1
|
Stevenson AW, Cadby G, Wallace HJ, Melton PE, Martin LJ, Wood FM, Fear MW. Genetic influence on scar vascularity after burn injury in individuals of European ancestry: A prospective cohort study. Burns 2024; 50:1871-1884. [PMID: 38902133 DOI: 10.1016/j.burns.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
After burn injury there is considerable variation in scar outcome, partially due to genetic factors. Scar vascularity is one characteristic that varies between individuals, and this study aimed to identify genetic variants contributing to different scar vascularity outcomes. An exome-wide array association study and gene pathway analysis was performed on a prospective cohort of 665 patients of European ancestry treated for burn injury, using their scar vascularity (SV) sub-score, part of the modified Vancouver Scar Scale (mVSS), as an outcome measure. DNA was genotyped using the Infinium HumanCoreExome-24 BeadChip, imputed to the Haplotype Reference Consortium panel. Associations between genetic variants (single nucleotide polymorphisms) and SV were estimated using an additive genetic model adjusting for sex, age, % total body surface area and number of surgical procedures, utilising linear and multinomial logistic regression. No individual genetic variants achieved the cut-off threshold for significance. Gene sets were also analysed using the Functional Mapping and Annotation (FUMA) platform, in which biological processes indirectly related to angiogenesis were significantly represented. This study suggests that SNPs in genes associated with angiogenesis may influence SV, but further studies with larger datasets are essential to validate these findings.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Australia.
| | - Gemma Cadby
- School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - Hilary J Wallace
- School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - Phillip E Melton
- School of Population and Global Health, The University of Western Australia, Perth, Australia; Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Lisa J Martin
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Australia; Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Australia; Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
2
|
Carney BC, Bailey JK, Powell HM, Supp DM, Travis TE. Scar Management and Dyschromia: A Summary Report from the 2021 American Burn Association State of the Science Meeting. J Burn Care Res 2023; 44:535-545. [PMID: 36752791 DOI: 10.1093/jbcr/irad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 02/09/2023]
Abstract
Burn scars, and in particular, hypertrophic scars, are a challenging yet common outcome for survivors of burn injuries. In 2021, the American Burn Association brought together experts in burn care and research to discuss critical topics related to burns, including burn scars, at its State of the Science conference. Clinicians and researchers with burn scar expertise, as well as burn patients, industry representatives, and other interested stakeholders met to discuss issues related to burn scars and discuss priorities for future burn scar research. The various preventative strategies and treatment modalities currently utilized for burn scars were discussed, including relatively noninvasive therapies such as massage, compression, and silicone sheeting, as well as medical interventions such as corticosteroid injection and laser therapies. A common theme that emerged is that the efficacy of current therapies for specific patient populations is not clear, and further research is needed to improve upon these treatments and develop more effective strategies to suppress scar formation. This will necessitate quantitative analyses of outcomes and would benefit from creation of scar biobanks and shared data resources. In addition, outcomes of importance to patients, such as scar dyschromia, must be given greater attention by clinicians and researchers to improve overall quality of life in burn survivors. Herein we summarize the main topics of discussion from this meeting and offer recommendations for areas where further research and development are needed.
Collapse
Affiliation(s)
- Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| | - John K Bailey
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Heather M Powell
- The Ohio State University, Departments of Materials Science and Engineering and Biomedical Engineering, Columbus, OH, USA
- Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA
| | - Dorothy M Supp
- Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA
- The University of Cincinnati College of Medicine, Department of Surgery, Cincinnati, OH, USA
| | - Taryn E Travis
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- The Burn Center, MedStar Washington Hospital Center, Washington, DC, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
3
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
El-Salamouni NS, Gowayed MA, Younis SE, Abdel-Bary A, Kamel MA, Labib GS. Pentoxifylline/Valsartan co-delivery in liposomal gel alters the inflammatory HMGB-1/ TLR pathway and promotes faster healing in burn wounds: A promising repurposed approach. Int J Pharm 2022; 625:122129. [PMID: 36007851 DOI: 10.1016/j.ijpharm.2022.122129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Burn wounds are one of the most severe complex forms of trauma. Hence, new treatment strategies that facilitate the healing process; reduce the severity and the healing time is the main concern of the health care systems. In this work, pentoxifylline-valsartan, (PTX- VAL), loaded liposomes integrated into gel were designed for the first time as a novel co-delivery carrier for the treatment of burn wounds. The objective of this work was to investigate the ability of the nano-based liposomal system to co-entrap two repurposed drugs; hydrophilic pentoxifylline and lipophilic valsartan for topical treatment of burn wounds. The impact of increasing the phospholipid amount to enhance the co-entrapment of PTX and VAL was investigated and in-vitro evaluation of the prepared formulations was conducted to choose the optimum composition with the highest entrapment of both drugs adopting a simple, reliable derivative spectrophotometric method. Structure elucidation was also performed using a transmission electron microscope. In addition, A simple selected derivative spectrophotometric method was developed for the assay of PTX-VAL novel combination. The proven selectivity, precision and accuracy assured the reliability of this analytical method. Being economic and fast makes routine application of the developed analytical method is recommended in pharmaceutical industry. The selected liposomal formulation integrated into gel matrix (PTX-VAL-LG) showed; nanometric size, acceptable entrapment efficiency of both PTX and VAL as well as sustained release profiles and thus, enhanced action.
Collapse
Affiliation(s)
- Noha S El-Salamouni
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Mennatallah A Gowayed
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Sameh E Younis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Ahmed Abdel-Bary
- Department of Dermatology, Venereology, Andrology and Dermatopathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Egypt.
| | - Gihan S Labib
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|
5
|
Amjadian S, Moradi S, Mohammadi P. The emerging therapeutic targets for scar management: genetic and epigenetic landscapes. Skin Pharmacol Physiol 2022; 35:247-265. [PMID: 35696989 PMCID: PMC9533440 DOI: 10.1159/000524990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Background Wound healing is a complex process including hemostasis, inflammation, proliferation, and remodeling during which an orchestrated array of biological and molecular events occurs to promote skin regeneration. Abnormalities in each step of the wound healing process lead to reparative rather than regenerative responses, thereby driving the formation of cutaneous scar. Patients suffering from scars represent serious health problems such as contractures, functional and esthetic concerns as well as painful, thick, and itchy complications, which generally decrease the quality of life and impose high medical costs. Therefore, therapies reducing cutaneous scarring are necessary to improve patients' rehabilitation. Summary Current approaches to remove scars, including surgical and nonsurgical methods, are not efficient enough, which is in principle due to our limited knowledge about underlying mechanisms of pathological as well as the physiological wound healing process. Thus, therapeutic interventions focused on basic science including genetic and epigenetic knowledge are recently taken into consideration as promising approaches for scar management since they have the potential to provide targeted therapies and improve the conventional treatments as well as present opportunities for combination therapy. In this review, we highlight the recent advances in skin regenerative medicine through genetic and epigenetic approaches to achieve novel insights for the development of safe, efficient, and reproducible therapies and discuss promising approaches for scar management. Key Message Genetic and epigenetic regulatory switches are promising targets for scar management, provided the associated challenges are to be addressed.
Collapse
Affiliation(s)
- Sara Amjadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parvaneh Mohammadi
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- *Parvaneh Mohammadi,
| |
Collapse
|
6
|
Tollow P, Marie Stock N, Harcourt D. Exploring parents' attitudes towards a multicentre cohort study of children with burns injuries: A qualitative interview study. Scars Burn Heal 2022; 8:20595131221098526. [PMID: 35800295 PMCID: PMC9253984 DOI: 10.1177/20595131221098526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Burn injuries affect more than 60,000 children every year in the UK, with
many experiencing scarring as a result. Scarring can be highly variable, and
research is required to explore the factors that may influence variability,
as well as the psychosocial impact of these injuries on children and their
caregivers. A multicentre burns cohort study is being planned to investigate
genetic determinants of scarring and long-term psychosocial outcomes. Public
involvement (PI) is an essential element of the design and feasibility
stages of this planning. As part of this work, this study aimed to gain an
in-depth understanding of parents’ attitudes towards participation in burns
research, specifically a longitudinal cohort study of children with small
burns (<10% total body surface area [TBSA]). Methods In total, 16 parents of children with burns took part in semi-structured
interviews regarding their experiences of taking part in research and their
attitudes towards the potential future cohort study. Interviews were
audio-recorded, transcribed verbatim and analysed using Reflexive Thematic
Analysis. Results Four themes were identified: ‘Acknowledging trauma’; ‘Aligning research with
experience’; ‘Research as a reciprocal relationship’; and ‘Contributing to
change’. Discussion These four themes represent factors that parents suggested were important for
acceptability, relevance, recruitment and retention of participants into a
longitudinal multicentre cohort study of children with a burn injury and
their caregivers. Conclusion The findings of this study will be incorporated into the design of such a
study, as well as having wide reaching relevance for research in the field
of paediatric burn injuries. Lay Summary Background to this subject More than 60,000 children experience a burn injury every year in the UK and
many of these injuries lead to scarring. We know that the extent of this
scarring can vary, and we know that some children and their
parents/caregivers manage well but others struggle with the challenges they
face after having a burn. Researchers would like to carry out research on
these topics, including asking participants to take part in research over
several years to find out how genetics might influence scarring, as well as
their psychological experiences over this time. Before they conduct this
study, it is very important that researchers understand parents' attitudes
towards this kind of research. The current study aimed to find out parents'
opinions and ask what issues were important to them when taking part in
burns research. Details of how the work was conducted Parents of children who had experienced a scald (a type of burn injury) were
asked to take part in a research interview. In total, 16 parents took part
in this study. We recorded these interviews and analysed them, looking for
patterns and shared experiences in participants' interviews. What we did and did not learn from this study We found four themes in the interview data: ‘Acknowledging trauma', ‘Aligning
research with experience', ‘Research as a reciprocal relationship', and
‘Contributing to change'. Overall, these themes suggest that parents were
mostly supportive of a ‘burns cohort study’, but they have also highlighted
some important considerations for this research and other future burns
research studies.
Collapse
Affiliation(s)
- Philippa Tollow
- Centre for Appearance Research, University of the West of England, Bristol, UK
| | - Nicola Marie Stock
- Centre for Appearance Research, University of the West of England, Bristol, UK
| | - Diana Harcourt
- Centre for Appearance Research, University of the West of England, Bristol, UK
| |
Collapse
|
7
|
Davies P, Cuttle L, Young A. A Scoping Review of the Methodology Used in Studies of Genetic Influences on the Development of Keloid or Hypertrophic Scarring in Adults and Children After Acute Wounding. Adv Wound Care (New Rochelle) 2021; 10:557-570. [PMID: 33975469 PMCID: PMC8312015 DOI: 10.1089/wound.2020.1386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Significance: Keloid and hypertrophic scarring are common following acute wounds. However, the variability in scarring outcomes between individuals and in particular, the association between genetic factors and scarring, is not well understood. This scoping review aims to summarize the methodology used in studies of genetic influences on the development of keloid or hypertrophic scarring in adults and children after acute wounding. The objectives were to determine the study designs used, the characteristics of participants included, the tools used to assess scarring and the length of follow-up after wounding. Recent Advances: The review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Medline, Excerpta Medica Database (EMBASE), Web of Science, Biosciences Information Service (BIOSIS), Prospective Register of Systematic Reviews (PROSPERO), The Human Genetic Epidemiology (HuGE) Navigator (database of genetic association studies), and the genome-wide association study Catalog were searched from January 2008 to April 2020. Cohort studies and case–control studies that examined the association between one or more genetic variations and the development of keloid or hypertrophic scarring were eligible for inclusion. A narrative synthesis that grouped studies by wound type was conducted. Critical Issues: Nine studies met the inclusion criteria (five in burns, four surgical wounds, and none in other types of acute wounds). Seven assessed hypertrophic scarring, one keloid scarring, and one both scar types. Seven studies used a prospective cohort design. All studies used subjective methods (clinician or patient observation) to assess scarring. There was considerable variation in how scar scales were operationalized. Future Directions: This review identified a small body of evidence on genetic susceptibility to scarring after acute wounding. Further studies are needed, and in a wide range of populations, including patients with wounds caused by trauma.
Collapse
Affiliation(s)
- Philippa Davies
- Bristol Center for Surgical Research and Bristol Biomedical Research Center, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Leila Cuttle
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Amber Young
- Bristol Center for Surgical Research and Bristol Biomedical Research Center, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Children's Burn Research Center, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| |
Collapse
|
8
|
Stone RC, Chen V, Burgess J, Pannu S, Tomic-Canic M. Genomics of Human Fibrotic Diseases: Disordered Wound Healing Response. Int J Mol Sci 2020; 21:ijms21228590. [PMID: 33202590 PMCID: PMC7698326 DOI: 10.3390/ijms21228590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrotic disease, which is implicated in almost half of all deaths worldwide, is the result of an uncontrolled wound healing response to injury in which tissue is replaced by deposition of excess extracellular matrix, leading to fibrosis and loss of organ function. A plethora of genome-wide association studies, microarrays, exome sequencing studies, DNA methylation arrays, next-generation sequencing, and profiling of noncoding RNAs have been performed in patient-derived fibrotic tissue, with the shared goal of utilizing genomics to identify the transcriptional networks and biological pathways underlying the development of fibrotic diseases. In this review, we discuss fibrosing disorders of the skin, liver, kidney, lung, and heart, systematically (1) characterizing the initial acute injury that drives unresolved inflammation, (2) identifying genomic studies that have defined the pathologic gene changes leading to excess matrix deposition and fibrogenesis, and (3) summarizing therapies targeting pro-fibrotic genes and networks identified in the genomic studies. Ultimately, successful bench-to-bedside translation of observations from genomic studies will result in the development of novel anti-fibrotic therapeutics that improve functional quality of life for patients and decrease mortality from fibrotic diseases.
Collapse
Affiliation(s)
- Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- Correspondence: (R.C.S.); (M.T.-C.)
| | - Vivien Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
| | - Jamie Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- Medical Scientist Training Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sukhmani Pannu
- Department of Dermatology, Tufts Medical Center, Boston, MA 02116, USA;
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- John P. Hussman Institute for Human Genomics, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: (R.C.S.); (M.T.-C.)
| |
Collapse
|
9
|
Chen L, Li Q, Lu X, Dong X, Li J. Overexpression of miR-340-5p Inhibits Skin Fibroblast Proliferation by Targeting Kruppel-like Factor 2. Curr Pharm Biotechnol 2019; 20:1147-1154. [PMID: 31345144 DOI: 10.2174/1389201020666190725112304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/25/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022]
Abstract
<P>Objective: MicroRNA (miR)-340-5p has been identified to play a key role in several cancers.
However, the function of miR-340-5p in skin fibroblasts remains largely unknown.
</P><P>
Methods: Gain of function experiments were performed by infecting normal skin fibroblast cells with
a lentivirus carrying 22-bp miR-340-5p. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8)
assay. To uncover the mechanisms, mRNA-seq was used. Differentially expressed mRNAs were further
determined by Gene Ontology and KEGG pathway analyses. The protein levels were analysed by
Western blotting. A dual-luciferase reporter assay was used to detect the direct binding of miR-340-5p
with the 3'UTR of Kruppel-like factor 2 (KLF2).
</P><P>
Results: MiR-340-5p lentivirus infection suppressed normal skin fibroblast proliferation. The mRNAseq
data revealed that 41 mRNAs were differentially expressed, including 22 upregulated and 19
downregulated transcripts in the miR-340-5p overexpression group compared with those in the control
group. Gene Ontology and KEGG pathway analyses revealed that miR-340-5p overexpression correlated
with the macromolecule biosynthetic process, cellular macromolecule biosynthetic process,
membrane, and MAPK signalling pathway. Bioinformatics analysis and luciferase reporter assays
showed that miR-340-5p binds to the 3'UTR of KLF2. Forced expression of miR-340-5p decreased the
expression of KLF2 in normal skin fibroblasts. Overexpression of KLF2 restored skin fibroblast proliferation
in the miR-340-5p overexpression group.
</P><P>
Conclusion: This study demonstrates that miR-340-5p may suppress skin fibroblast proliferation, possibly
through targeting KLF2. These findings could help us understand the function of miR-340-5p in
skin fibroblasts. miR-340-5p could be a therapeutic target for preventing scarring.</P>
Collapse
Affiliation(s)
- Ling Chen
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Qian Li
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Xun Lu
- Milken School of Public Health, George Washington University, Washington DC, 20052, United States
| | - Xiaohua Dong
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu, China
| | - Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
10
|
Yang X, Zhang C, Jiang J, Li Y. Baicalein retards proliferation and collagen deposition by activating p38MAPK-JNK via microRNA-29. J Cell Biochem 2019; 120:15625-15634. [PMID: 31081145 DOI: 10.1002/jcb.28829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Immoderate proliferation and deposition of collagen generally result in hypertrophic scars and even keloids. microRNA-29 (miR-29) has been proved as a crucial regulator in these pathological processes. Although mounting evidence have proved baicalein (BAI) impairs scar formation, it is still incompletely understood whether miR-29 participated in the underlying mechanism. In the present study, NIH-3T3 cells were stimulated with BAI, and then cell viability was analyzed by cell counting kit-8 (CCK-8) and Western blot. We further analyzed total soluble collagen, collagen 1, and alpha-smooth muscle actin (α-SMA) in NIH-3T3 cells, which were exposed to transforming growth factor beta 1 (TGF-β1)/BAI, using a Sircol assay kit, quantitative reverse transcription-PCR (qRT-PCR) and Western blot, respectively. Besides, the miR-29 inhibitor was transduced and its transfection efficiency was verified by qRT-PCR. Finally, the phosphorylated p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) were examined by Western blot. BAI effectively retarded NIH-3T3 proliferation in a dose-dependent manner. Besides, TGF-β1-induced deposition of total soluble collagen and synthesis of collagen 1 and α-SMA were repressed by BAI at mRNA and protein levels. However, miR-29 inhibitor reversed the effects of BAI. Remarkably, BAI promoted phosphorylated expression of p38MAPK and JNK while miR-29 inhibitor reversed its effects on the phosphorylated expression of p38MAPK and JNK. BAI effectively weakened the cell viability and repressed TGF-β1-induced total soluble collagen as well as collagen 1 and α-SMA by upregulating miR-29. Mechanically, BAI activates the p38MAPK/JNK pathway by promoting miR-29.
Collapse
Affiliation(s)
- Xiaoliang Yang
- Department of Burn and Plastic Surgery, Qingdao Central Hospital (The Affiliated Central Hospital of Qingdao University), Qingdao, China
| | - Chunyan Zhang
- Department of Traditional Chinese Medicine, Qingdao Central Hospital (The Affiliated Central Hospital of Qingdao University), Qingdao, China
| | - Jinjie Jiang
- Department of Burn and Plastic Surgery, Qingdao Central Hospital (The Affiliated Central Hospital of Qingdao University), Qingdao, China
| | - Yinghao Li
- Department of Burn and Plastic Surgery, Qingdao Central Hospital (The Affiliated Central Hospital of Qingdao University), Qingdao, China
| |
Collapse
|
11
|
Wallace HJ, Cadby G, Melton PE, Wood FM, Falder S, Crowe MM, Martin LJ, Marlow K, Ward SV, Fear MW. Genetic influence on scar height and pliability after burn injury in individuals of European ancestry: A prospective cohort study. Burns 2018; 45:567-578. [PMID: 30595539 DOI: 10.1016/j.burns.2018.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/15/2018] [Accepted: 10/04/2018] [Indexed: 12/26/2022]
Abstract
After similar extent of injury there is considerable variability in scarring between individuals, in part due to genetic factors. This study aimed to identify genetic variants associated with scar height and pliability after burn injury. An exome-wide array association study and gene pathway analysis were performed on a prospective cohort of 665 patients treated for burn injury. Outcomes were scar height (SH) and scar pliability (SP) sub-scores of the modified Vancouver Scar Scale (mVSS). DNA was genotyped using the Infinium® HumanCoreExome-24 BeadChip. Associations between genetic variants (single nucleotide polymorphisms) and SH and SP were estimated using an additive genetic model adjusting for age, sex, number of surgical procedures and % total body surface area of burn in subjects of European ancestry. No individual genetic variants achieved the cut-off threshold of significance. Gene regions were analysed for spatially correlated single nucleotide polymorphisms and significant regions identified using comb-p software. This gene list was subject to gene pathway analysis to find which biological process terms were over-represented. Using this approach biological processes related to the nervous system and cell adhesion were the predominant gene pathways associated with both SH and SP. This study suggests genes associated with innervation may be important in scar fibrosis. Further studies using similar and larger datasets will be essential to validate these findings.
Collapse
Affiliation(s)
- Hilary J Wallace
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia; School of Medicine, The University of Notre Dame Australia, Fremantle, Australia.
| | - Gemma Cadby
- Centre for Genetic Origins of Health and Disease, Faculty of Health and Medical Sciences, The University of Western Australia and Faculty of Health Science, Curtin University, Perth, Australia
| | - Phillip E Melton
- Centre for Genetic Origins of Health and Disease, Faculty of Health and Medical Sciences, The University of Western Australia and Faculty of Health Science, Curtin University, Perth, Australia; School of Pharmacy and Biomedical Sciences, Faculty of Health Science, Curtin University, Perth, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia; Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, Australia
| | - Sian Falder
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Margaret M Crowe
- Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, Australia
| | - Lisa J Martin
- Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, Australia
| | - Karen Marlow
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Sarah V Ward
- Centre for Genetic Origins of Health and Disease, Faculty of Health and Medical Sciences, The University of Western Australia and Faculty of Health Science, Curtin University, Perth, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
12
|
D'Arpa P, Leung KP. Toll-Like Receptor Signaling in Burn Wound Healing and Scarring. Adv Wound Care (New Rochelle) 2017; 6:330-343. [PMID: 29062590 PMCID: PMC5649422 DOI: 10.1089/wound.2017.0733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Abstract
Significance: Damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) emanate from burn-injured tissue and enter systemic circulation. Locally and systemically, they activate pattern-recognition receptors, including toll-like receptors (TLRs), to stimulate cytokine secretion, which in the severest burns typically results in extreme systemic cytokine levels, a dysfunctioning immune system, infection, impaired healing, and excessive scarring. This system-wide disruption of homeostasis can advance to life-threatening, multiorgan dysfunction syndrome. Knowledge of DAMP- and PAMP-TLR signaling may lead to treatments that ameliorate local and systemic inflammation and reduce scarring and other burn injury sequela. Recent Advances: Many PAMPs and DAMPs, the TLRs they activate, and their downstream signaling molecules have been shown to contribute to local and systemic inflammation and tissue damage following burn injury. Critical Issues: Whether TLR-pathway-targeting treatments applied at different times postburn injury might improve scarring remains an open question. The evaluation of this question requires the use of appropriate preclinical and clinical burn models carried out until after mature scar has formed. Future Directions: After TLR-pathway-targeting treatments are evaluated in porcine burn wound models and their safety is demonstrated, they can be tested in proof-of-concept clinical burn wound models.
Collapse
Affiliation(s)
| | - Kai P. Leung
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| |
Collapse
|