1
|
Wang L, Liang J, Ji S, Wang C, Huang Q. Potential Mechanism and Involvement of p120-Catenin in the Malignant Biology of Glioma. J Korean Neurosurg Soc 2024; 67:609-621. [PMID: 38956806 PMCID: PMC11540527 DOI: 10.3340/jkns.2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVE This study analyzed the influence of p120-catenin (catenin [cadherin-associated protein], delta 1 [CTNND1]) on the malignant characteristics of glioma and elucidated the potential underlying mechanism. METHODS The p120 expression level was assessed in the brain tissues of 42 glioma patients and 10 patients with epilepsy by using the immunohistochemical method. Meanwhile, quantitative polymerase chain reaction (QT-PCR) technology was employed to assess the expression of p120 in the brain tissues of 71 glioma patients and 13 epilepsy patients. LN229, U251, and U87 glioma cells were used for in vitro analysis and categorized into four treatment groups : siRNA-blank control (BC) group (no RNA sequence was transfected), siRNA-negative control (NC) group (transfected control RNA sequences with no effect), and siRNA-1 and siRNA-2 groups (two p120-specific interfering RNA transfection). p120 expression in these treatment groups was quantified by western blotting assay. The migratory and invasive capabilities of glioma cells were studied by wound healing assay and Transwell invasion assay, respectively, under different treatment conditions. MTT (3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide) assay and cell cycle and apoptosis assay were used to determine glioma cell proliferation and apoptosis, respectively. Enzymelabeled assay was performed to measure intracellular calcium ion concentration. Immunofluorescence assay was performed for determining microtubule formation and glioma cell distribution. RESULTS Brain tissues of the glioma group exhibited a remarkable increase in the p120 expression level as compared to brain tissues of the nontumor group (p<0.05). Furthermore, a strong positive correlation was noted between the malignancy degree in glioma brain tissues and p120 expression in Western blotting (r=0.906, p<0.0001) and QT-PCR (F=830.6, p<0.01). Compared to the BC and NC groups, the siRNA transfection groups showed a significant suppression in p120 expression in glioma cells (p<0.05), with a marked attenuation in the invasive, migratory, and proliferative capabilities of glioma cells as well as an increase in apoptotic potential (p<0.05). Enzyme-labeled assay showed a remarkable increase in calcium concentration in glioma cells after siRNA treatment. Immunofluorescence assay revealed that the microtubule formation ability of glioma cells reduced after siRNA treatment. CONCLUSION p120 has a pivotal involvement in facilitating glioma cell invasion and proliferation by potentially modulating these processes through its involvement in microtubule formation and regulation of intracellular calcium ion levels.
Collapse
Affiliation(s)
- Leilei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, China
| | - Jianshen Liang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Suzhen Ji
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Chunlou Wang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
3
|
Kupai A, Nakahara H, Voss KM, Hirano MS, Rodriguez A, Lackey DL, Murayama JF, Mathieson CJ, Shan B, Horton EC, Curtis GH, Huang J, Hille MB. Phosphorylation of serine residues S252, S268/S269, and S879 in p120 catenin activates migration of presomitic mesoderm in gastrulating zebrafish embryos. Dev Dyn 2022; 251:1952-1967. [PMID: 35706088 DOI: 10.1002/dvdy.508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Cadherin-associated protein p120 catenin regulates cell adhesion and migration in cell cultures and is required for axial elongation in embryos. Its roles in adhesion and cell migration are regulated by phosphorylation. We determined the effects of phosphorylation of six serine and three threonine residues in p120 catenin during zebrafish (Danio rerio) embryogenesis. RESULTS We knocked down endogenous p120 catenin-δ1 with an antisense RNA-splice-site morpholino (Sp-MO) causing defects in axis elongation. These defects were rescued by co-injections of mRNAs for wildtype mouse p120 catenin-δ1-3A or various mutated forms. Several mRNAs containing serine or threonine codons singly or doubly mutated to phosphomimetic glutamic acid rescued, and some nonphosphorylatable mutants did not. CONCLUSIONS We discovered that phosphorylation of serine residue S252 or S879 is required for convergent extension of zebrafish embryos, since rescue occurred only when these residues were mutated to glutamic acid. In addition, the phosphorylation of either S268 or S269 is required, not both, consistent with the presence of only a single one of these residues in two isoforms of zebrafish and Xenopus laevis. In summary, phosphorylation of multiple serine and threonine residues of p120 catenin activates migration of presomitic mesoderm of zebrafish embryos facilitating elongation of the dorsal axis.
Collapse
Affiliation(s)
- Ariana Kupai
- Department of Biology, University of Washington, Seattle, Washington, USA.,Van Andel Institute, Grand Rapids, Michigan, USA
| | - Hiroko Nakahara
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Kathleen M Voss
- Department of Biology, University of Washington, Seattle, Washington, USA.,Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Matthew S Hirano
- Department of Biology, University of Washington, Seattle, Washington, USA.,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
| | - Alexis Rodriguez
- Department of Biology, University of Washington, Seattle, Washington, USA.,Apex Systems, Santa Clara, California, USA
| | - Donna L Lackey
- Department of Biology, University of Washington, Seattle, Washington, USA.,PACT Pharma, 2 Corporate Drive, South San Francisco, California, USA
| | - James F Murayama
- Department of Biology, University of Washington, Seattle, Washington, USA.,DDS Private Practice, Mission Viejo, California, USA
| | - Chase J Mathieson
- Department of Biology, University of Washington, Seattle, Washington, USA.,Department of Integrative Biomedical and Diagnostic Science, Oregon Health and Science University, Portland, Oregon, USA
| | - Botao Shan
- Department of Biology, University of Washington, Seattle, Washington, USA.,Tulane University Medical School, New Orleans, Louisiana, USA
| | - Emma C Horton
- Department of Biology, University of Washington, Seattle, Washington, USA.,Developmental & Stem Cell Biology Program, University of California San Francisco, San Francisco, California, USA
| | - Grace H Curtis
- Department of Biology, University of Washington, Seattle, Washington, USA.,School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Joyce Huang
- Department of Biology, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California at Los Angeles, Los Angeles, California, USA
| | - Merrill B Hille
- Department of Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Prins R, Windsor P, Miller BR, Maiden S. Alleles of unc-33/CRMP exhibit defects during Caenorhabditis elegans epidermal morphogenesis. Dev Dyn 2022; 251:1741-1753. [PMID: 35538612 DOI: 10.1002/dvdy.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Microtubule-associated proteins regulate the dynamics, organization, and function of microtubules, impacting a number of vital cellular processes. CRMPs have been shown to control microtubule assembly and axon outgrowth during neuronal differentiation. While many microtubule-associated proteins have been linked to roles in cell division and neuronal development, it is still unclear the complement that control the formation of parallel microtubule arrays in epithelial cells. RESULTS Here we show through time-lapse DIC microscopy that Caenorhabditis elegans embryos homozygous for the weak loss-of-function allele unc-33(e204) progress more slowly through epidermal morphogenesis, while animals homozygous for strong loss-of-function alleles exhibit more embryonic lethality. Identification of two novel missense mutations in unc-33(e572), Val476Gly and Ser731Thr, lead to computational approaches to determine the potential effects of these changes on UNC-33/CRMP structure. Molecular dynamics simulations show that for Asp389Asn and Arg502His, two other known missense mutations, local changes in protein-protein hydrogen bonding affect the stability of the protein. However, the Val476Gly/Ser731Thr combination does not alter the structure or energetics of UNC-33 drastically when compared to the wild-type protein. CONCLUSIONS These results support a novel role for UNC-33/CRMP in C. elegans epidermal development and shed light on how individual amino acid changes cause a loss-of-function in UNC-33. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rachel Prins
- Department of Biology, Truman State University, Kirksville, MO
| | - Peter Windsor
- Department of Chemistry, Truman State University, Kirksville, MO
| | - Bill R Miller
- Department of Chemistry, Truman State University, Kirksville, MO
| | | |
Collapse
|
5
|
Reconstitution of the full transmembrane cadherin-catenin complex. Protein Expr Purif 2022; 193:106056. [PMID: 35063654 PMCID: PMC9487826 DOI: 10.1016/j.pep.2022.106056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023]
Abstract
The dynamic regulation of epithelial adherens junctions relies on all components of the E-cadherin-catenin complex. Previously, the complexes have been partially reconstituted and composed only of α-catenin, β-catenin, and the E-cadherin cytoplasmic domain. However, p120-catenin and the full-length E-cadherin including the extracellular, transmembrane, and intra-cellular domains are vital to the understanding of the relationship between extracellular adhesion and intracellular signaling. Here, we reconstitute the complete and full-length cadherin-catenin complex, including full-length E-cadherin, α-catenin, β-catenin, and p120-catenin, into nanodiscs. We are able to observe the cadherin in nanodiscs by cryo-EM. We also reconstitute α-catenin, β-catenin, and p120-catenin with the E-cadherin cytoplasmic tail alone in order to analyze the affinities of their binding interactions. We find that p120-catenin does not associate strongly with α- or β-catenin and binds much more transiently to the cadherin cytoplasmic tail than does β-catenin. Overall, this work creates many new possibilities for biochemical studies understanding transmembrane signaling of cadherins and the role of p120-catenin in adhesion activation.
Collapse
|
6
|
Koirala R, Priest AV, Yen CF, Cheah JS, Pannekoek WJ, Gloerich M, Yamada S, Sivasankar S. Inside-out regulation of E-cadherin conformation and adhesion. Proc Natl Acad Sci U S A 2021; 118:e2104090118. [PMID: 34301871 PMCID: PMC8325368 DOI: 10.1073/pnas.2104090118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadherin cell-cell adhesion proteins play key roles in tissue morphogenesis and wound healing. Cadherin ectodomains bind in two conformations, X-dimers and strand-swap dimers, with different adhesive properties. However, the mechanisms by which cells regulate ectodomain conformation are unknown. Cadherin intracellular regions associate with several actin-binding proteins including vinculin, which are believed to tune cell-cell adhesion by remodeling the actin cytoskeleton. Here, we show at the single-molecule level, that vinculin association with the cadherin cytoplasmic region allosterically converts weak X-dimers into strong strand-swap dimers and that this process is mediated by myosin II-dependent changes in cytoskeletal tension. We also show that in epithelial cells, ∼70% of apical cadherins exist as strand-swap dimers while the remaining form X-dimers, providing two cadherin pools with different adhesive properties. Our results demonstrate the inside-out regulation of cadherin conformation and establish a mechanistic role for vinculin in this process.
Collapse
Affiliation(s)
- Ramesh Koirala
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Andrew Vae Priest
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Chi-Fu Yen
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Joleen S Cheah
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616;
| |
Collapse
|
7
|
Park KS, Schecterson L, Gumbiner BM. Enhanced endothelial barrier function by monoclonal antibody activation of vascular endothelial cadherin. Am J Physiol Heart Circ Physiol 2021; 320:H1403-H1410. [PMID: 33577432 DOI: 10.1152/ajpheart.00002.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Excessive vascular permeability occurs in inflammatory disease processes. Vascular endothelial cadherin (VE-cadherin) is an adhesion protein that controls vascular permeability. We identified monoclonal antibodies (mAbs) to human VE-cadherin that activate cell adhesion and inhibit the increased permeability of endothelial cell monolayers induced by thrombin receptor activator peptide-6 (TRAP-6). Two mAbs, 8A12c and 3A5a, reduce permeability, whereas an inhibitory mAb, 2E11d, enhances permeability. Activating mAbs also reduce permeability induced by tumor necrosis factor-α (TNF-α) and vascular endothelial cell growth factor (VEGF). The activating mAbs also stabilize the organization of the adherens junctions that are disrupted by TRAP-6, VEGF, or TNF-α. The activating mAbs act directly on the adhesive function of VE-cadherin because they did not block the accumulation of actin filaments stimulated by TRAP-6 and enhance physical cell-cell adhesion of VE-cadherin-expressing tissue culture cells. Therefore, VE-cadherin function can be regulated at the cell surface to control endothelial permeability.NEW & NOTEWORTHY Excessive vascular permeability is a serious complication of many inflammatory disease conditions. We have developed monoclonal antibodies that inhibit increases in endothelial monolayer permeability induced by several signaling factors by activating VE-cadherin mediated adhesion and stabilizing cell junctions. These antibodies and/or the mechanisms they reveal may lead to important therapeutics to treat vascular leakiness and inflammation.
Collapse
Affiliation(s)
- Ki-Sook Park
- Department of Biomedical Science and Technology/East-West Medical Research Institute, Kyung Hee University, Seoul, South Korea.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Leslayann Schecterson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Barry M Gumbiner
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, University of Washington, Seattle, Washington.,Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Liu JJ, Chiu YT, Chen C, Huang P, Mann M, Liu-Chen LY. Pharmacological and phosphoproteomic approaches to roles of protein kinase C in kappa opioid receptor-mediated effects in mice. Neuropharmacology 2020; 181:108324. [PMID: 32976891 DOI: 10.1016/j.neuropharm.2020.108324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Kappa opioid receptor (KOR) agonists possess adverse dysphoric and psychotomimetic effects, thus limiting their applications as non-addictive anti-pruritic and analgesic agents. Here, we showed that protein kinase C (PKC) inhibition preserved the beneficial antinociceptive and antipruritic effects of KOR agonists, but attenuated the adverse condition placed aversion (CPA), sedation, and motor incoordination in mice. Using a large-scale mass spectrometry-based phosphoproteomics of KOR-mediated signaling in the mouse brain, we observed PKC-dependent modulation of G protein-coupled receptor kinases and Wnt pathways at 5 min; stress signaling, cytoskeleton, mTOR signaling and receptor phosphorylation, including cannabinoid receptor CB1 at 30 min. We further demonstrated that inhibition of CB1 attenuated KOR-mediated CPA. Our results demonstrated the feasibility of in vivo biochemical dissection of signaling pathways that lead to side effects.
Collapse
Affiliation(s)
- Jeffrey J Liu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Yi-Ting Chiu
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Chongguang Chen
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Peng Huang
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
9
|
Garzanelli J, Maiden S. Exposing a novel genetic interaction between unc-33/CRMP and hmp-2/β-catenin during Caenorhabditis elegans embryogenesis. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000286. [PMID: 32760883 PMCID: PMC7396159 DOI: 10.17912/micropub.biology.000286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- John Garzanelli
- Biology Department, Truman State University, Kirksville, MO, 63501
| | - Stephanie Maiden
- Biology Department, Truman State University, Kirksville, MO, 63501,
Correspondence to: Stephanie Maiden ()
| |
Collapse
|
10
|
Mendonsa AM, Bandyopadhyay C, Gumbiner BM. p120-catenin phosphorylation status alters E-cadherin mediated cell adhesion and ability of tumor cells to metastasize. PLoS One 2020; 15:e0235337. [PMID: 32589661 PMCID: PMC7319294 DOI: 10.1371/journal.pone.0235337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/12/2020] [Indexed: 01/06/2023] Open
Abstract
p120-catenin is considered to be a tumor suppressor because it stabilizes E-cadherin levels at the cell surface. p120-catenin phosphorylation is increased in several types of cancer, but the role of phosphorylation in cancer is unknown. The phosphorylation state of p120-catenin is important in controlling E-cadherin homophilic binding strength which maintains epithelial junctions. Because decreased cell-cell adhesion is associated with increased cancer metastasis we hypothesize that p120-catenin phosphorylation at specific Serine and Threonine residues alters the E-cadherin binding strength between tumor cells and thereby affect the ability of tumor cells to leave the primary tumor and metastasize to distant sites. In this study we show that expression of the p120-catenin phosphorylation dead mutant, by converting six Serine and Threonine sites to Alanine, leads to enhanced E-cadherin adhesive binding strength in tumor cells. We observed a decrease in the ability of tumor cells expressing the p120-catenin phosphorylation mutant to migrate and invade using in-vitro models of cancer progression. Further, tumor cells expressing the phosphorylation mutant form of p120-catenin demonstrated a decrease in ability to metastasize to the lungs using an in-vivo orthotopic mammary fat pad injection model of breast cancer development and metastasis. This suggests that regulation of p120-catenin phosphorylation at the cell surface is important in mediating cell-adhesion, thereby impacting cancer progression and metastasis.
Collapse
Affiliation(s)
- Alisha M. Mendonsa
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Chirosree Bandyopadhyay
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Barry M. Gumbiner
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
11
|
The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci U S A 2020; 117:5931-5937. [PMID: 32127478 DOI: 10.1073/pnas.1918167117] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
E-cadherin is a tumor suppressor protein, and the loss of its expression in association with the epithelial mesenchymal transition (EMT) occurs frequently during tumor metastasis. However, many metastases continue to express E-cadherin, and a full EMT is not always necessary for metastasis; also, positive roles for E-cadherin expression in metastasis have been reported. We hypothesize instead that changes in the functional activity of E-cadherin expressed on tumor cells in response to environmental factors is an important determinant of the ability of the tumor cells to metastasize. We find that E-cadherin expression persists in metastatic lung nodules and circulating tumor cells (CTCs) in two mouse models of mammary cancer: genetically modified MMTV-PyMT mice and orthotopically grafted 4T1 tumor cells. Importantly, monoclonal antibodies that bind to and activate E-cadherin at the cell surface reduce lung metastasis from endogenous genetically driven tumors and from tumor cell grafts. E-cadherin activation inhibits metastasis at multiple stages, including the accumulation of CTCs from the primary tumor and the extravasation of tumor cells from the vasculature. These activating mAbs increase cell adhesion and reduce cell invasion and migration in both cell culture and three-dimensional spheroids grown from primary tumors. Moreover, activating mAbs increased the frequency of apoptotic cells without affecting proliferation. Although the growth of the primary tumors was unaffected by activating mAbs, CTCs and tumor cells in metastatic nodules exhibited increased apoptosis. Thus, the functional state of E-cadherin is an important determinant of metastatic potential beyond whether the gene is expressed.
Collapse
|
12
|
Smyrek I, Mathew B, Fischer SC, Lissek SM, Becker S, Stelzer EHK. E-cadherin, actin, microtubules and FAK dominate different spheroid formation phases and important elements of tissue integrity. Biol Open 2019; 8:bio.037051. [PMID: 30578251 PMCID: PMC6361217 DOI: 10.1242/bio.037051] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Spheroids resemble features of tissues and serve as model systems to study cell–cell and cell–ECM interactions in non-adhesive three-dimensional environments. Although it is generally accepted that mature spheroids resemble tissue properties very well, no studies relate different phases in the spheroid formation processes that contribute to tissue integrity. Tissue integrity involves the cellular processes adhesion formation, adhesion reinforcement, rearrangement as well as proliferation. They maintain the structure and function of tissues and, upon dysregulation, contribute to malignancy. We investigated spheroid formation dynamics in cell lines of different metastatic potential. We dissected spheroid formation into phases of aggregation, compaction and growth to identify the respective contributions of E-cadherin, actin, microtubules and FAK. E-cadherin, actin and microtubules drive the first two phases. Microtubules and FAK are involved in the proliferation phase. FAK activity correlates with the metastatic potential of the cells. A robust computational model based on a very large number of experiments reveals the temporal resolution of cell adhesion. Our results provide novel hypotheses to unveil the general mechanisms that contribute to tissue integrity. Summary: The phases of spheroid formation resemble different stages of cell contact formation. This facilitates studying the temporal contribution of molecules in this process.
Collapse
Affiliation(s)
- I Smyrek
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| | - B Mathew
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| | - S C Fischer
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| | - S M Lissek
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| | - S Becker
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| | - E H K Stelzer
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Kralova V, Hanušová V, Caltová K, Špaček P, Hochmalová M, Skálová L, Rudolf E. Flubendazole and mebendazole impair migration and epithelial to mesenchymal transition in oral cell lines. Chem Biol Interact 2018; 293:124-132. [PMID: 30075109 DOI: 10.1016/j.cbi.2018.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/28/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Benzimidazole anthelmintics flubendazole and mebendazole are microtubule-targeting drugs that showed considerable anti-cancer activity in different preclinical models. In this study, the effects of flubendazole and mebendazole on proliferation, migration and cadherin switching were studied in a panel of oral cell lines in vitro. Both compounds reduced the viability of the PE/CA-PJ15 and H376 oral squamous carcinoma cells and of the premalignant oral keratinocytes DOK with the IC50 values in the range of 0.19-0.26 μM. Normal oral keratinocytes and normal gingival fibroblasts were less sensitive to the treatment. Flubendazole and mebendazole also reduced the migration of the PE/CA-PJ15 cell in concentrations that had no anti-migratory effects on the normal gingival fibroblasts. Levels of the focal adhesion kinase FAK, Rho-A and Rac1 GTPases and the Rho guanine nucleotide exchange factor GEF-H1 were decreased in both PE/CA-PJ15 cells and gingival fibroblasts following treatment. Both drugs also interfered with cadherin switching in the model of TGF-β-induced epithelial to mesenchymal transition (EMT) in the DOK cell line. Levels of N-cadherin were reduced in the TGF-β induced cells co-treated with flubendazol and mebendazole in very low concentration (50 nM). These results suggest direct effects of both benzimidazoles on selected processes of EMT in oral cell lines such as cadherin switching as well as cellular migration.
Collapse
Affiliation(s)
- Vera Kralova
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine in Hradec Králové, Šimkova 870, Hradec Králové, CZ-500 03, Czech Republic.
| | - Veronika Hanušová
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine in Hradec Králové, Šimkova 870, Hradec Králové, CZ-500 03, Czech Republic
| | - Kateřina Caltová
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine in Hradec Králové, Šimkova 870, Hradec Králové, CZ-500 03, Czech Republic
| | - Petr Špaček
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Martina Hochmalová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine in Hradec Králové, Šimkova 870, Hradec Králové, CZ-500 03, Czech Republic
| |
Collapse
|
14
|
Abstract
E-cadherin is a key component of the adherens junctions that are integral in cell adhesion and maintaining epithelial phenotype of cells. Homophilic E-cadherin binding between cells is important in mediating contact inhibition of proliferation when cells reach confluence. Loss of E-cadherin expression results in loss of contact inhibition and is associated with increased cell motility and advanced stages of cancer. In this review we discuss the role of E-cadherin and its downstream signaling in regulation of contact inhibition and the development and progression of cancer.
Collapse
|
15
|
Dybdal-Hargreaves NF, Risinger AL, Mooberry SL. Regulation of E-cadherin localization by microtubule targeting agents: rapid promotion of cortical E-cadherin through p130Cas/Src inhibition by eribulin. Oncotarget 2017; 9:5545-5561. [PMID: 29464017 PMCID: PMC5814157 DOI: 10.18632/oncotarget.23798] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Microtubule targeting agents (MTAs) are some of the most effective anticancer drugs used to treat a wide variety of adult and pediatric cancers. Building evidence suggests that these drugs inhibit interphase signaling events and that this contributes to their anticancer actions. The effects of diverse MTAs were evaluated following a 2 hour incubation with clinically relevant concentrations to test the hypothesis that these drugs rapidly and differentially disrupt epithelial-to-mesenchymal transition (EMT)-related signaling. The MTAs rapidly promoted the cortical localization of internal pools of E-cadherin in HCC1937 breast cancer cells, with the most robust effects observed with the microtubule destabilizers eribulin and vinorelbine. Cortical E-cadherin localization was also promoted by the Src kinase inhibitor dasatinib or by siRNA-mediated depletion of the p130Cas scaffold. Mechanistic studies demonstrate that eribulin disrupts the interaction between p130Cas and Src, leading to decreased cortical Src phosphorylation that precedes the accumulation of cortical E-cadherin. These results suggest that microtubules can be actively co-opted by cancer cells to inhibit cortical E-cadherin localization, a hallmark of EMT, and provide a direct link between the initial disruption of the microtubule network and reversal of EMT phenotypes demonstrated by eribulin in long-term studies.
Collapse
Affiliation(s)
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,UT Health Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Susan L Mooberry
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,UT Health Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
16
|
Ito S, Okuda S, Abe M, Fujimoto M, Onuki T, Nishimura T, Takeichi M. Induced cortical tension restores functional junctions in adhesion-defective carcinoma cells. Nat Commun 2017; 8:1834. [PMID: 29184140 PMCID: PMC5705652 DOI: 10.1038/s41467-017-01945-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 10/27/2017] [Indexed: 11/08/2022] Open
Abstract
Normal epithelial cells are stably connected to each other via the apical junctional complex (AJC). AJCs, however, tend to be disrupted during tumor progression, and this process is implicated in cancer dissemination. Here, using colon carcinoma cells that fail to form AJCs, we investigated molecular defects behind this failure through a search for chemical compounds that could restore AJCs, and found that microtubule-polymerization inhibitors (MTIs) were effective. MTIs activated GEF-H1/RhoA signaling, causing actomyosin contraction at the apical cortex. This contraction transmitted force to the cadherin-catenin complex, resulting in a mechanosensitive recruitment of vinculin to cell junctions. This process, in turn, recruited PDZ-RhoGEF to the junctions, leading to the RhoA/ROCK/LIM kinase/cofilin-dependent stabilization of the junctions. RhoGAP depletion mimicked these MTI-mediated processes. Cells that normally organize AJCs did not show such MTI/RhoA sensitivity. Thus, advanced carcinoma cells require elevated RhoA activity for establishing robust junctions, which triggers tension-sensitive reorganization of actin/adhesion regulators.
Collapse
Affiliation(s)
- Shoko Ito
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Satoru Okuda
- Laboratoty for In Vitro Histogenesis, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Masako Abe
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Mari Fujimoto
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Tetsuo Onuki
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Tamako Nishimura
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
17
|
Petrova YI, Schecterson L, Gumbiner BM. Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell 2016; 27:3233-3244. [PMID: 27582386 PMCID: PMC5170857 DOI: 10.1091/mbc.e16-01-0058] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
Loss of E-cadherin expression often occurs in tumors, but many metastases retain E-cadherin. Regulation of the adhesive activity of E-cadherin at the cell surface is important for metastasis of mammary tumor cells, and cancer-associated missense mutations in E-cadherin selectively affect the mechanism of cell surface regulation. The loss of E-cadherin expression in association with the epithelial–mesenchymal transition (EMT) occurs frequently during tumor metastasis. However, metastases often retain E-cadherin expression, an EMT is not required for metastasis, and metastases can arise from clusters of tumor cells. We demonstrate that the regulation of the adhesive activity of E-cadherin present at the cell surface by an inside-out signaling mechanism is important in cancer. First, we find that the metastasis of an E-cadherin–expressing mammary cell line from the mammary gland to the lung depends on reduced E-cadherin adhesive function. An activating monoclonal antibody to E-cadherin that induces a high adhesive state significantly reduced the number of cells metastasized to the lung without affecting the growth in size of the primary tumor in the mammary gland. Second, we find that many cancer-associated germline missense mutations in the E-cadherin gene in patients with hereditary diffuse gastric cancer selectively affect the mechanism of inside-out cell surface regulation without inhibiting basic E-cadherin adhesion function. This suggests that genetic deficits in E-cadherin cell surface regulation contribute to cancer progression. Analysis of these mutations also provides insights into the molecular mechanisms underlying cadherin regulation at the cell surface.
Collapse
Affiliation(s)
- Yuliya I Petrova
- Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Leslayann Schecterson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101
| | - Barry M Gumbiner
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101 .,Departments of Pediatrics and Biochemistry, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|