1
|
Woutersen DTJ, Majolée J, den Hertog J. Protein Tyrosine Phosphatase Studies in Zebrafish. Methods Mol Biol 2024; 2743:93-110. [PMID: 38147210 DOI: 10.1007/978-1-0716-3569-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The zebrafish is an ideal model for functional analysis of genes at the molecular, protein, cell, organ, and organism levels. We have used zebrafish to analyze the function of members of the protein tyrosine phosphatase (PTP) superfamily for more than two decades. The molecular genetic toolbox has significantly improved over the years. Currently, generating mutant lines that lack the function of a PTP gene is relatively straightforward by CRISPR/Cas9 technology-mediated generation of insertions or deletions in the target gene. In addition, generating point mutations using CRISPR/Cas9 technology and homology-directed repair (HDR) is feasible, albeit the success rate could be higher. Here, we describe the methods, including the tips and tricks, that we have used to generate knock-out and knock-in zebrafish lines in PTP genes successfully.
Collapse
Affiliation(s)
| | - Jisca Majolée
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
2
|
Abstract
Pten is one of the most frequently mutated tumour suppressor gene in cancer. PTEN is generally altered in invasive cancers such as glioblastomas, but its function in collective cell migration and invasion is not fully characterised. Herein, we report that the loss of PTEN increases cell speed during collective migration of non-tumourous cells both in vitro and in vivo. We further show that loss of PTEN promotes LKB1-dependent phosphorylation and activation of the major metabolic regulator AMPK. In turn AMPK increases VASP phosphorylation, reduces VASP localisation at cell-cell junctions and decreases the interjunctional transverse actin arcs at the leading front, provoking a weakening of cell-cell contacts and increasing migration speed. Targeting AMPK activity not only slows down PTEN-depleted cells, it also limits PTEN-null glioblastoma cell invasion, opening new opportunities to treat glioblastoma lethal invasiveness. Pten is a tumour suppressor gene that is associated with highly invasive cancers such as glioblastoma. Here the authors show that PTEN loss results in increased migratory behaviour, which can be countered by targeting AMPK activity.
Collapse
|
3
|
Ganguly P, Madonsela L, Chao JT, Loewen CJR, O’Connor TP, Verheyen EM, Allan DW. A scalable Drosophila assay for clinical interpretation of human PTEN variants in suppression of PI3K/AKT induced cellular proliferation. PLoS Genet 2021; 17:e1009774. [PMID: 34492006 PMCID: PMC8448351 DOI: 10.1371/journal.pgen.1009774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/17/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022] Open
Abstract
Gene variant discovery is becoming routine, but it remains difficult to usefully interpret the functional consequence or disease relevance of most variants. To fill this interpretation gap, experimental assays of variant function are becoming common place. Yet, it remains challenging to make these assays reproducible, scalable to high numbers of variants, and capable of assessing defined gene-disease mechanism for clinical interpretation aligned to the ClinGen Sequence Variant Interpretation (SVI) Working Group guidelines for 'well-established assays'. Drosophila melanogaster offers great potential as an assay platform, but was untested for high numbers of human variants adherent to these guidelines. Here, we wished to test the utility of Drosophila as a platform for scalable well-established assays. We took a genetic interaction approach to test the function of ~100 human PTEN variants in cancer-relevant suppression of PI3K/AKT signaling in cellular growth and proliferation. We validated the assay using biochemically characterized PTEN mutants as well as 23 total known pathogenic and benign PTEN variants, all of which the assay correctly assigned into predicted functional categories. Additionally, function calls for these variants correlated very well with our recent published data from a human cell line. Finally, using these pathogenic and benign variants to calibrate the assay, we could set readout thresholds for clinical interpretation of the pathogenicity of 70 other PTEN variants. Overall, we demonstrate that Drosophila offers a powerful assay platform for clinical variant interpretation, that can be used in conjunction with other well-established assays, to increase confidence in the accurate assessment of variant function and pathogenicity.
Collapse
Affiliation(s)
- Payel Ganguly
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Landiso Madonsela
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jesse T. Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher J. R. Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy P. O’Connor
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Douglas W. Allan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Zhang H, Cai X, Xiang C, Han Y, Niu Q. miR-29a and the PTEN-GSK3β axis are involved in aluminum-induced damage to primary hippocampal neuronal networks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112701. [PMID: 34461321 DOI: 10.1016/j.ecoenv.2021.112701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
We previously reported that aluminum (Al) can cause a range of neurotoxic injuries including progressive irreversible synaptic structural damage and synaptic dysfunction, and eventually neuronal deaths. Mechanism of Al-induced electrophysiological and neuronal connectivity changes in neurons may indicate damage to the neuronal network. Here, mouse primary hippocampal neurons were cultured on micro-electrode array (MEA)- and high-content analysis (HCA)-related plates, showing that Al exposure significantly inhibited hippocampal neuronal electrical spike activity and neurite outgrowth characterized by a reduction in neurite branching and a decrease in the average total neurite length in relation to both Al dose and time of incubation. In recent years, miR-29a/ phosphatase and tensin homolog (PTEN) have been found to play pivotal roles in the morphogenesis of neurons, it has been confirmed in vitro and in vivo that the PTEN-Glycogen synthase kinase-3β (GSK-3β) axis regulates neurite outgrowth. The present study demonstrated that increases in Al exposure and dose gradually reduce miR-29a expression. Up-regulation of miR-29a in the hippocampal neurons by lentivirus transfection reversed the decrease in electrical spike activity and the reduction in both neurite branching and length induced by Al. Moreover, miR-29a suppressed the expression of PTEN and increased the level of phosphorylated Protein Kinase B (p-AKT) and p-GSK-3β which were inhibited by the Al treatment. This suggests that miR-29a is critically involved in the functional and structural neuronal damage induced by Al and is a potential target for Al neurotoxicity. Moreover, the reduction of neurite length and branching induced by Al exposure was regulated by miR-29a and its target neuronal PTEN-GSK3β signaling pathway, which also represents a possible mechanism of Al-induced the inhibition of the electrical activity. Collectively, Al-induced damage to the neuronal network occurred through miR-29a-mediated alterations of the PTEN-GSK3β signaling pathway.
Collapse
Affiliation(s)
- Huifang Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China.
| | - Xiaoya Cai
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China
| | - Changxin Xiang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China
| | - Yingchao Han
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China.
| |
Collapse
|
5
|
Rea V, Van Raay TJ. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Front Mol Neurosci 2020; 13:575575. [PMID: 33262688 PMCID: PMC7686559 DOI: 10.3389/fnmol.2020.575575] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a highly variable and complex set of neurological disorders that alter neurodevelopment and cognitive function, which usually presents with social and learning impairments accompanied with other comorbid symptoms like hypersensitivity or hyposensitivity, or repetitive behaviors. Autism can be caused by genetic and/or environmental factors and unraveling the etiology of ASD has proven challenging, especially given that different genetic mutations can cause both similar and different phenotypes that all fall within the autism spectrum. Furthermore, the list of ASD risk genes is ever increasing making it difficult to synthesize a common theme. The use of rodent models to enhance ASD research is invaluable and is beginning to unravel the underlying molecular mechanisms of this disease. Recently, zebrafish have been recognized as a useful model of neurodevelopmental disorders with regards to genetics, pharmacology and behavior and one of the main foundations supporting autism research (SFARI) recently identified 12 ASD risk genes with validated zebrafish mutant models. Here, we describe what is known about those 12 ASD risk genes in human, mice and zebrafish to better facilitate this research. We also describe several non-genetic models including pharmacological and gnotobiotic models that are used in zebrafish to study ASD.
Collapse
Affiliation(s)
| | - Terence J. Van Raay
- Dept of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Comprehensive in silico mutational-sensitivity analysis of PTEN establishes signature regions implicated in pathogenesis of Autism Spectrum Disorders. Genomics 2020; 113:999-1017. [PMID: 33152507 DOI: 10.1016/j.ygeno.2020.10.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/22/2020] [Accepted: 10/30/2020] [Indexed: 01/18/2023]
Abstract
An extensively studied cancer and Autism Spectrum Disorders (ASD) gene like PTEN provided an exclusive opportunity to map its mutational-landscape, compare and establish plausible genotypic predictors of ASD-associated phenotypic outcomes. Our exhaustive in silico analysis on 4252 SNPs using >30 tools identified increased mutational-density in exon7. Phosphatase domain, although evolutionarily conserved, had the most nsSNPs localised within signature regions. The evolutionarily variable C-terminal side contained the highest truncating-SNPs outside signature regions of C2 domain and most PTMs within C-tail site which displayed maximum intolerance to polymorphisms, and permitted benign but destabilising nsSNPs that enhanced its intrinsically-disordered nature. ASD-associated SNPs localised within ATP-binding motifs and Nuclear-Localising-Sequences were the most potent triggers of ASD manifestation. These, along with variations within P, WPD and TI loops, M1 within phosphatase domain, M2 and MoRFs of C2 domain, caused severe long-range conformational fluctuations altering PTEN's dynamic stability- not observed in variations outside signature regions. 3'UTR-SNPs affected 44 strong miRNA brain-specific targets; several 5' UTR-SNPs targeted transcription-factor POLR2A and 10 pathogenic Splice-Affecting-Variants were identified.
Collapse
|
7
|
Wang L, Lu G, Shen HM. The Long and the Short of PTEN in the Regulation of Mitophagy. Front Cell Dev Biol 2020; 8:299. [PMID: 32478067 PMCID: PMC7237741 DOI: 10.3389/fcell.2020.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Mitophagy is a key mitochondrial quality control mechanism for effective and selective elimination of damaged mitochondria through the autophagy-lysosome machinery. Defective mitophagy is associated with pathogenesis of important human diseases including neurodegenerative diseases, heart failure, innate immunity, and cancer. In the past two decades, the mechanistic studies of mitophagy have made many breakthroughs with the discoveries of phosphatase and tensin homolog (PTEN)-induced kinase protein 1 (PINK1)-parkin-mediated ubiquitin (Ub)-driven pathway and BCL2/adenovirus E1B 19 kDa protein-interacting proteins 3 (BNIP3)/NIX or FUN14 domain containing 1 (FUNDC1) mitochondrial receptor-mediated pathways. Recently, several isoforms of dual phosphatase PTEN, such as PTEN-long (PTEN-L), have been identified, and some of them are implicated in the mitophagy process via their protein phosphatase activity. In this review, we aim to discuss the regulatory roles of PTEN isoforms in mitophagy. These discoveries may provide new opportunities for development of novel therapeutic strategies for mitophagy-related diseases such as neurodegenerative disorders via targeting PTEN isoforms and mitophagy.
Collapse
Affiliation(s)
- Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
8
|
MicroRNA-26b/PTEN Signaling Pathway Mediates Glycine-Induced Neuroprotection in SAH Injury. Neurochem Res 2019; 44:2658-2669. [DOI: 10.1007/s11064-019-02886-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
|
9
|
Lu H, Tan Y, Chen L. A clinical study on the expression of PTEN in renal cell carcinoma in children. Oncol Lett 2019; 17:69-72. [PMID: 30655739 PMCID: PMC6313102 DOI: 10.3892/ol.2018.9571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The expression pattern of tumor suppressor gene phosphatase and tensin homolog deleted on chromosome ten (PTEN) and phosphatase and tensin homolog deleted on chromosome ten/phosphatidylinositol3-kinase/protein kinase B (PTEN/PI3K/AKT) cell signaling pathway in renal cell carcinoma (RCC) were investigated in children. A total of 5 cases of RCC (observation group) in children and 10 cases of benign kidney tumor (control group) diagnosed by pathological examinations were included to obtain tumor samples. Expression of PTEN mRNA was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The protein expression of PTEN, PI3K and AKT was detected by western blotting; relationships between the expression level of PTEN mRNA and the clinical features of RCC were analyzed. It turned out that expression level of PTEN mRNA in the observation group was significantly lower than that in the control group. The protein expression levels of PTEN, PI3K and AKT were significantly lower in the observation group than in the control group (P<0.05). The expression level of PTEN mRNA decreased with the increased clinical stage of RCC (P<0.05), and was not related to sex, age and maximum tumor diameter (P>0.05). The results showed that downregulation of the tumor suppressor gene PTEN expression and the inhibition of PTEN/PI3K/AKT cell signaling pathway may be involved in the occurrence and development of RCC in children.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, Shandong 255029, P.R. China
| | - Yuxia Tan
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, Shandong 255029, P.R. China
| | - Liping Chen
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, Shandong 255029, P.R. China
| |
Collapse
|
10
|
Zheng S, Qu Z, Zanetti M, Lam B, Chin-Sang I. C. elegans PTEN and AMPK block neuroblast divisions by inhibiting a BMP-insulin-PP2A-MAPK pathway. Development 2018; 145:145/23/dev166876. [PMID: 30487179 DOI: 10.1242/dev.166876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
Caenorhabditis elegans that hatch in the absence of food stop their postembryonic development in a process called L1 arrest. Intriguingly, we find that the postembryonic Q neuroblasts divide and migrate during L1 arrest in mutants that have lost the energy sensor AMP-activated protein kinase (AMPK) or the insulin/IGF-1 signaling (IIS) negative regulator DAF-18/PTEN. We report that DBL-1/BMP works upstream of IIS to promote agonistic insulin-like peptides during L1 arrest. However, the abnormal Q cell divisions that occur during L1 arrest use a novel branch of the IIS pathway that is independent of the terminal transcription factor DAF-16/FOXO. Using genetic epistasis and drug interactions we show that AMPK functions downstream of, or in parallel with DAF-18/PTEN and IIS to inhibit PP2A function. Further, we show that PP2A regulates the abnormal Q cell divisions by activating the MPK-1/ERK signaling pathway via LIN-45/RAF, independently of LET-60/RAS. PP2A acts as a tumor suppressor in many oncogenic signaling cascades. Our work demonstrates a new role for PP2A that is needed to induce neuroblast divisions during starvation and is regulated by both insulin and AMPK.
Collapse
Affiliation(s)
- Shanqing Zheng
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Zhi Qu
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Michael Zanetti
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Brandon Lam
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
11
|
Effective angiogenesis requires regulation of phosphoinositide signaling. Adv Biol Regul 2018; 71:69-78. [PMID: 30503054 DOI: 10.1016/j.jbior.2018.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022]
Abstract
Phosphoinositide signaling regulates numerous downstream effectors that mediate cellular processes which influence cell cycle progression, migration, proliferation, growth, survival, metabolism and vesicular trafficking. A prominent role for phosphoinositide 3-kinase, which generates phosphatidylinositol 3,4,5-trisphosphate, a phospholipid that activates a plethora of effectors including AKT and FOXO during embryonic and postnatal angiogenesis, has been described. In addition, phosphatidylinositol 3-phosphate signaling is required for endosomal trafficking, which contributes to vascular remodeling. This review will examine the role phosphoinositide signaling plays in the endothelium and its contribution to sprouting angiogenesis.
Collapse
|
12
|
Hale AJ, den Hertog J. Shp2-Mitogen-Activated Protein Kinase Signaling Drives Proliferation during Zebrafish Embryo Caudal Fin Fold Regeneration. Mol Cell Biol 2018; 38:e00515-17. [PMID: 29203641 PMCID: PMC5789028 DOI: 10.1128/mcb.00515-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022] Open
Abstract
Regeneration of the zebrafish caudal fin following amputation occurs through wound healing, followed by formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. We show that ptpn11a-/- ptpn11b-/- zebrafish embryos, lacking functional Shp2, fail to regenerate their caudal fin folds. Rescue experiments indicated that Shp2a has a functional signaling role, requiring its catalytic activity and SH2 domains but not the two C-terminal tyrosine phosphorylation sites. Surprisingly, expression of Shp2a variants with increased and reduced catalytic activity, respectively, rescued caudal fin fold regeneration to similar extents. Expression of mmp9 and junbb, indicative of formation of the wound epidermis and distal blastema, respectively, suggested that these processes occurred in ptpn11a-/- ptpn11b-/- zebrafish embryos. However, cell proliferation and MAPK phosphorylation were reduced. Pharmacological inhibition of MEK1 in wild-type zebrafish embryos phenocopied loss of Shp2. Our results suggest an essential role for Shp2a-mitogen-activated protein kinase (MAPK) signaling in promoting cell proliferation during zebrafish embryo caudal fin fold regeneration.
Collapse
Affiliation(s)
- Alexander James Hale
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Institute Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Institute Biology Leiden, Leiden University, Leiden, the Netherlands
| |
Collapse
|
13
|
Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease. Dev Biol 2017; 428:283-292. [PMID: 28728679 DOI: 10.1016/j.ydbio.2017.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023]
Abstract
Protein-tyrosine phosphatases (PTPs) remove phosphate groups from tyrosine residues, and thereby propagate or inhibit signal transduction, and hence influence cellular processes such as cell proliferation and differentiation. The importance of tightly controlled PTP activity is reflected by the numerous mechanisms employed by the cell to control PTP activity, including a variety of post-translational modifications, and restricted subcellular localization. This review highlights the strides made in the last decade and discusses the important role of PTPs in key aspects of embryonic development: the regulation of stem cell self-renewal and differentiation, gastrulation and somitogenesis during early embryonic development, osteogenesis, and angiogenesis. The tentative importance of PTPs in these processes is highlighted by the diseases that present upon aberrant activity.
Collapse
|
14
|
Hale AJ, Kiai A, Sikkens J, den Hertog J. Impaired caudal fin-fold regeneration in zebrafish deficient for the tumor suppressor Pten. REGENERATION (OXFORD, ENGLAND) 2017; 4:217-226. [PMID: 29299324 PMCID: PMC5743786 DOI: 10.1002/reg2.88] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
Abstract
Zebrafish are able to completely regrow their caudal fin-folds after amputation. Following injury, wound healing occurs, followed by the formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. Here we show that, surprisingly, the phosphatase and tumor suppressor Pten, an antagonist of phosphoinositide-3-kinase (PI3K) signaling, is required for zebrafish caudal fin-fold regeneration. We found that homozygous knock-out mutant (ptena-/-ptenb-/- ) zebrafish embryos, lacking functional Pten, did not regenerate their caudal fin-folds. AKT phosphorylation was enhanced, which is consistent with the function of Pten. Reexpression of Pten, but not catalytically inactive mutant Pten-C124S, rescued regeneration, as did pharmacological inhibition of PI3K. Blastema formation, determined by in situ hybridization for the blastema marker junbb, appeared normal upon caudal fin-fold amputation of ptena-/-ptenb-/- zebrafish embryos. Whole-mount immunohistochemistry using specific markers indicated that proliferation was arrested in embryos lacking functional Pten, and that apoptosis was enhanced. Together, these results suggest a critical role for Pten by limiting PI3K signaling during the regenerative outgrowth phase of zebrafish caudal fin-fold regeneration.
Collapse
Affiliation(s)
- Alexander James Hale
- Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtThe Netherlands
- Institute Biology LeidenLeiden UniversityLeidenThe Netherlands
| | - Ali Kiai
- Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtThe Netherlands
| | - Jelte Sikkens
- Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtThe Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute – KNAW and University Medical Center UtrechtUtrechtThe Netherlands
- Institute Biology LeidenLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
15
|
Stumpf M, Blokzijl-Franke S, den Hertog J. Fine-Tuning of Pten Localization and Phosphatase Activity Is Essential for Zebrafish Angiogenesis. PLoS One 2016; 11:e0154771. [PMID: 27138341 PMCID: PMC4854392 DOI: 10.1371/journal.pone.0154771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/19/2016] [Indexed: 02/06/2023] Open
Abstract
The lipid- and protein phosphatase PTEN is an essential tumor suppressor that is highly conserved among all higher eukaryotes. As an antagonist of the PI3K/Akt cell survival and proliferation pathway, it exerts its most prominent function at the cell membrane, but (PIP3-independent) functions of nuclear PTEN have been discovered as well. PTEN subcellular localization is tightly controlled by its protein conformation. In the closed conformation, PTEN localizes predominantly to the cytoplasm. Opening up of the conformation of PTEN exposes N-terminal and C-terminal regions of the protein that are required for both interaction with the cell membrane and translocation to the nucleus. Lack of Pten leads to hyperbranching of the intersegmental vessels during zebrafish embryogenesis, which is rescued by expression of exogenous Pten. Here, we observed that expression of mutant PTEN with an open conformation rescued the hyperbranching phenotype in pten double homozygous embryos and suppressed the increased p-Akt levels that are characteristic for embryos lacking Pten. In addition, in pten mutant and wild type embryos alike, open conformation PTEN induced stalled intersegmental vessels, which fail to connect with the dorsal longitudinal anastomotic vessel. Functional hyperactivity of open conformation PTEN in comparison to wild type PTEN seems to result predominantly from its enhanced recruitment to the cell membrane. Enhanced recruitment of phosphatase inactive mutants to the membrane did not induce the stalled vessel phenotype nor did it rescue the hyperbranching phenotype in pten double homozygous embryos, indicating that PTEN phosphatase activity is indispensable for its regulatory function during angiogenesis. Taken together, our data suggest that PTEN phosphatase activity needs to be carefully fine-tuned for normal embryogenesis and that the control of its subcellular localization is a key mechanism in this process.
Collapse
Affiliation(s)
- Miriam Stumpf
- Hubrecht Institute–Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sasja Blokzijl-Franke
- Hubrecht Institute–Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute–Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|