1
|
Kanavarioti A, Rehman MH, Qureshi S, Rafiq A, Sultan M. High Sensitivity and Specificity Platform to Validate MicroRNA Biomarkers in Cancer and Human Diseases. Noncoding RNA 2024; 10:42. [PMID: 39051376 PMCID: PMC11270241 DOI: 10.3390/ncrna10040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
We developed a technology for detecting and quantifying trace nucleic acids using a bracketing protocol designed to yield a copy number with approximately ± 20% accuracy across all concentrations. The microRNAs (miRNAs) let-7b, miR-15b, miR-21, miR-375 and miR-141 were measured in serum and urine samples from healthy subjects and patients with breast, prostate or pancreatic cancer. Detection and quantification were amplification-free and enabled using osmium-tagged probes and MinION, a nanopore array detection device. Combined serum from healthy men (Sigma-Aldrich, St. Louis, MO, USA #H6914) was used as a reference. Total RNA isolated from biospecimens using commercial kits was used as the miRNA source. The unprecedented ± 20% accuracy led to the conclusion that miRNA copy numbers must be normalized to the same RNA content, which in turn illustrates (i) independence from age, sex and ethnicity, as well as (ii) equivalence between serum and urine. miR-21, miR-375 and miR-141 copies in cancers were 1.8-fold overexpressed, exhibited zero overlap with healthy samples and had a p-value of 1.6 × 10-22, tentatively validating each miRNA as a multi-cancer biomarker. miR-15b was confirmed to be cancer-independent, whereas let-7b appeared to be a cancer biomarker for prostate and breast cancer, but not for pancreatic cancer.
Collapse
Affiliation(s)
- Anastassia Kanavarioti
- Yenos Analytical LLC, 4659 Golden Foothill Pkwy, Suite 101, El Dorado Hills, CA 95672, USA; (M.H.R.); (S.Q.); (A.R.); (M.S.)
| | | | | | | | | |
Collapse
|
2
|
Wilfinger WW, Eghbalnia HR, Mackey K, Miller R, Chomczynski P. Whole blood RNA extraction efficiency contributes to variability in RNA sequencing data sets. PLoS One 2023; 18:e0291209. [PMID: 37972054 PMCID: PMC10653446 DOI: 10.1371/journal.pone.0291209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023] Open
Abstract
Numerous methodologies are used for blood RNA extraction, and large quantitative differences in recovered RNA content are reported. We evaluated three archived data sets to determine how extraction methodologies might influence mRNA and lncRNA sequencing results. The total quantity of RNA recovered /ml of blood affects RNA sequencing by impacting the recovery of weakly expressed mRNA, and lncRNA transcripts. Transcript expression (TPM counts) plotted in relation to transcript size (base pairs, bp) revealed a 30% loss of short to midsized transcripts in some data sets. Quantitative recovery of RNA is of considerable importance, and it should be viewed more judiciously. Transcripts common to the three data sets were subsequently normalized and transcript mean TPM counts and TPM count coefficient of variation (CV) were plotted in relation to increasing transcript size. Regression analysis of mean TPM counts versus transcript size revealed negative slopes in two of the three data sets suggesting a reduction of TPM transcript counts with increasing transcript size. In the third data set, the regression slope line of mRNA transcript TPM counts approximates zero and TPM counts increased in proportion to transcript size over a range of 200 to 30,000 bp. Similarly, transcript TPM count CV values also were uniformly distributed over the range of transcript sizes. In the other data sets, the regression CV slopes increased in relation to transcript size. The recovery of weakly expressed and /or short to midsized mRNA and lncRNA transcripts varies with different RNA extraction methodologies thereby altering the fundamental sequencing relationship between transcript size and TPM counts. Our analysis identifies differences in RNA sequencing results that are dependent upon the quantity of total RNA recovery from whole blood. We propose that incomplete RNA extraction directly impacts the recovery of mRNA and lncRNA transcripts from human blood and speculate these differences contribute to the "batch" effects commonly identified between sequencing results from different archived data sets.
Collapse
Affiliation(s)
| | - Hamid R. Eghbalnia
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States of America
| | - Karol Mackey
- Molecular Research Center, Inc. Cincinnati, OH, United States of America
| | - Robert Miller
- Robert Miller Enterprises, LLC, Cincinnati, OH, United States of America
| | - Piotr Chomczynski
- Molecular Research Center, Inc. Cincinnati, OH, United States of America
| |
Collapse
|
3
|
DeCarlo AN, Parrish J, Quarles JD, Long NM, Pratt SL. Assessing the Differential Abundance of Maternal Circulating MicroRNAs or Interferon-Stimulated Genes with Early Pregnancy. Genes (Basel) 2023; 14:1532. [PMID: 37628584 PMCID: PMC10454372 DOI: 10.3390/genes14081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Interferon-stimulated genes (ISG) and microRNA (miRNA) present in maternal circulation have been reported to be diagnostic of pregnancy in cattle prior to day (d)30 of gestation. The objective of this study was to assess specific ISG and miRNA abundance on d 18 of gestation. Cattle were subjected to estrous synchronization and artificially inseminated to a single Angus sire. At time of insemination (d 0) and d 18 post-insemination, blood was collected and total RNA isolated. Differential abundance (DA) in specific ISG and miRNA between d 0 and d 18 samples in pregnant (n = 10) and open (n = 10) cows were assessed via RT-qPCR. The relative Ct values were normalized using abundance of cyclophilin or the geometric mean of specific miRNA for the ISG and miRNA genes of interest, respectively. The DA of the ISG were increased due to pregnancy (p < 0.05); however, there was no expected day of gestation by pregnancy interaction. Relative abundance of Bta-miR-16 increased on d18 regardless of pregnancy status (p < 0.05). None of the miRNA evaluated in this study were associated with pregnancy status. These data indicate that certain ISG may serve as early indicators of pregnancy in cattle, but abundance of the miRNA does not.
Collapse
Affiliation(s)
| | | | | | | | - Scott L. Pratt
- Department Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
4
|
Wu XB, Wu YT, Guo XX, Xiang C, Chen PS, Qin W, Shi ZS. Circular RNA hsa_circ_0007990 as a blood biomarker for unruptured intracranial aneurysm with aneurysm wall enhancement. Front Immunol 2022; 13:1061592. [PMID: 36466848 PMCID: PMC9714537 DOI: 10.3389/fimmu.2022.1061592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/04/2022] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) may involve the formation and rupture of intracranial aneurysms (IA). Inflammation plays a vital role in the development and progression of IA, which can be reflected by aneurysm wall enhancement (AWE) on high-resolution vessel wall magnetic resonance imaging (HR-VWI). This study aims to evaluate the role of circRNAs as the blood inflammatory biomarker for unruptured IA (UIA) patients with AWE on HR-VWI. METHODS We analyzed the circRNA expression profiles in the peripheral blood samples among subjects from saccular UIA with AWE, UIA without AWE, and healthy controls by the circRNA microarray. The differential expression of hsa_circ_0007990 was assessed. We constructed the hsa_circ_0007990-microRNA-mRNA network and the regulatory axis of hub genes associated with the AWE in UIA. RESULTS Eighteen patients harboring saccular UIAs with HR VWI and five healthy controls were included. We found 412 differentially expressed circRNAs between UIA patients and healthy controls by circRNA microarray. Two hundred thirty-one circRNAs were significantly differentially expressed in UIA patients with AWE compared with those without AWE. Twelve upregulated circRNAs were associated with AWE of UIA, including hsa_circ_0007990, hsa_circ_0114507, hsa_circ_0020460, hsa_circ_0053944, hsa_circ_0000758, hsa_circ_0000034, hsa_circ_0009127, hsa_circ_0052793, hsa_circ_0000301 and hsa_circ_0000729. The expression of hsa_circ_0007990 was increased gradually in the healthy control, UIA without AWE, and UIA with AWE confirmed by RT-PCR (P<0.001). We predicted 4 RNA binding proteins (Ago2, DGCR8, EIF4A3, PTB) and period circadian regulator 1 as an encoding protein with hsa_circ_0007990. The hsa_circ_0007990-microRNA-mRNA network containing five microRNAs (miR-4717-5p, miR-1275, miR-150-3p, miR-18a-5p, miR-18b-5p), and 97 mRNAs was constructed. The five hub genes (hypoxia-inducible factor 1 subunit alpha, estrogen receptor 1, forkhead box O1, insulin-like growth factor 1, CREB binding protein) were involved in the inflammatory response. CONCLUSION Differentially expressed blood circRNAs associated with AWE on HR-VWI may be the novel inflammatory biomarkers for assessing UIA patients. The mechanism of hsa_circRNA_0007990 for UIA progression needs to investigate further.
Collapse
Affiliation(s)
- Xiao-Bing Wu
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - You-Tao Wu
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin-Xing Guo
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun Xiang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pei-Sheng Chen
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wang Qin
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Song Shi
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Blackwell AD, Garcia AR. Ecoimmunology in the field: Measuring multiple dimensions of immune function with minimally invasive, field-adapted techniques. Am J Hum Biol 2022; 34:e23784. [PMID: 35861267 PMCID: PMC9786696 DOI: 10.1002/ajhb.23784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Immune function is multifaceted and characterizations based on single biomarkers may be uninformative or misleading, particularly when considered across ecological contexts. However, measuring the many facets of immunity in the field can be challenging, since many measures cannot be obtained on-site, necessitating sample preservation and transport. Here we assess state-of-the-art methods for measuring immunity, focusing on measures that require a minimal blood sample obtained from a finger prick, which can be: (1) dried on filter paper, (2) frozen in liquid nitrogen, or (3) stabilized with chemical reagents. RESULTS We review immune measures that can be obtained from point-of-care devices or from immunoassays of dried blood spots (DBSs), field methods for flow cytometry, the use of RNA or DNA sequencing and quantification, and the application of immune activation assays under field conditions. CONCLUSIONS Stable protein products, such as immunoglobulins and C-reactive protein are reliably measured in DBSs. Because less stable proteins, such as cytokines, may be problematic to measure even in fresh blood, mRNA from stabilized blood may provide a cleaner measure of cytokine and broader immune-related gene expression. Gene methylation assays or mRNA sequencing also allow for the quantification of many other parameters, including the inference of leukocyte subsets, though with less accuracy than with flow cytometry. Combining these techniques provides an improvement over single-marker studies, allowing for a more nuanced understanding of how social and ecological variables are linked to immune measures and disease risk in diverse populations and settings.
Collapse
Affiliation(s)
- Aaron D. Blackwell
- Department of AnthropologyWashington State UniversityPullmanWashingtonUSA
| | - Angela R. Garcia
- Research DepartmentPhoenix Children's HospitalPhoenixArizonaUSA,Department of Child HealthUniversity of Arizona College of MedicinePhoenixArizonaUSA
| |
Collapse
|
6
|
Elliott CI, Stotesbury TE, Shafer ABA. Using total RNA quality metrics for time since deposition estimates in degrading bloodstains. J Forensic Sci 2022; 67:1776-1785. [PMID: 35665927 DOI: 10.1111/1556-4029.15072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
Abstract
The physicochemical changes occurring in biomolecules in degrading bloodstains can be used to approximate the time since deposition (TSD) of bloodstains. This would provide forensic scientists with critical information regarding the timeline of the events involving bloodshed. Our study aims to quantify the timewise degradation trends and temperature dependence found in total RNA from bloodstains without the use of amplification, expanding the scope of the RNA TSD research which has traditionally targeted mRNA and miRNA. Bovine blood with ACD-A anticoagulant was deposited and stored in plastic microcentrifuge tubes at 21 or 4°C and tested over different timepoints spanning 1 week. Total RNA was extracted from each sample and analyzed using automated high sensitivity gel electrophoresis. Nine RNA metrics were visually assessed and quantified using linear and mixed models. The RNA Integrity Number equivalent (RINe) and DV200 were not influenced by the addition of anticoagulant and demonstrated strong negative trends over time. The RINe model fit was high (R2 = 0.60), and while including the biological replicate as a random effect increased the fit for all RNA metrics, no significant differences were found between biological replicates stored at the same temperature for the RINe and DV200. This suggests that these standardized metrics can be directly compared between scenarios and individuals, with DV200 having an inflection point at approximately 28 h. This study provides a novel approach for blood TSD research, revealing metrics that are not affected by inter-individual variation, and improving our understanding of the rapid RNA degradation occurring in bloodstains.
Collapse
Affiliation(s)
- Colin I Elliott
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada.,Applied Bioscience Graduate Program, Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Theresa E Stotesbury
- Faculty of Science, Forensic Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Aaron B A Shafer
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada.,Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
7
|
Raven N, Klaassen M, Madsen T, Thomas F, Hamede R, Ujvari B. Transmissible cancer influences immune gene expression in an endangered marsupial, the Tasmanian devil (Sarcophilus harrisii). Mol Ecol 2022; 31:2293-2311. [PMID: 35202488 PMCID: PMC9310804 DOI: 10.1111/mec.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Understanding the effects of wildlife diseases on populations requires insight into local environmental conditions, host defence mechanisms, host life‐history trade‐offs, pathogen population dynamics, and their interactions. The survival of Tasmanian devils (Sarcophilus harrisii) is challenged by a novel, fitness limiting pathogen, Tasmanian devil facial tumour disease (DFTD), a clonally transmissible, contagious cancer. In order to understand the devils’ capacity to respond to DFTD, it is crucial to gain information on factors influencing the devils’ immune system. By using RT‐qPCR, we investigated how DFTD infection in association with intrinsic (sex and age) and environmental (season) factors influences the expression of 10 immune genes in Tasmanian devil blood. Our study showed that the expression of immune genes (both innate and adaptive) differed across seasons, a pattern that was altered when infected with DFTD. The expression of immunogbulins IgE and IgM:IgG showed downregulation in colder months in DFTD infected animals. We also observed strong positive association between the expression of an innate immune gene, CD16, and DFTD infection. Our results demonstrate that sampling across seasons, age groups and environmental conditions are beneficial when deciphering the complex ecoevolutionary interactions of not only conventional host‐parasite systems, but also of host and diseases with high mortality rates, such as transmissible cancers.
Collapse
Affiliation(s)
- N Raven
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - M Klaassen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - T Madsen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - F Thomas
- CREEC/CANECEV (CREES), Montpellier, France.,MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - R Hamede
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia.,School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - B Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| |
Collapse
|
8
|
A MicroRNA Next-Generation-Sequencing Discovery Assay (miND) for Genome-Scale Analysis and Absolute Quantitation of Circulating MicroRNA Biomarkers. Int J Mol Sci 2022; 23:ijms23031226. [PMID: 35163149 PMCID: PMC8835905 DOI: 10.3390/ijms23031226] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
The plasma levels of tissue-specific microRNAs can be used as diagnostic, disease severity and prognostic biomarkers for chronic and acute diseases and drug-induced injury. Thereby, the combination of diverse microRNAs into biomarker signatures using multivariate statistics seems especially powerful from the perspective of tissue and condition specific microRNA shedding into the plasma. Although next-generation sequencing (NGS) technology enables one to analyse circulating microRNAs on a genome-scale level, it suffers from potential biases (e.g., adapter ligation bias) and lacks absolute transcript quantitation as well as tailor-made quality controls. In order to develop a robust NGS discovery assay for genome-scale quantitation of circulating microRNAs, we first evaluated the sensitivity, repeatability and ligation bias of four commercially available small RNA library preparation protocols. The protocol from RealSeq Biosciences was selected based on its performance and usability and coupled with a novel panel of exogenous small RNA spike-in controls to enable quality control and absolute quantitation, thus ensuring comparability of data across independent NGS experiments. The established microRNA Next-Generation-Sequencing Discovery Assay (miND) was validated for its relative accuracy, precision, analytical measurement range and sequencing bias and was considered fit-for-purpose for microRNA biomarker discovery. Summarized, all these criteria were met, and thus, our analytical platform is considered fit-for-purpose for microRNA biomarker discovery from biofluids in the setting of any diagnostic, prognostic or patient stratification need. The established miND assay was tested on serum, cerebrospinal fluid (CSF), synovial fluid (SF) and extracellular vesicles (EV) extracted from cell culture medium of primary cells and proved its potential to be used across different sample types.
Collapse
|
9
|
Wilfinger WW, Miller R, Eghbalnia HR, Mackey K, Chomczynski P. Strategies for detecting and identifying biological signals amidst the variation commonly found in RNA sequencing data. BMC Genomics 2021; 22:322. [PMID: 33941086 PMCID: PMC8091537 DOI: 10.1186/s12864-021-07563-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/29/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND RNA sequencing analysis focus on the detection of differential gene expression changes that meet a two-fold minimum change between groups. The variability present in RNA sequencing data may obscure the detection of valuable information when specific genes within certain samples display large expression variability. This paper develops methods that apply variance and dispersion estimates to intra-group data to identify genes with expression values that diverge from the group envelope. STRING database analysis of the identified genes characterize gene affiliations involved in physiological regulatory networks that contribute to biological variability. Individuals with divergent gene groupings within network pathways can thereby be identified and judiciously evaluated prior to standard differential analysis. RESULTS A three-step process is presented for evaluating biological variability within a group in RNA sequencing data in which gene counts were: (1) scaled to minimize heteroscedasticity; (2) rank-ordered to detect potentially divergent "trendlines" for every gene in the data set; and (3) tested with the STRING database to identify statistically significant pathway associations among the genes displaying marked trendline variability and dispersion. This approach was used to identify the "trendline" profile of every gene in three test data sets. Control data from an in-house data set and two archived samples revealed that 65-70% of the sequenced genes displayed trendlines with minimal variation and dispersion across the sample group after rank-ordering the samples; this is referred to as a linear trendline. Smaller subsets of genes within the three data sets displayed markedly skewed trendlines, wide dispersion and variability. STRING database analysis of these genes identified interferon-mediated response networks in 11-20% of the individuals sampled at the time of blood collection. For example, in the three control data sets, 14 to 26 genes in the defense response to virus pathway were identified in 7 individuals at false discovery rates ≤1.92 E-15. CONCLUSIONS This analysis provides a rationale for identifying and characterizing notable gene expression variability within a study group. The identification of highly variable genes and their network associations within specific individuals empowers more judicious inspection of the sample group prior to differential gene expression analysis.
Collapse
Affiliation(s)
| | | | - Hamid R. Eghbalnia
- University of Wisconsin-Madison, Madison, USA
- University of Cincinnati, Cincinnati, USA
| | - Karol Mackey
- Molecular Research Center, Inc., Cincinnati, USA
| | | |
Collapse
|
10
|
Xing Y, Yang X, Chen H, Zhu S, Xu J, Chen Y, Zeng J, Chen F, Johnson MR, Jiang H, Wang WJ. The effect of cell isolation methods on the human transcriptome profiling and microbial transcripts of peripheral blood. Mol Biol Rep 2021; 48:3059-3068. [PMID: 33929647 PMCID: PMC8085658 DOI: 10.1007/s11033-021-06382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/24/2021] [Indexed: 11/25/2022]
Abstract
The expression of human and microbial genes serves as biomarkers for disease and health. Blood RNA is an important biological resource for precision medicine and translational medicine. However, few studies have assessed the human transcriptome profiles and microbial communities composition and diversity of peripheral blood from different cell isolation methods, which could affect the reproducibility of researches. We collected peripheral blood from three healthy donors and processed it immediately. We used RNA sequencing to investigate the effect of three leukocyte isolation methods including buffy coat (BC) extraction, red blood cell (RBC) lysis and peripheral blood mononuclear cell (PBMC) isolation with the comparison with whole blood (WB), through analyzing the sensitivity of gene detection, the whole transcriptome profiling and microbial composition and diversity. Our data showed that BC extraction with high globin mRNA mapping rate had similar transcriptome profiles with WB, while RBC lysis and PBMC isolation depleted RBCs effectively. With the efficient depletion of RBC and distinct compositions of leukocyte subsets, RNA-seq of RBC lysis and PBMC isolation uniquely detected genes from specific cell types, like granulocytes and NK cells. In addition, we observed that the microbial composition and diversity were more affected by individuals than isolation methods. Our results showed that blood cell isolations could largely influence the sensitivity of detection of human genes and transcriptome profile.
Collapse
Affiliation(s)
- Yanru Xing
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xi Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Haixiao Chen
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Sujun Zhu
- Obstetrics Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Jinjin Xu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yuan Chen
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Juan Zeng
- Obstetrics Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Mark Richard Johnson
- Academic Obstetric Department, Imperial College London, Chelsea & Westminster Hospital campus, London, UK
| | - Hui Jiang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Guangdong Enterprise Key Laboratory of Human Disease Genomics, Shenzhen, China
| | - Wen-Jing Wang
- BGI-Shenzhen, Shenzhen, 518083, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
11
|
Eghbalnia HR, Wilfinger WW, Mackey K, Chomczynski P. Coordinated analysis of exon and intron data reveals novel differential gene expression changes. Sci Rep 2020; 10:15669. [PMID: 32973253 PMCID: PMC7515875 DOI: 10.1038/s41598-020-72482-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
RNA-Seq expression analysis currently relies primarily upon exon expression data. The recognized role of introns during translation, and the presence of substantial RNA-Seq counts attributable to introns, provide the rationale for the simultaneous consideration of both exon and intron data. We describe here a method for the coordinated analysis of exon and intron data by investigating their relationship within individual genes and across samples, while taking into account changes in both variability and expression level. This coordinated analysis of exon and intron data offers strong evidence for significant differences that distinguish the profiles of the exon-only expression data from the combined exon and intron data. One advantage of our proposed method, called matched change characterization for exons and introns (MEI), is its straightforward applicability to existing archived data using small modifications to standard RNA-Seq pipelines. Using MEI, we demonstrate that when data are examined for changes in variability across control and case conditions, novel differential changes can be detected. Notably, when MEI criteria were employed in the analysis of an archived data set involving polyarthritic subjects, the number of differentially expressed genes was expanded by sevenfold. More importantly, the observed changes in exon and intron variability with statistically significant false discovery rates could be traced to specific immune pathway gene networks. The application of MEI analysis provides a strategy for incorporating the significance of exon and intron variability and further developing the role of using both exons and intron sequencing counts in studies of gene regulatory processes.
Collapse
Affiliation(s)
- Hamid R Eghbalnia
- University of Wisconsin-Madison, Madison, USA. .,University of Cincinnati, Cincinnati, USA.
| | | | - Karol Mackey
- Molecular Research Center, Inc., Cincinnati, USA
| | | |
Collapse
|
12
|
Extracellular RNA: Emerging roles in cancer cell communication and biomarkers. Cancer Lett 2020; 495:33-40. [PMID: 32916182 DOI: 10.1016/j.canlet.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/15/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
Extracellular RNAs (exRNAs) are a type of RNA molecules that present in various biological fluids. exRNAs are heterogenous populations including small (e.g., miRNA) and long non-coding RNAs and coding RNAs (e.g., mRNA). They can exist in a free form or associate with carriers range from lipo- and ribo-proteins to extracellular vesicles such as exosomes in the extracellular fluids. exRNAs participate in cell-to-cell communication to regulate a broad array of physiological and pathological processes. exRNAs have been widely studied as a biomarker for cancer and other diseases. In this review, we will discuss the sorts of exRNAs with potential carriers as well as their roles in cancer.
Collapse
|
13
|
Botafogo V, Pérez-Andres M, Jara-Acevedo M, Bárcena P, Grigore G, Hernández-Delgado A, Damasceno D, Comans S, Blanco E, Romero A, Arriba-Méndez S, Gastaca-Abasolo I, Pedreira CE, van Gaans-van den Brink JAM, Corbiere V, Mascart F, van Els CACM, Barkoff AM, Mayado A, van Dongen JJM, Almeida J, Orfao A. Age Distribution of Multiple Functionally Relevant Subsets of CD4+ T Cells in Human Blood Using a Standardized and Validated 14-Color EuroFlow Immune Monitoring Tube. Front Immunol 2020; 11:166. [PMID: 32174910 PMCID: PMC7056740 DOI: 10.3389/fimmu.2020.00166] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
CD4+ T cells comprise multiple functionally distinct cell populations that play a key role in immunity. Despite blood monitoring of CD4+ T-cell subsets is of potential clinical utility, no standardized and validated approaches have been proposed so far. The aim of this study was to design and validate a single 14-color antibody combination for sensitive and reproducible flow cytometry monitoring of CD4+ T-cell populations in human blood to establish normal age-related reference values and evaluate the presence of potentially altered profiles in three distinct disease models-monoclonal B-cell lymphocytosis (MBL), systemic mastocytosis (SM), and common variable immunodeficiency (CVID). Overall, 145 blood samples from healthy donors were used to design and validate a 14-color antibody combination based on extensive reagent testing in multiple cycles of design-testing-evaluation-redesign, combined with in vitro functional studies, gene expression profiling, and multicentric evaluation of manual vs. automated gating. Fifteen cord blood and 98 blood samples from healthy donors (aged 0-89 years) were used to establish reference values, and another 25 blood samples were evaluated for detecting potentially altered CD4 T-cell subset profiles in MBL (n = 8), SM (n = 7), and CVID (n = 10). The 14-color tube can identify ≥89 different CD4+ T-cell populations in blood, as validated with high multicenter reproducibility, particularly when software-guided automated (vs. manual expert-based) gating was used. Furthermore, age-related reference values were established, which reflect different kinetics for distinct subsets: progressive increase of naïve T cells, T-helper (Th)1, Th17, follicular helper T (TFH) cells, and regulatory T cells (Tregs) from birth until 2 years, followed by a decrease of naïve T cells, Th2, and Tregs in older children and a subsequent increase in multiple Th-cell subsets toward late adulthood. Altered and unique CD4+ T-cell subset profiles were detected in two of the three disease models evaluated (SM and CVID). In summary, the EuroFlow immune monitoring TCD4 tube allows fast, automated, and reproducible identification of ≥89 subsets of CD4+ blood T cells, with different kinetics throughout life. These results set the basis for in-depth T-cell monitoring in different disease and therapeutic conditions.
Collapse
Affiliation(s)
- Vitor Botafogo
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martín Pérez-Andres
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jara-Acevedo
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Sequencing Service, NUCLEUS, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Paloma Bárcena
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alejandro Hernández-Delgado
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
- Cytognos SL, Salamanca, Spain
| | - Daniela Damasceno
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Suzanne Comans
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Elena Blanco
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Romero
- Miguel Armijo Primary Health Care Centre, Sanidad de Castilla y León (SACYL), Salamanca, Spain
| | | | - Irene Gastaca-Abasolo
- Gynecology and Obstetrics Service, University Hospital of Salamanca, Salamanca, Spain
| | - Carlos Eduardo Pedreira
- Systems and Computing Department (PESC), COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Véronique Corbiere
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université libre de Bruxelles (ULB), Brussels, Belgium
- Immunobiology Clinic, Hôpital Erasme, Brussels, Belgium
| | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Alex-Mikael Barkoff
- Institute of Biomedicine, Department of Microbiology, Virology and Immunology, University of Turku (UTU), Turku, Finland
| | - Andrea Mayado
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacques J. M. van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Julia Almeida
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cancer (IBMCC), CSIC-University of Salamanca (USAL), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL) and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Campos-Fernández E, Barcelos LS, de Souza AG, Goulart LR, Alonso-Goulart V. Research landscape of liquid biopsies in prostate cancer. Am J Cancer Res 2019; 9:1309-1328. [PMID: 31392072 PMCID: PMC6682718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 06/10/2023] Open
Abstract
Studies show that liquid biopsies are efficient in the detection of circulating cancer products. However, scientific community has not yet implemented this technology in routine clinical practice. Liquid biopsies are less invasive than traditional surgical ones because they rely on the detection of specific biomarkers in readily accessible body fluid samples. The clinical management of prostate cancer depends on the controversial blood serum biomarker PSA (prostate specific antigen). PSA tests have a low accuracy. In addition, a positive PSA result for prostate cancer needs a confirmation through a tissue biopsy. Thus, liquid biopsies are considered tools to find a surrogate biomarker. This review aimed to show the landscape of liquid biopsies in prostate cancer research to understand its challenges and foresee the trends in this area. We performed an exhaustive Pubmed search of articles reporting the study of liquid biopsies in prostate cancer with circulating tumor cells, cell-free nucleic acids and extracellular vesicles as targets. After a thorough analysis, we retrieved sixty-two relevant articles. Among the identified articles, the most used target and body fluid were circulating tumor cells and blood, respectively. Enumeration of circulating tumor cells was the most reported parameter, but it was often combined with other biomarkers. The most used methods for biomarker detection were those based on transcriptome analysis. Despite the vast literature about liquid biopsy in prostate cancer, most studies seem to be stuck on improving the yield of technologies. Consequently, they seem to test a limited number of samples. Larger cohorts could provide robust evidence to translate liquid biopsies of prostate cancer to the clinics.
Collapse
Affiliation(s)
- Esther Campos-Fernández
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of UberlândiaUberlândia, MG, Brazil
| | - Letícia S Barcelos
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of UberlândiaUberlândia, MG, Brazil
| | - Aline Gomes de Souza
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of UberlândiaUberlândia, MG, Brazil
| | - Luiz R Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of UberlândiaUberlândia, MG, Brazil
- Department of Medical Microbiology and Immunology, University of California-DavisDavis, CA, USA
| | - Vivian Alonso-Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of UberlândiaUberlândia, MG, Brazil
| |
Collapse
|
15
|
Cheng Y, Makara M, Peel E, Fox S, Papenfuss AT, Belov K. Tasmanian devils with contagious cancer exhibit a constricted T-cell repertoire diversity. Commun Biol 2019; 2:99. [PMID: 30886908 PMCID: PMC6416256 DOI: 10.1038/s42003-019-0342-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
The Tasmanian devil (Sarcophilus harrisii) is threatened by a contagious cancer, known as Devil Facial Tumour Disease (DFTD). A highly diverse T-cell receptor (TCR) repertoire is crucial for successful host defence against cancers. By investigating TCR beta chain diversity in devils of different ages, we show that the T-cell repertoire in devils constricts in their second year of life, which may explain the higher DFTD prevalence in older devils. Unexpectedly, we also observed a pronounced decline in TCR diversity and T cell clonal expansion in devils after DFTD infection. These findings overturned the previous assumption that DFTD did not directly impact host immunity. Yuanyuan Cheng et al. showed that the T-cell repertoire diversity of Tasmanian devils diminishes during their second year of life which may explain the prevalence of devil facial tumor disease in older devils. Infection with this disease also impacts T-cell diversity highlighting a previously unknown effect of the devil facial tumor disease on host immunity.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- UQ Genomics Initiative, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mariano Makara
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Samantha Fox
- Department of Primary Industries, Parks, Water and Environment, 134 Macquarie Street, Hobart, Tasmania, 7000, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, 3010, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
16
|
Burel JG, Babor M, Pomaznoy M, Lindestam Arlehamn CS, Khan N, Sette A, Peters B. Host Transcriptomics as a Tool to Identify Diagnostic and Mechanistic Immune Signatures of Tuberculosis. Front Immunol 2019; 10:221. [PMID: 30837989 PMCID: PMC6389658 DOI: 10.3389/fimmu.2019.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is a major infectious disease worldwide, and is associated with several challenges for control and eradication. First, more accurate diagnostic tools that better represent the spectrum of infection states are required; in particular, identify the latent TB infected individuals with high risk of developing active TB. Second, we need to better understand, from a mechanistic point of view, why the immune system is unsuccessful in some cases for control and elimination of the pathogen. Host transcriptomics is a powerful approach to identify both diagnostic and mechanistic immune signatures of diseases. We have recently reported that optimal study design for these two purposes should be guided by different sets of criteria. Here, based on already published transcriptomics signatures of tuberculosis, we further develop these guidelines and identify additional factors to consider for obtaining diagnostic vs. mechanistic signatures in terms of cohorts, samples, data generation and analysis. Diagnostic studies should aim to identify small disease signatures with high discriminatory power across all affected populations, and against similar pathologies to TB. Specific focus should be made on improving the diagnosis of infected individuals at risk of developing active disease. Conversely, mechanistic studies should focus on tissues biopsies, immune relevant cell subsets, state of the art transcriptomic techniques and bioinformatics tools to understand the biological meaning of identified gene signatures that could facilitate therapeutic interventions. Finally, investigators should ensure their data are made publicly available along with complete annotations to facilitate metadata and cross-study analyses.
Collapse
Affiliation(s)
- Julie G Burel
- Department of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Mariana Babor
- Department of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Mikhail Pomaznoy
- Department of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | | | - Nabeela Khan
- Department of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Bjoern Peters
- Department of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Lodewijk I, Dueñas M, Rubio C, Munera-Maravilla E, Segovia C, Bernardini A, Teijeira A, Paramio JM, Suárez-Cabrera C. Liquid Biopsy Biomarkers in Bladder Cancer: A Current Need for Patient Diagnosis and Monitoring. Int J Mol Sci 2018; 19:E2514. [PMID: 30149597 PMCID: PMC6163729 DOI: 10.3390/ijms19092514] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023] Open
Abstract
Bladder Cancer (BC) represents a clinical and social challenge due to its high incidence and recurrence rates, as well as the limited advances in effective disease management. Currently, a combination of cytology and cystoscopy is the routinely used methodology for diagnosis, prognosis and disease surveillance. However, both the poor sensitivity of cytology tests as well as the high invasiveness and big variation in tumour stage and grade interpretation using cystoscopy, emphasizes the urgent need for improvements in BC clinical guidance. Liquid biopsy represents a new non-invasive approach that has been extensively studied over the last decade and holds great promise. Even though its clinical use is still compromised, multiple studies have recently focused on the potential application of biomarkers in liquid biopsies for BC, including circulating tumour cells and DNA, RNAs, proteins and peptides, metabolites and extracellular vesicles. In this review, we summarize the present knowledge on the different types of biomarkers, their potential use in liquid biopsy and clinical applications in BC.
Collapse
Affiliation(s)
- Iris Lodewijk
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| | - Marta Dueñas
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Carolina Rubio
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Ester Munera-Maravilla
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| | - Cristina Segovia
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Alejandra Bernardini
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Alicia Teijeira
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Cristian Suárez-Cabrera
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| |
Collapse
|
18
|
Di Meo A, Bartlett J, Cheng Y, Pasic MD, Yousef GM. Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol Cancer 2017; 16:80. [PMID: 28410618 PMCID: PMC5391592 DOI: 10.1186/s12943-017-0644-5] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
There is a growing trend towards exploring the use of a minimally invasive "liquid biopsy" to identify biomarkers in a number of cancers, including urologic malignancies. Multiple aspects can be assessed in circulating cell-free DNA, including cell-free DNA levels, integrity, methylation and mutations. Other prospective liquid biopsy markers include circulating tumor cells, circulating RNAs (miRNA, lncRNAs and mRNAs), cell-free proteins, peptides and exosomes have also emerged as non-invasive cancer biomarkers. These circulating molecules can be detected in various biological fluids, including blood, urine, saliva and seminal plasma. Liquid biopsies hold great promise for personalized medicine due to their ability to provide multiple non-invasive global snapshots of the primary and metastatic tumors. Molecular profiling of circulating molecules has been a stepping-stone to the successful introduction of several non-invasive multi-marker tests into the clinic. In this review, we provide an overview of the current state of cell-free DNA-based kidney, prostate and bladder cancer biomarker research and discuss the potential utility other circulating molecules. We will also discuss the challenges and limitations facing non-invasive cancer biomarker discovery and the benefits of this growing area of translational research.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Jenni Bartlett
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Maria D Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine, St. Joseph's Health Centre, Toronto, ON, Canada
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
19
|
Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7404912. [PMID: 28127559 PMCID: PMC5239830 DOI: 10.1155/2017/7404912] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023]
Abstract
Human peripheral blood contains RNA in cells and in extracellular membrane vesicles, microvesicles and exosomes, as well as in cell-free ribonucleoproteins. Circulating mRNAs and noncoding RNAs, being internalized, possess the ability to modulate vital processes in recipient cells. In this study, with SOLiD sequencing technology, we performed identification, classification, and quantification of RNAs from blood fractions: cells, plasma, plasma vesicles pelleted at 16,000g and 160,000g, and vesicle-depleted plasma supernatant of healthy donors and non-small cell lung cancer (NSCLC) patients. It was determined that 16,000g blood plasma vesicles were enriched with cell-free mitochondria and with a set of mitochondrial RNAs. The variable RNA set of blood plasma 160,000g pellets reflected the prominent contribution of U1, U5, and U6 small nuclear RNAs' fragments and at the same time was characterized by a remarkable depletion of small nucleolar RNAs. Besides microRNAs, the variety of fragments of mRNAs and snoRNAs dominated in the set of circulating RNAs differentially expressed in blood fractions of NSCLC patients. Taken together, our data emphasize that not only extracellular microRNAs but also circulating fragments of messenger and small nuclear/nucleolar RNAs represent prominent classes of circulating regulatory ncRNAs as well as promising circulating biomarkers for the development of disease diagnostic approaches.
Collapse
|