenchymal stromal cells.
Collapse
Affiliation(s)
- Guillaume Levenson
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Department de Chirurgie Viscérale, Oncologique, et Endocrinienne, Paris, France; INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France. https://twitter.com/Levenson_G
| | - Arthur Berger
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Gastroentérologie, Paris, France. https://twitter.com/bergerarthur7
| | - Jonathan Demma
- Hadassah Medical Center, Service de Chirurgie Générale, Université Hébraïque de Jerusalem, Jerusalem, Israel
| | - Guillaume Perrod
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Gastroentérologie, Paris, France
| | - Thomas Domet
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
| | - Lousineh Arakelian
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
| | - Patrick Bruneval
- Department of Pathology, Georges-Pompidou European hospital, AP-HP and Université de Paris, Paris, France
| | - Chloe Broudin
- Department of Pathology, Georges-Pompidou European hospital, AP-HP and Université de Paris, Paris, France
| | - Mohamed Jarraya
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Banque de Tissus Humains, Paris, France
| | - Niclas Setterblad
- Plateforme technologique de l'IRSL/ Technological Core Facility, Saint-Louis Research Institute, Saint-louis Hospital, Université de Paris
| | - Gabriel Rahmi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Gastroentérologie, Paris, France
| | - Jerome Larghero
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France
| | - Pierre Cattan
- Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Department de Chirurgie Viscérale, Oncologique, et Endocrinienne, Paris, France; INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France.
| | - Lionel Faivre
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, Paris, France. https://twitter.com/FaivreLionel1
| | - Tigran Poghosyan
- INSERM U976 et CIC-BT501, Université de Paris, Hôpital Saint-Louis, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirugie Viscérale et Oncologique, Paris, France. https://twitter.com/PoghosyanTigra1
| |
Collapse
|
13
|
Na HK, Lee JH, Shim IK, Jung HY, Kim DH, Kim CJ. Allogeneic epithelial cell sheet transplantation for preventing esophageal stricture after circumferential ESD in a porcine model: preliminary results. Scand J Gastroenterol 2021; 56:598-603. [PMID: 33764846 DOI: 10.1080/00365521.2021.1897669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Circumferential endoscopic submucosal dissection (ESD) for large lesions induces severe stricture, requiring subsequent treatment. We aimed to evaluate the efficacy of allogeneic epithelial cell sheet transplantation in preventing esophageal stricture after circumferential ESD in a porcine model. MATERIALS AND METHODS A total of 15 conventional pigs underwent a 4 cm long circumferential ESD in the mid-esophagus. Out of these animals, 11 were immediately subjected to allogeneic oral mucosal cell sheet transplantation at the resection site, whereas four pigs underwent circumferential ESD only. We performed upper endoscopy 1 and 2 weeks after ESD and assessed the degree of esophageal stricture and histologic characteristics. RESULTS Dysphagia scores and weight change ratios recorded 1 and 2 weeks after ESD did not differ between the two groups. The stricture rate 2 weeks after ESD was 100% in the control group and 90.9% in the cell sheet group (p = 1.000). The median mucosal constriction rates of the control and cell sheet groups were 73.5% (range 63.0-80.0%) and 53.8% (37.5-73.3%, p = .018), respectively. With regard to microscopic measurements, the length of re-epithelialization was greater in the cell sheet group than in the control group (2,495 µm vs. 369 µm, p = .008). Median fibrosis thickness and degree of muscle damage were not significantly different between groups. CONCLUSIONS Although allogeneic epithelial cell sheet transplantation showed greater re-epithelialization and less mucosal constriction of post-ESD ulcers, it was not sufficiently effective in preventing post-ESD stricture.
Collapse
Affiliation(s)
- Hee Kyong Na
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Hoon Lee
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Kyong Shim
- Department of Biomedical Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hwoon-Yong Jung
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Do Hoon Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Zhou XB, Xu SW, Ye LP, Mao XL, Chen YH, Wu JF, Cai Y, Wang Y, Wang L, Li SW. Progress of esophageal stricture prevention after endoscopic submucosal dissection by regenerative medicine and tissue engineering. Regen Ther 2021; 17:51-60. [PMID: 33997185 PMCID: PMC8100352 DOI: 10.1016/j.reth.2021.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
Endoscopic submucosal dissection (ESD) has been widely accepted as an effective treatment for early esophageal cancer. However, post-ESD esophageal stricture remains a thorny issue. We herein review many strategies for preventing post-ESD esophageal stricture, as well as discuss their strengths and weaknesses. These strategies include pharmacological prophylaxis, esophageal stent and tissue engineering and regenerative medicine treatment. In this review, we summarize these studies and discuss the underlying progress and future directions of tissue engineering and regenerative medicine treatment.
Collapse
Key Words
- 5-FU, 5-Fluorouracil
- ADSC, Autologous adipose-derived stem cells
- ASGS, autologous skin graft surgery
- ChST15, carbohydrate sulfotransferase 15
- EBD, endoscopic balloon dilation
- ECM, extracellular matrix
- ESD, endoscopic submucosal dissection
- Endoscopic submucosal dissection
- Esophageal stricture
- FCMS, fully covered metal stent
- OMECs, oral mucosal epithelial cell sheets
- PGAs, polyglycolic acid sheet
- PIPAAm, poly(N-isopropylacrylamide)
- Regenerative medicine
- SESCNs, superficial esophageal squamous cell neoplasms
- SIS, small intestinal submucosa
- SeMS, self-expandable metal stents
- TA, triamcinolone acetonide
- TS-PGA, triamcinolone-soaked polyglycolic acid sheet
- Tissue engineering
- Tβ4, Thymosin β4
- ccESTD, complete circular endoscopic submucosal tunnel dissection
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Xian-Bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Shi-Wen Xu
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li-Ping Ye
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Xin-Li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Ya-Hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jian-Fen Wu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Yue Cai
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Yi Wang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Li Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| |
Collapse
|
15
|
Hikichi T, Nakamura J, Takasumi M, Hashimoto M, Kato T, Kobashi R, Takagi T, Suzuki R, Sugimoto M, Sato Y, Irie H, Okubo Y, Kobayakawa M, Ohira H. Prevention of Stricture after Endoscopic Submucosal Dissection for Superficial Esophageal Cancer: A Review of the Literature. J Clin Med 2020; 10:jcm10010020. [PMID: 33374780 PMCID: PMC7796365 DOI: 10.3390/jcm10010020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/14/2022] Open
Abstract
Endoscopic resection has been the standard treatment for intramucosal esophageal cancers (ECs) because of the low risk of lymph node metastases in the lesions. In recent years, endoscopic submucosal dissection (ESD), which can resect large ECs, has been performed. However, the risk of esophageal stricture after ESD is high when the mucosal defect caused by the treatment exceeds 3/4 of the circumference of the lumen. Despite the subsequent high risk of luminal stricture, ESD has been performed even in cases of circumferential EC. In such cases, it is necessary to take measures to prevent stricture. Therefore, in this review, we aimed to clarify the current status of stricture prevention methods after esophageal ESD based on previous literature. Although various prophylactic methods have been reported to have stricture-preventing effects, steroid injection therapy and oral steroid administration are mainstream. However, in cases of circumferential EC, both steroid injection therapy and oral steroid administration cannot effectively prevent luminal stricture. To solve this issue, clinical applications, such as tissue shielding methods with polyglycolic acid sheet, autologous oral mucosal epithelial sheet transplantation, and stent placement, have been developed. However, effective prophylaxis of post-ESD mucosal defects of the esophagus is still unclear. Therefore, further studies in this research field are needed.
Collapse
Affiliation(s)
- Takuto Hikichi
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima-City 960-1295, Fukushima, Japan; (J.N.); (M.H.); (T.K.); (Y.O.); (M.K.)
- Correspondence:
| | - Jun Nakamura
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima-City 960-1295, Fukushima, Japan; (J.N.); (M.H.); (T.K.); (Y.O.); (M.K.)
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City 960-1295, Fukushima, Japan; (M.T.); (R.K.); (T.T.); (R.S.); (M.S.); (Y.S.); (H.I.); (H.O.)
| | - Mika Takasumi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City 960-1295, Fukushima, Japan; (M.T.); (R.K.); (T.T.); (R.S.); (M.S.); (Y.S.); (H.I.); (H.O.)
| | - Minami Hashimoto
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima-City 960-1295, Fukushima, Japan; (J.N.); (M.H.); (T.K.); (Y.O.); (M.K.)
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City 960-1295, Fukushima, Japan; (M.T.); (R.K.); (T.T.); (R.S.); (M.S.); (Y.S.); (H.I.); (H.O.)
| | - Tsunetaka Kato
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima-City 960-1295, Fukushima, Japan; (J.N.); (M.H.); (T.K.); (Y.O.); (M.K.)
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City 960-1295, Fukushima, Japan; (M.T.); (R.K.); (T.T.); (R.S.); (M.S.); (Y.S.); (H.I.); (H.O.)
| | - Ryoichiro Kobashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City 960-1295, Fukushima, Japan; (M.T.); (R.K.); (T.T.); (R.S.); (M.S.); (Y.S.); (H.I.); (H.O.)
| | - Tadayuki Takagi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City 960-1295, Fukushima, Japan; (M.T.); (R.K.); (T.T.); (R.S.); (M.S.); (Y.S.); (H.I.); (H.O.)
| | - Rei Suzuki
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City 960-1295, Fukushima, Japan; (M.T.); (R.K.); (T.T.); (R.S.); (M.S.); (Y.S.); (H.I.); (H.O.)
| | - Mitsuru Sugimoto
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City 960-1295, Fukushima, Japan; (M.T.); (R.K.); (T.T.); (R.S.); (M.S.); (Y.S.); (H.I.); (H.O.)
| | - Yuki Sato
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City 960-1295, Fukushima, Japan; (M.T.); (R.K.); (T.T.); (R.S.); (M.S.); (Y.S.); (H.I.); (H.O.)
| | - Hiroki Irie
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City 960-1295, Fukushima, Japan; (M.T.); (R.K.); (T.T.); (R.S.); (M.S.); (Y.S.); (H.I.); (H.O.)
| | - Yoshinori Okubo
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima-City 960-1295, Fukushima, Japan; (J.N.); (M.H.); (T.K.); (Y.O.); (M.K.)
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City 960-1295, Fukushima, Japan; (M.T.); (R.K.); (T.T.); (R.S.); (M.S.); (Y.S.); (H.I.); (H.O.)
| | - Masao Kobayakawa
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima-City 960-1295, Fukushima, Japan; (J.N.); (M.H.); (T.K.); (Y.O.); (M.K.)
- Department of Medical Research Center, Fukushima Medical University, Fukushima-City 960-1295, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City 960-1295, Fukushima, Japan; (M.T.); (R.K.); (T.T.); (R.S.); (M.S.); (Y.S.); (H.I.); (H.O.)
| |
Collapse
|
16
|
Gao Y, Jin SZ. Strategies for treating oesophageal diseases with stem cells. World J Stem Cells 2020; 12:488-499. [PMID: 32742566 PMCID: PMC7360987 DOI: 10.4252/wjsc.v12.i6.488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
There is a wide range of oesophageal diseases, the most general of which are inflammation, injury and tumours, and treatment methods are constantly being developed and updated. With an increasingly comprehensive understanding of stem cells and their characteristics of multilineage differentiation, self-renewal and homing as well as the combination of stem cells with regenerative medicine, tissue engineering and gene therapy, stem cells are playing an important role in the treatment of a variety of diseases. Mesenchymal stem cells have many advantages and are most commonly applied; however, most of these applications have been in experimental studies, with few related clinical trials for comparison. Therefore, the methods, positive significance and limitations of stem cells in the treatment of oesophageal diseases remain incompletely understood. Thus, the purpose of this paper is to review the current literature and summarize the efficacy of stem cells in the treatment of oesophageal diseases, including oesophageal ulceration, acute radiation-induced oesophageal injury, corrosive oesophageal injury, oesophageal stricture formation after endoscopic submucosal dissection and oesophageal reconstruction, as well as gene therapy for oesophageal cancer.
Collapse
Affiliation(s)
- Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
17
|
Ohki T, Yamamoto M. Esophageal regenerative therapy using cell sheet technology. Regen Ther 2020; 13:8-17. [PMID: 33490318 PMCID: PMC7794050 DOI: 10.1016/j.reth.2020.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/20/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
We have been conducting research on esophageal regenerative therapy using cell sheet technology. In particular, in the endoscopic field, we have pushed forward clinical research on endoscopic transplantation of cultured autologous oral mucosal epithelial cell sheets to esophageal ulcer after endoscopic submucosal dissection (ESD). We started research in this direction using animal models in 2004 and performed clinical research in 2012 in collaboration with Nagasaki University and Karolinska Institute. Although in full-circumferential cases it was difficult to prevent esophageal stricture after ESD, there were no complications and stricture could be suppressed. The cell sheet technology is still in its infancy. However, we are convinced that it has a high potential for application in various areas of gastrointestinal science. In this review, we focus on the pre-clinical and clinical trial results obtained and on the theoretical aspects of (1) stricture prevention, (2) esophageal tissue engineering research, and (3) endoscopic transplantation, and review the esophageal regenerative therapy by cell sheet technology.
Collapse
Key Words
- CMC, carboxymethyl cellulose
- CPC, cell-processing center
- Cell sheet technology
- EBD, endoscopic balloon dilation
- ECM, extracellular matrix
- EMR, endoscopic mucosal dissection
- ESD, endoscopic submucosal dissection
- Endoscopic submucosal dissection (ESD)
- Endoscopic transplantation
- Esophageal stricture
- GMP, good manufacturing practice
- OMECS, oral mucosal epithelial cell sheet
- PGA, polyglycolic acid
- PIPAAm, poly(N-isopropylacrylamide)
- PVDF, polyvinylidene difluoride
- Regenerative medicine
- SEMS, self-expandable metallic stent
- TAC, triamcinolone
- Tissue-engineered oral mucosal
Collapse
Affiliation(s)
- Takeshi Ohki
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
18
|
Huang Y, Yamanouchi K, Sakai Y, Kuba S, Sakimura C, Morita M, Kanetaka K, Takatsuki M, Eguchi S. Fabrication of Functional Cell Sheets with Human Thyrocytes from Non-Tumorous Thyroid Tissue. Tissue Eng Regen Med 2019; 16:491-499. [PMID: 31624704 DOI: 10.1007/s13770-019-00198-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 06/03/2019] [Indexed: 11/29/2022] Open
Abstract
Background Engineered cell sheet transplantation has been considered an alternative physiological therapy for endocrine disorders. In this study, we attempted to fabricate functional human thyroid cell sheets using the engineering technology by culturing primary thyrocytes in free-feeder monolayers and assessed their proliferation and function in two different media. Methods The non-tumorous tissues (approximately 2 g) were dissected during surgery. Primary human thyroid cells were isolated by mechanical dispersion and treatment with isolation solution. The cells were cultured on tissue culture dishes or temperature-responsive culture dishes to induce the formation of detached cell sheets. Results Primary thyroid cells isolated from nine patients were positive for thyroid transcription factor 1, thyroglobulin (TG) and cytokeratin 7. Cell sheets with follicles were fabricated by cells incubated in both Dulbecco's Modified Eagle Medium (DMEM) and hepatocyte-defined medium (HDM) culture medium. The diameter and thickness of sheets fabricated in HDM were larger and thicker than those fabricated from DMEM. Furthermore, the cells incubated in HDM secreted higher levels of fT3 and fT4 than those incubated in DMEM. The thyroid peroxidase and TG mRNA of cells maintained in HDM were higher than those in cells maintained in DMEM. Conclusion HDM appears suitable as a culture medium for maintaining primary thyrocytes and fabricating functional cell sheets. These in vitro findings may contribute to the development of appropriate culture conditions for human thyrocytes as well as engineered functional cell sheets.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Kosho Yamanouchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Sayaka Kuba
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Chika Sakimura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Michi Morita
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| |
Collapse
|
19
|
Hashimoto S, Mizuno KI, Takahashi K, Sato H, Yokoyama J, Takeuchi M, Sato Y, Kobayashi M, Terai S. Evaluating the effect of injecting triamcinolone acetonide in two sessions for preventing esophageal stricture after endoscopic submucosal dissection. Endosc Int Open 2019; 7:E764-E770. [PMID: 31157294 PMCID: PMC6525005 DOI: 10.1055/a-0894-4374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/14/2019] [Indexed: 01/09/2023] Open
Abstract
Background and study aims Several previous reports indicate that endoscopic injection of triamcinolone acetonide (TA) after widespread endoscopic submucosal dissection (ESD) is effective for preventing esophageal stricture. We investigated the efficacy of injecting TA in two sessions for preventing stricture formation post-ESD. Patients and methods Sixty-six consecutive patients with widespread mucosal defects that affected more than three-fourths of the circumference of the esophagus were included. The study group (n = 40) received TA injections over two sessions: immediately after and 14 days after ESD. The control group (n = 26) did not receive a TA injection. This study was performed retrospectively against historical controls. The primary endpoint of this study was frequency of stricture after TA injection. The secondary endpoint was number of required endoscopic balloon dilations (EBDs) after TA injection. Results The post-ESD stricture rate among patients who had subcircumferential mucosal defects was 45.7 % in the study group (16/35 patients), which was significantly lower than the rate of 73.9 % in the control group (17/23 patients; P = 0.031). The number of EBD procedures required was significantly lower in the study group (median 0, range 0 - 7) than in the control group (median 4, range 0 - 20; P < 0.001). There was no significant difference between the study and control groups among the patients who had full circumferential mucosal defects. Conclusion This study showed that performing two sessions of TA injection is an effective and safe treatment for prevention of esophageal stricture following subcircumferential ESD.
Collapse
Affiliation(s)
- Satoru Hashimoto
- Niigata University Medical and Dental Hospital, Division of Gastroenterology and Hepatology, Niigata, Japan,Corresponding author Satoru Hashimoto Division of Gastroenterology and HepatologyNiigata University Medical and Dental Hospital1-757 Asahimachi-dori, Chuo-kuNiigata 951-8510Japan+81-25-227-0776
| | - Ken-ichi Mizuno
- Niigata University Medical and Dental Hospital, Division of Gastroenterology and Hepatology, Niigata, Japan
| | - Kazuya Takahashi
- Niigata University Medical and Dental Hospital, Division of Gastroenterology and Hepatology, Niigata, Japan
| | - Hiroki Sato
- Niigata University Medical and Dental Hospital, Division of Gastroenterology and Hepatology, Niigata, Japan
| | - Junji Yokoyama
- Niigata University Medical and Dental Hospital, Department of Endoscopy, Niigata, Japan
| | - Manabu Takeuchi
- Nagaoka Red Cross Hospital, Department of Gastroenterology, Niigata, Japan
| | - Yuichi Sato
- Niigata Prefecture Yoshida Hospital, Department of Gastroenterology, Niigata, Japan
| | - Masaaki Kobayashi
- Niigata Cancer Center Hospital, Department of Gastroenterology, Niigata, Japan
| | - Shuji Terai
- Niigata University Medical and Dental Hospital, Division of Gastroenterology and Hepatology, Niigata, Japan
| |
Collapse
|
20
|
Ishihara R. Prevention of esophageal stricture after endoscopic resection. Dig Endosc 2019; 31:134-145. [PMID: 30427076 DOI: 10.1111/den.13296] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/08/2018] [Indexed: 01/10/2023]
Abstract
Stricture formation after esophageal endoscopic resection has a negative impact on patients' quality of life because it causes dysphagia and requires multiple endoscopic dilations. Various methods by which to prevent stricture have recently been developed and reported. Among these methods, local steroid injection is the most commonly used and is currently considered the standard method for noncircumferential resection. However, local steroid injection has a limited effect on circumferential resection. Thus, oral steroid administration is used for such cases because it may have a stronger effect than local injection. Steroid treatment, both by local injection and oral administration, is effective and low-cost; however, it may cause fragility of the esophageal wall, resulting in adverse events such as perforation during balloon dilatation. Many innovative approaches have been developed, such as tissue-shielding methods with polyglycolic acid, tissue engineering approaches with autologous oral mucosal epithelial cell sheet transplantation, and stent insertion. These methods may be promising, but they are limited by a scarcity of data. Further investigations are needed to confirm the efficacy of these methods.
Collapse
Affiliation(s)
- Ryu Ishihara
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
21
|
Tang A, Ma C, Deng P, Zhang H, Xu Y, Min M, Liu Y. Autologous Flap Transfer for Esophageal Stricture Prevention After Endoscopic Submucosal Dissection in a Porcine Model. Dig Dis Sci 2018; 63:2389-2394. [PMID: 29736832 DOI: 10.1007/s10620-018-5094-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/24/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Esophageal stricture caused by endoscopic submucosal dissection for a mucosal defect that covers more than three quarters of the circumference of the esophagus has a high incidence. To date, no method for preventing such strictures has been widely recognized as effective in clinical practice. AIMS We examined whether esophageal stricture caused by circumferential endoscopic submucosal dissection could be prevented by autologous flap transfer. METHODS Six pigs (N = 6) underwent circumferential esophageal endoscopic submucosal dissection under general anesthesia. For animals in the flap group (N = 3), an autologous flap was constructed and then placed at the resection site and secured with metal clips. Animals in the control group (N = 3) underwent endoscopic submucosal dissection only. Endoscopy was performed 3 weeks postoperative to evaluate the effects of flap transfer. RESULTS Animals in the flap group gained more weight than animals in the control group. At 3 weeks postoperative, animals in the flap group developed clinically slight stricture; in these animals, an endoscope could be passed through the stricture with slight resistance. In contrast, in the control group, significant stricture was observed, and the stricture was difficult to cross with an endoscope. CONCLUSION Autologous flap transfer after circumferential esophageal endoscopic submucosal dissection is a novel approach that remarkably decreases the degree of esophageal stricture that arises.
Collapse
Affiliation(s)
- Airong Tang
- Department of Gastroenterology, 307 Hospital of PLA, Beijing, China
| | - Cuiyun Ma
- Department of Gastroenterology, 307 Hospital of PLA, Beijing, China
| | - Pei Deng
- Department of Gastroenterology, 307 Hospital of PLA, Beijing, China
| | - Hanqing Zhang
- Department of Gastroenterology, 307 Hospital of PLA, Beijing, China
| | - Yang Xu
- Department of Gastroenterology, 307 Hospital of PLA, Beijing, China
| | - Min Min
- Department of Gastroenterology, 307 Hospital of PLA, Beijing, China
| | - Yan Liu
- Department of Gastroenterology, 307 Hospital of PLA, Beijing, China.
| |
Collapse
|
22
|
Sukho P, Boersema GSA, Kops N, Lange JF, Kirpensteijn J, Hesselink JW, Bastiaansen-Jenniskens YM, Verseijden F. Transplantation of Adipose Tissue-Derived Stem Cell Sheet to Reduce Leakage After Partial Colectomy in A Rat Model. J Vis Exp 2018. [PMID: 30148499 DOI: 10.3791/57213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anastomotic leakage is a disastrous complication after colorectal surgery. Although current methods for leakage prevention have different levels of clinical efficacy, they are until now imperfect solutions. Stem cell therapy using ASC sheets could provide a solution to this problem. ASCs are considered as promising candidates for promoting tissue healing because of their trophic and immunomodulatory properties. Here, we provide methods to produce high-density ASC sheets, that are transplanted onto a colorectal anastomosis in a rat model to reduce the leakage. ASCs formed cell sheets in thermo-responsive culture dishes that could be easily detached. On the day of the transplantation, a partial colectomy with a 5-suture colorectal anastomosis was performed. Animals were immediately transplanted with 1 ASC sheet per rat. ASC sheets adhered spontaneously to the anastomosis without any glue, suture, or any biomaterial. Animal groups were sacrificed 3 and 7 days postoperatively. Compared to transplanted animals, the incidence of anastomotic abscesses and leakage was higher in control animals. In our model, the transplantation of ASC sheets after colorectal anastomosis was successful and associated with a lower leakage rate.
Collapse
Affiliation(s)
- Panithi Sukho
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University; Department of Otorhinolaryngology, Erasmus MC University Medical Center; Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University
| | | | - Nicole Kops
- Department of Orthopaedics, Erasmus MC University Medical Center
| | - Johan F Lange
- Department of Surgery, Erasmus MC University Medical Center
| | - Jolle Kirpensteijn
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University; Hill's Pet Nutrition Inc
| | - Jan Willem Hesselink
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University
| | | | - Femke Verseijden
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University; Department of Orthopaedics, Erasmus MC University Medical Center;
| |
Collapse
|
23
|
Arakelian L, Kanai N, Dua K, Durand M, Cattan P, Ohki T. Esophageal tissue engineering: from bench to bedside. Ann N Y Acad Sci 2018; 1434:156-163. [PMID: 30088660 DOI: 10.1111/nyas.13951] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
For various esophageal diseases, the search for alternative techniques for tissue repair has led to significant developments in basic and translational research in the field of tissue engineering. Applied to the esophagus, this concept is based on the in vitro combination of elements judged necessary for in vivo implantation to promote esophageal tissue remodeling. Different methods are currently being explored to develop substitutes using cells, scaffolds, or a combination of both, according to the severity of lesions to be treated. In this review, we discuss recent advances in (1) cell sheet technology for preventing stricture after extended esophageal mucosectomy and (2) full-thickness circumferential esophageal replacement using tissue-engineered substitutes.
Collapse
Affiliation(s)
- Lousineh Arakelian
- Cell Therapy Unit, AP-HP, Saint-Louis Hospital, Paris Diderot University, Paris, France.,INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Saint-Louis Hospital, Paris, France
| | - Nobuo Kanai
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Kulwinder Dua
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marlène Durand
- University of Bordeaux, CHU Bordeaux, CIC1401 Inserm, Bordeaux, France.,Inserm, Bioingénierie Tissulaire, U1026, Bordeaux, France
| | - Pierre Cattan
- Cell Therapy Unit, AP-HP, Saint-Louis Hospital, Paris Diderot University, Paris, France.,INSERM, Clinical Investigation Center in Biotherapies (CBT-501) and U1160, Institut Universitaire d'Hématologie, Saint-Louis Hospital, Paris, France.,Department of Digestive and Endocrine Surgery, AP-HP, Saint-Louis Hospital, Paris Diderot University, Paris, France
| | - Takeshi Ohki
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
24
|
Truchetet ME, Pradeu T. Re-thinking our understanding of immunity: Robustness in the tissue reconstruction system. Semin Immunol 2018; 36:45-55. [PMID: 29550156 DOI: 10.1016/j.smim.2018.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/28/2018] [Indexed: 12/26/2022]
Abstract
Robustness, understood as the maintenance of specific functionalities of a given system against internal and external perturbations, is pervasive in today's biology. Yet precise applications of this notion to the immune system have been scarce. Here we show that the concept of robustness sheds light on tissue repair, and particularly on the crucial role the immune system plays in this process. We describe the specific mechanisms, including plasticity and redundancy, by which robustness is achieved in the tissue reconstruction system (TRS). In turn, tissue repair offers a very important test case for assessing the usefulness of the concept of robustness, and identifying different varieties of robustness.
Collapse
Affiliation(s)
- Marie-Elise Truchetet
- Department of Rheumatology, CHU Bordeaux Hospital, Bordeaux, France; ImmunoConcept, UMR5164, Immunology, CNRS, University of Bordeaux, Bordeaux, France
| | - Thomas Pradeu
- ImmunoConcept, UMR5164, Immunology, CNRS, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
25
|
Progress on the Prevention of Esophageal Stricture after Endoscopic Submucosal Dissection. Gastroenterol Res Pract 2018; 2018:1696849. [PMID: 29686699 PMCID: PMC5857296 DOI: 10.1155/2018/1696849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/28/2018] [Indexed: 12/13/2022] Open
Abstract
Endoscopic submucosal dissection (ESD) has been widely accepted as an effective, minimally invasive treatment for superficial esophageal cancers. However, esophageal stricture often occurs in patients with large mucosal defects after ESD. In this review, we discuss various approaches recently researched to prevent esophageal strictures after ESD. These approaches can be classified as pharmacological treatments, esophageal stent treatments, and tissue engineering approaches. Most of the preventive approaches still have their limitations and require further research. With the improvement of current therapies, ESD can be more widely utilized as a minimally invasive treatment with minimal complications.
Collapse
|
26
|
Oral epithelial cell sheets engraftment for esophageal strictures after endoscopic submucosal dissection of squamous cell carcinoma and airplane transportation. Sci Rep 2017; 7:17460. [PMID: 29234120 PMCID: PMC5727129 DOI: 10.1038/s41598-017-17663-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
Endoscopic submucosal dissection (ESD) permits en bloc removal of superficial oesophageal squamous cell carcinoma (ESCC). However, post-procedure stricture is common after ESD for widespread tumours, and multiple endoscopic balloon dilation (EBD) procedures are required. We aimed to evaluate the safety and effectiveness of endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets that had been transported by air over a distance of 1200 km in controlling postprocedural oesophageal stricture. Ten patients who underwent complete circular or semicircular ESD for ESCC were transplanted with cell sheets. The safety of the entire process including cell sheet preparation, transport, ESD and cell sheet transplantation was assessed. The incidence of oesophageal stricture, number of EBD sessions, and time until epithelialization were investigated. Each ESD was successfully performed, with subsequent cell sheet engrafting carried out safely. Following cell sheet transplantation, the luminal stenosis rate was 40%, while the median number of EBD sessions was 0. The median post-ESD ulcer healing period was rather short at 36 days. There were no significant complications at any stage of the process. Cell sheet transplantation and preparation at distant sites and transportation by air could be a safe and promising regenerative medicine technology.
Collapse
|
27
|
Han Y, Guo J, Sun S, Wu W, Wang S, Ge N, Liu X, Wang G, Wang S. Acellular dermal matrix for esophageal stricture prevention after endoscopic submucosal dissection in a porcine model. Gastrointest Endosc 2017; 86:1160-1167. [PMID: 28396274 DOI: 10.1016/j.gie.2017.02.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/23/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Endoscopic submucosal dissection (ESD) is considered an effective treatment for early esophageal cancer and precancerous lesions. Esophageal stenosis is closely associated with quasi-circumferential ESD. We examined whether post-ESD esophageal stricture can be prevented by grafting an acellular dermal matrix (ADM) membrane. METHODS Fourteen Bama miniature pigs were randomly divided into an ADM group (n = 7) and a control group (n = 7). Semicircumferential ESD was performed at the distal esophagus in all animals, and in the ADM group an ADM patch graft was placed at the resection site and secured innovatively with metal clips. Animals in the control group underwent ESD only. Endoscopy was performed at 3 days, 1 week, 2 weeks, and 4 weeks post-ESD, and fluoroscopy was performed at 4 weeks for assessment of the degree of stenosis, after which the remodeled esophageal tissues were excised for histologic analysis. RESULTS No animals in the ADM group developed clinically significant esophageal stenosis, whereas 42.8% (3/7) in the control group did. The degree of stenosis was severe in the control group (39.8% vs 17.2%, respectively; P = .01). Animals in the ADM group had less feeding difficulty and lost less weight (-.9 kg vs -4.1 kg, respectively; P = .007). Histologically, complete mucosal epithelium, slight local inflammation, and organized collagenous fibers were observed in the ADM group. CONCLUSIONS ADM patch graft appears, after short-term observation, to be a potentially useful new treatment strategy for prevention of esophageal stricture after ESD. A metal clip fixation technique is effective for endoscopic graft attachment.
Collapse
Affiliation(s)
- Ye Han
- Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jintao Guo
- Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Siyu Sun
- Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weichao Wu
- Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sheng Wang
- Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Nan Ge
- Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Liu
- Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guoxin Wang
- Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shupeng Wang
- Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Mizushima T, Ohnishi S, Hosono H, Yamahara K, Tsuda M, Shimizu Y, Kato M, Asaka M, Sakamoto N. Oral administration of conditioned medium obtained from mesenchymal stem cell culture prevents subsequent stricture formation after esophageal submucosal dissection in pigs. Gastrointest Endosc 2017; 86:542-552.e1. [PMID: 28153569 DOI: 10.1016/j.gie.2017.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/16/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Endoscopic submucosal dissection (ESD) for esophageal cancer often causes postoperative stricture when more than three fourths of the circumference of the esophagus is dissected. Mesenchymal stem cells are a valuable cell source in regenerative medicine, and conditioned medium (CM) obtained from mesenchymal stem cells reportedly inhibits inflammation. In this study we evaluated whether CM could prevent esophageal stricture after ESD. METHODS We resected a semi-circumference of pig esophagus by ESD. We prepared CM gel by mixing with 5% carboxymethyl cellulose and endoscopically applied it onto the wound bed immediately after ESD and on days 8 and 15 (weekly CM group) or administered it orally from days 1 to 4 (daily CM group). We also injected triamcinolone acetonide into the remaining submucosa immediately after ESD (steroid group). We killed the pigs on day 8 or day 22 to measure the stricture rate and to perform histologic analysis. RESULTS Stricture rate in weekly and daily CM groups and steroid groups were significantly lower than in the control group on day 22. Moreover, CM significantly attenuated the number of activated myofibroblasts and fiber thickness on day 22. CM also significantly decreased the infiltration of neutrophils and macrophages compared with the control group on day 8. CONCLUSIONS CM gel prevents esophageal stricture formation by suppressing myofibroblast activation and fibrosis after the infiltration of neutrophils and macrophages. Oral administration of CM gel is a promising treatment for the prevention of post-ESD stricture.
Collapse
Affiliation(s)
- Takeshi Mizushima
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidetaka Hosono
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenichi Yamahara
- Department of Transfusion Medicine and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Japan
| | - Momoko Tsuda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yuichi Shimizu
- Division of Endoscopy, Hokkaido University Hospital, Sapporo, Japan
| | - Mototsugu Kato
- Division of Endoscopy, Hokkaido University Hospital, Sapporo, Japan
| | - Masahiro Asaka
- Department of Cancer Preventive Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
29
|
Sukho P, Cohen A, Hesselink JW, Kirpensteijn J, Verseijden F, Bastiaansen-Jenniskens YM. Adipose Tissue-Derived Stem Cell Sheet Application for Tissue Healing In Vivo: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:37-52. [PMID: 28665192 DOI: 10.1089/ten.teb.2017.0142] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipose tissue-derived stem cells (ASCs) are known to be tissue-healing promoters due to their cellular plasticity and secretion of paracrine factors. Cultured ASC sheets provide a novel method of ASC application and can retain ASCs at the targeted tissue. The purpose of this systematic review is to evaluate preclinical studies using ASC sheet transplantation therapy for promoting tissue healing. First, we searched databases to identify studies of ASC sheet therapy in different experimental animal models, and then determined the quality score of studies using SYRCLE's risk bias tool. A total of 18 included studies examined the role of ASC sheets on tissue healing and function in models for myocardial infarction, dilated cardiomyopathy, full-thickness skin wounds, hind limb ischemia, esophageal strictures, and oral ulcers. ASC sheet application after myocardial infarction improved survival rate, cardiac function, and capillary density and reduced the extent of fibrosis. Application of ASC sheets to a full-thickness skin wound decreased the wound size and stimulated wound maturation. In the hind limb ischemia model, ASC sheet application improved limb perfusion and capillary density, and decreased the amount of ischemic tissue and inflammation. ASC sheet application to mucosal wounds of the digestive tract accelerated wound healing and decreased the degree of stricture and fibrosis. Taken together, transplanted ASC sheets had a positive effect on tissue healing and reconstruction in these preclinical studies. The reported favorable effects of ASC sheet therapy in various tissue healing applications may be implemented in future translational studies. It is suggested that future preclinical animal model studies of ASC sheet therapy should concern standardization of culture techniques and investigate the mechanisms of action. In addition, clearly indicated experimental setups according to the SYRCLE's guidelines should improve study quality and validity.
Collapse
Affiliation(s)
- Panithi Sukho
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,2 Department of Otorhinolaryngology, Erasmus MC University Medical Center , Rotterdam, The Netherlands .,3 Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University , Nakhon Pathom, Thailand
| | - Abigael Cohen
- 2 Department of Otorhinolaryngology, Erasmus MC University Medical Center , Rotterdam, The Netherlands
| | - Jan Willem Hesselink
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Jolle Kirpensteijn
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,4 Hill's Pet Nutrition, Inc. , Topeka, Kansas
| | - Femke Verseijden
- 1 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands .,5 Department of Orthopaedics, Erasmus MC University Medical Center , Rotterdam, The Netherlands
| | | |
Collapse
|
30
|
Sukho P, Boersema GSA, Cohen A, Kops N, Lange JF, Kirpensteijn J, Hesselink JW, Bastiaansen-Jenniskens YM, Verseijden F. Effects of adipose stem cell sheets on colon anastomotic leakage in an experimental model: Proof of principle. Biomaterials 2017. [PMID: 28628777 DOI: 10.1016/j.biomaterials.2017.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The most dreaded complication of colorectal surgery is anastomotic leakage. Adipose tissue-derived stem cell sheets (ASC sheets) prepared from temperature-responsive culture surfaces can be easily transplanted onto tissues. These sheets are proposed to improve cell transplant efficiency and enhance wound healing. The aim of this study was to investigate whether application of ASC sheets could prevent leakage of sutured colorectal anastomoses. Insufficient suturing of colorectal anastomoses was performed in Wistar rats to create a colorectal anastomotic leakage model. Rats were randomized to ASC sheet application or control group. Leakage, abscess formation, adhesion formation, anastomotic bursting pressure (ABP), and histology were evaluated on postoperative day 3 or 7. ASC sheet application significantly reduced anastomotic leakage compared to controls, without increased adhesion formation. ASC sheet transplantation resulted in more CD3+ T-cells and CD163+ anti-inflammatory macrophages at the anastomotic site than the control group. ABP, vessel density and collagen deposition were not different between groups. Using cell sheet technology, we generated ASC sheets that prevented disruption of sutured colorectal anastomoses as shown by reduced leakage. Increased numbers of anti-inflammatory macrophages and T-cells might have contributed to this positive effect.
Collapse
Affiliation(s)
- Panithi Sukho
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Geesien S A Boersema
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Abigael Cohen
- Department of Orthopaedics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nicole Kops
- Department of Orthopaedics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Johan F Lange
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jolle Kirpensteijn
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Hill's Pet Nutrition Inc, Topeka, Kansas, USA
| | - Jan Willem Hesselink
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Femke Verseijden
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Department of Orthopaedics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
31
|
Perrod G, Pidial L, Camilleri S, Bellucci A, Casanova A, Viel T, Tavitian B, Cellier C, Clément O, Rahmi G. ADSC-sheet Transplantation to Prevent Stricture after Extended Esophageal Endoscopic Submucosal Dissection. J Vis Exp 2017. [PMID: 28287510 DOI: 10.3791/55018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In past years, the cell-sheet construct has spurred wide interest in regenerative medicine, especially for reconstructive surgery procedures. The development of diversified technologies combining adipose tissue-derived stromal cells (ADSCs) with various biomaterials has led to the construction of numerous types of tissue-engineered substitutes, such as bone, cartilage, and adipose tissues from rodent, porcine, or human ADSCs. Extended esophageal endoscopic submucosal dissection (ESD) is responsible for esophageal stricture formation. Stricture prevention remains challenging, with no efficient treatments available. Previous studies reported the effectiveness of mucosal cell-sheet transplantation in a canine model and in humans. ADSCs are attributed anti-inflammatory properties, local immune modulating effects, neovascularization induction, and differentiation abilities into mesenchymal and non-mesenchymal lineages. This original study describes the endoscopic transplantation of an ADSC tissue-engineered construct to prevent esophageal stricture in a swine model. The ADSC construct was composed of two allogenic ADSC sheets layered upon each other on a paper support membrane. The ADSCs were labeled with the PKH67 fluorophore to allow probe-based confocal laser endomicroscopy (pCLE) monitoring. On the day of transplantation, a 5-cm and hemi-circumferential ESD known to induce esophageal stricture was performed. Animals were immediately endoscopically transplanted with 4 ADSC constructs. The complete adhesion of the ADSC constructs was obtained after 10 min of gentle application. Animals were sacrificed on day 28. All animals were successfully transplanted. Transplantation was confirmed on day 3 with a positive pCLE evaluation. Compared to transplanted animals, control animals developed severe strictures, with major fibrotic tissue development, more frequent alimentary trouble, and reduced weight gain. In our model, the transplantation of allogenic ADSCs, organized in double cell sheets, after extended ESD was successful and strongly associated with a lower esophageal stricture rate.
Collapse
Affiliation(s)
- Guillaume Perrod
- Assistance Publique-Hôpitaux de Paris, Université Paris Descartes Sorbonne Paris Cité; Department of Gastroenterology, Hôpital Européen Georges Pompidou; UMR-S970, Université Paris Descartes Sorbonne Paris Cité
| | | | - Sophie Camilleri
- Assistance Publique-Hôpitaux de Paris, Université Paris Descartes Sorbonne Paris Cité; Department of Pathology, Hôpital Européen Georges Pompidou
| | - Alexandre Bellucci
- Assistance Publique-Hôpitaux de Paris, Université Paris Descartes Sorbonne Paris Cité; UMR-S970, Université Paris Descartes Sorbonne Paris Cité; Department of Radiology, Hôpital Européen Georges Pompidou
| | | | - Thomas Viel
- UMR-S970, Université Paris Descartes Sorbonne Paris Cité
| | - Bertrand Tavitian
- Assistance Publique-Hôpitaux de Paris, Université Paris Descartes Sorbonne Paris Cité; UMR-S970, Université Paris Descartes Sorbonne Paris Cité; Department of Radiology, Hôpital Européen Georges Pompidou
| | - Chirstophe Cellier
- Assistance Publique-Hôpitaux de Paris, Université Paris Descartes Sorbonne Paris Cité; Department of Gastroenterology, Hôpital Européen Georges Pompidou
| | - Olivier Clément
- Assistance Publique-Hôpitaux de Paris, Université Paris Descartes Sorbonne Paris Cité; UMR-S970, Université Paris Descartes Sorbonne Paris Cité; Department of Radiology, Hôpital Européen Georges Pompidou
| | - Gabriel Rahmi
- Assistance Publique-Hôpitaux de Paris, Université Paris Descartes Sorbonne Paris Cité; Department of Gastroenterology, Hôpital Européen Georges Pompidou; UMR-S970, Université Paris Descartes Sorbonne Paris Cité;
| |
Collapse
|