1
|
Li S, Yeh C, Jang‐Liaw N, Chang S, Lin Y, Tsai C, Chiu C, Chen C, Ke H, Wang Q, Lu Y, Zheng K, Fan P, Zhang L, Liu Y. Low but highly geographically structured genomic diversity of East Asian Eurasian otters and its conservation implications. Evol Appl 2024; 17:e13630. [PMID: 38288030 PMCID: PMC10824276 DOI: 10.1111/eva.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 01/31/2024] Open
Abstract
Populations of Eurasian otters Lutra lutra, one of the most widely distributed apex predators in Eurasia, have been depleted mainly since the 1950s. However, a lack of information about their genomic diversity and how they are organized geographically in East Asia severely impedes our ability to monitor and conserve them in particular management units. Here, we re-sequenced and analyzed 20 otter genomes spanning continental East Asia, including a population at Kinmen, a small island off the Fujian coast, China. The otters form three genetic clusters (one of L. l. lutra in the north and two of L. l. chinensis in the south), which have diverged in the Holocene. These three clusters should be recognized as three conservation management units to monitor and manage independently. The heterozygosity of the East Asian otters is as low as that of the threatened carnivores sequenced. Historical effective population size trajectories inferred from genomic variations suggest that their low genomic diversity could be partially attributed to changes in the climate since the mid-Pleistocene and anthropogenic intervention since the Holocene. However, no evidence of genetic erosion, mutation load, or high level of inbreeding was detected in the presumably isolated Kinmen Island population. Any future in situ conservation efforts should consider this information for the conservation management units.
Collapse
Affiliation(s)
- Shou‐Hsien Li
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chia‐fen Yeh
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | | | - Shih‐Wei Chang
- Division of ZoologyEndemic Species Research InstituteNantouTaiwan
| | - Yu‐Hsiu Lin
- Division of ZoologyEndemic Species Research InstituteNantouTaiwan
| | - Cheng‐En Tsai
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chi‐Cheng Chiu
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | | | - Hui‐Ru Ke
- Genomics BioSci & Tech Co., Ltd.New Taipei CityTaiwan
| | - Qiaoyun Wang
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yiwei Lu
- Zhejiang Museum of Natural HistoryZhejiang Biodiversity Research CenterHangzhouChina
| | - Kaidan Zheng
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Pengfei Fan
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Lu Zhang
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
2
|
Osozawa S. Geologically calibrated mammalian tree and its correlation with global events, including the emergence of humans. Ecol Evol 2023; 13:e10827. [PMID: 38116126 PMCID: PMC10728886 DOI: 10.1002/ece3.10827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/09/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
A robust timetree for Mammalia was constructed using the time calibration function of BEAST v1.10.4 and MEGA 11. The analysis involved the application of times of the most recent common ancestors, including a total of 19 mammalian fossil calibration ages following Benton et al. (Palaeontologia Electronica, 2015, 1-106) for their minimum ages. Additionally, fossil calibration ages for Gorilla, Pan, and a geologic event calibration age for otters were incorporated. Using these calibration ages, I constructed a geologically calibrated tree that estimates the age of the Homo and Pan splitting to be 5.69 Ma. The tree carries several significant implications. First, after the initial rifting at 120 Ma, the Atlantic Ocean expanded by over 500 km around Chron 34 (84 Ma), and vicariant speciation between Afrotheria (Africa) and Xenarthra (South America) appears to have commenced around 70 Ma. Additionally, ordinal level differentiations began immediately following the K-Pg boundary (66.0 Ma), supporting previous hypothesis that mammalian radiation rapidly filled ecological niches left vacant by non-avian dinosaurs. I constructed a diagram depicting the relationship between base substitution rate and age using an additional function in BEAST v1.10.4. The diagram reveals an exponential increase in the base substitution rate approaching recent times. This increased base substitution rate during the Neogene period may have contributed to the expansion of biodiversity, including the extensive adaptive radiation that led to the evolution of Homo sapiens. One significant driving factor behind this radiation could be attributed to the emergence and proliferation of C4 grasses since 20 Ma. These grasses have played a role in increasing carbon fixation, reducing atmospheric CO2 concentration, inducing global cooling, and initiating Quaternary glacial-interglacial cycles, thereby causing significant climatic changes.
Collapse
Affiliation(s)
- Soichi Osozawa
- Faculty of Science, Institute of Geology and PaleontologyTohoku UniversitySendaiJapan
| |
Collapse
|
3
|
du Plessis SJ, Blaxter M, Koepfli KP, Chadwick EA, Hailer F. Genomics Reveals Complex Population History and Unexpected Diversity of Eurasian Otters (Lutra lutra) in Britain Relative to Genetic Methods. Mol Biol Evol 2023; 40:msad207. [PMID: 37713621 PMCID: PMC10630326 DOI: 10.1093/molbev/msad207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
Conservation genetic analyses of many endangered species have been based on genotyping of microsatellite loci and sequencing of short fragments of mtDNA. The increase in power and resolution afforded by whole genome approaches may challenge conclusions made on limited numbers of loci and maternally inherited haploid markers. Here, we provide a matched comparison of whole genome sequencing versus microsatellite and control region (CR) genotyping for Eurasian otters (Lutra lutra). Previous work identified four genetically differentiated "stronghold" populations of otter in Britain, derived from regional populations that survived the population crash of the 1950s-1980s. Using whole genome resequencing data from 45 samples from across the British stronghold populations, we confirmed some aspects of population structure derived from previous marker-driven studies. Importantly, we showed that genomic signals of the population crash bottlenecks matched evidence from otter population surveys. Unexpectedly, two strongly divergent mitochondrial lineages were identified that were undetectable using CR fragments, and otters in the east of England were genetically distinct and surprisingly variable. We hypothesize that this previously unsuspected variability may derive from past releases of Eurasian otters from other, non-British source populations in England around the time of the population bottleneck. Our work highlights that even reasonably well-studied species may harbor genetic surprises, if studied using modern high-throughput sequencing methods.
Collapse
Affiliation(s)
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA
- Centre for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | | | - Frank Hailer
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Wei Q, Wang X, Dong Y, Shang Y, Sun G, Wu X, Zhao C, Sha W, Yang G, Zhang H. Analysis of the Complete Mitochondrial Genome of Pteronura brasiliensis and Lontra canadensis. Animals (Basel) 2023; 13:3165. [PMID: 37893890 PMCID: PMC10603698 DOI: 10.3390/ani13203165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
P. brasiliensis and L. canadensis are two otter species, which successfully occupied semi-aquatic habitats and diverged from other Mustelidae. Herein, the full-length mitochondrial genome sequences were constructed for these two otter species for the first time. Comparative mitochondrial genome, selection pressure, and phylogenetic independent contrasts (PICs) analyses were conducted to determine the structure and evolutionary characteristics of their mitochondrial genomes. Phylogenetic analyses were also conducted to confirm these two otter species' phylogenetic position. The results demonstrated that the mitochondrial genome structure of P. brasiliensis and L. canadensis were consistent across Mustelidae. However, selection pressure analyses demonstrated that the evolutionary rates of mitochondrial genome protein-coding genes (PCGs) ND1, ND4, and ND4L were higher in otters than in terrestrial Mustelidae, whereas the evolutionary rates of ND2, ND6, and COX1 were lower in otters. Additionally, PIC analysis demonstrated that the evolutionary rates of ND2, ND4, and ND4L markedly correlated with a niche type. Phylogenetic analysis showed that P. brasiliensis is situated at the base of the evolutionary tree of otters, and then L. canadensis diverged from it. This study suggests a divergent evolutionary pattern of Mustelidae mitochondrial genome PCGs, prompting the otters' adaptation to semi-aquatic habitats.
Collapse
Affiliation(s)
- Qinguo Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Q.W.); (G.Y.)
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (X.W.); (Y.D.); (Y.S.); (G.S.); (X.W.); (C.Z.); (W.S.)
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (X.W.); (Y.D.); (Y.S.); (G.S.); (X.W.); (C.Z.); (W.S.)
| | - Yuehuan Dong
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (X.W.); (Y.D.); (Y.S.); (G.S.); (X.W.); (C.Z.); (W.S.)
| | - Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (X.W.); (Y.D.); (Y.S.); (G.S.); (X.W.); (C.Z.); (W.S.)
| | - Guolei Sun
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (X.W.); (Y.D.); (Y.S.); (G.S.); (X.W.); (C.Z.); (W.S.)
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (X.W.); (Y.D.); (Y.S.); (G.S.); (X.W.); (C.Z.); (W.S.)
| | - Chao Zhao
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (X.W.); (Y.D.); (Y.S.); (G.S.); (X.W.); (C.Z.); (W.S.)
| | - Weilai Sha
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (X.W.); (Y.D.); (Y.S.); (G.S.); (X.W.); (C.Z.); (W.S.)
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Q.W.); (G.Y.)
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China; (X.W.); (Y.D.); (Y.S.); (G.S.); (X.W.); (C.Z.); (W.S.)
| |
Collapse
|
5
|
Singh D, Thakar A, Sharma N. On the occurrence of Eurasian Otter Lutra lutra (Carnivora: Mustelidae) in Neeru stream of Chenab catchment, Jammu & Kashmir, India. JOURNAL OF THREATENED TAXA 2023. [DOI: 10.11609/jott.8082.15.2.22567-22573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
This communication reports the first photographic record of Eurasian Otter Lutra lutra in a hill stream in Jammu & Kashmir, putting an end to doubts over its presence in the upper Chenab catchment. Three individuals were photographed during a limited camera trap survey conducted in Neeru stream, a left bank tributary of river Chenab during mid-October 2020. We argue that rapid human population influx, infrastructure expansion, and pollution have altered the hydro morphology of Neeru stream, affecting the otter population. This observation calls for more intensive otter surveys in the nearby smaller basins of Neeru, Kalnai, & Sewa and other large tributaries of Chenab River, combining occupancy surveys with camera traps for improved conservation and management of the species in the region.
Collapse
|
6
|
Coudrat CNZ, Chutipong W, Sukmak M, Sripiboon S, Klinsawat W. Taxonomic status of otter species in Nakai-Nam Theun National Park, Lao PDR, based on DNA evidence. Ecol Evol 2022; 12:e9601. [PMID: 36568871 PMCID: PMC9771668 DOI: 10.1002/ece3.9601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Otter populations are threatened by habitat loss, pollution, conflicts with humans, and illegal wildlife trade to meet the demand for pets, for their fur, and for parts used in traditional medicines. Baseline information on the distribution, population genetic diversity, and connectivity is crucial to inform conservation management decisions; however, reliable data from otter populations in Southeast Asia remain scarce. In this study, we conducted baseline otter fecal DNA surveys based on mitochondrial DNA (mtDNA) to identify species, assess the occurrence, and map the spatial distribution of genetic diversity and evolutionary relationships of otter populations using 1700 bp Cytochrome B - Control Region and mitogenome from Nakai-Nam Theun National Park in the Annamite Mountains of Lao PDR. Of the total 56 samples identified to species, the majority (87.5%) was of the widely distributed Eurasian otter with three haplotypes (Lutra lutra; LLLA01-LLLA03), with a calculated haplotype diversity of 0.600 and a nucleotide diversity of 0.00141 based on mitogenome. The second species was the Asian small-clawed otter with only one haplotype detected (Aonyx cinereus; ACLA01). All Eurasian otter haplotypes were newly characterized and clustered within the strongly supported South-Southeast-North Asian clade of Lutra lutra. Compared with the European clade, the high mtDNA diversity of Lutra lutra in Nakai-Nam Theun National Park potentially reflects long-term demographic stability and lesser degree of population bottleneck during the last glacial maxima (LGM, ~21,000 years ago). The single haplotype detected in Asian small-clawed otters had not been detected in previous genetic studies. Our research is the first otter-specific noninvasive genetic study in Lao PDR and provides baseline insights into the otter population diversity in a regional priority site for biodiversity conservation.
Collapse
Affiliation(s)
| | - Wanlop Chutipong
- Conservation Ecology Program, Pilot Plant Development and Training InstituteKing Mongkut's University of Technology ThonburiBangkokThailand
| | - Manakorn Sukmak
- Department of Farm Resources and Production Medicine, Faculty of Veterinary MedicineKasetsart UniversityNakhon PathomThailand
| | - Supaphen Sripiboon
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary MedicineKasetsart UniversityNakhon PathomThailand
| | - Worata Klinsawat
- Conservation Ecology Program, School of Bioresources and TechnologyKing Mongkut's University of Technology ThonburiBangkokThailand
| |
Collapse
|
7
|
Gray A, Brito JC, Edwards CW, Figueiró HV, Koepfli KP. First complete mitochondrial genome of the Saharan striped polecat ( Ictonyx libycus). MITOCHONDRIAL DNA PART B 2022; 7:1957-1960. [DOI: 10.1080/23802359.2022.2141080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Autumn Gray
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
- Smithsonian-Mason School of Conservation, George Mason University, Fairfax, VA, USA
| | - José C. Brito
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Cody W. Edwards
- Smithsonian-Mason School of Conservation, George Mason University, Fairfax, VA, USA
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Henrique V. Figueiró
- Smithsonian-Mason School of Conservation, George Mason University, Fairfax, VA, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Fairfax, VA, USA
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Virginia, USA
| |
Collapse
|
8
|
Yamashita Y, Ogura‐Tsujita Y, Nagata N, Kurosawa T, Yukawa T. Molecular identification of seed‐feeding flies dissected from herbarium specimens clarifies the 100‐year history of parasitism by
Japanagromyza tokunagai
in Japan. Ecol Res 2021. [DOI: 10.1111/1440-1703.12283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yumi Yamashita
- Graduate School of Symbiotic Systems Science and Technology Fukushima University 1 Kanayagawa, Fukushima Fukushima Japan
- Tsukuba Botanical Garden National Museum of Nature and Science Tsukuba, Ibaraki Japan
| | - Yuki Ogura‐Tsujita
- Faculty of Agriculture Saga University, 1 Honjyo Saga Japan
- United Graduate School of Agricultural Sciences Kagoshima University Kagoshima Japan
| | - Nobuaki Nagata
- Department of Anthropology National Museum of Nature and Science Tsukuba, Ibaraki Japan
| | - Takahide Kurosawa
- Faculty of Symbiotic Systems Science Fukushima University Fukushima Fukushima Japan
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden National Museum of Nature and Science Tsukuba, Ibaraki Japan
| |
Collapse
|
9
|
Genetic and viability assessment of a reintroduced Eurasian otter Lutra lutra population on the River Ticino, Italy. ORYX 2021. [DOI: 10.1017/s0030605321000107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
On the River Ticino in northern Italy, a small number of captive Eurasian otters Lutra lutra, belonging to the European breeding programme for self-sustaining captive populations, were reintroduced in 1997, after the species had been declared locally extinct in the 1980s. We surveyed for otter signs in 2008, 2010, 2016–2017 and 2018, confirming the presence of what is probably a small population. To assess the abundance and viability of the population, we genotyped fresh spraints collected during the last two surveys, using 11 microsatellite markers, and modelled the population trend using Vortex. A minimum of six individuals were identified from 25 faecal samples. The analysis of mitochondrial DNA determined that the reintroduced otters share a transversion that is characteristic of the Asiatic subspecies Lutra lutra barang, confirming the contribution of the Asiatic subspecies to the genetic pool of the captive-bred founder population. Population size was consistent with the release of three pairs of otters and all models implied that the number of founders was too small to ensure the long-term survival of the population. Stochastic factors are therefore likely to threaten the success of this reintroduction.
Collapse
|
10
|
Hassanin A, Veron G, Ropiquet A, Jansen van Vuuren B, Lécu A, Goodman SM, Haider J, Nguyen TT. Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred from mitochondrial genomes. PLoS One 2021; 16:e0240770. [PMID: 33591975 PMCID: PMC7886153 DOI: 10.1371/journal.pone.0240770] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022] Open
Abstract
The order Carnivora, which currently includes 296 species classified into 16 families, is distributed across all continents. The phylogeny and the timing of diversification of members of the order are still a matter of debate. Here, complete mitochondrial genomes were analysed to reconstruct the phylogenetic relationships and to estimate divergence times among species of Carnivora. We assembled 51 new mitogenomes from 13 families, and aligned them with available mitogenomes by selecting only those showing more than 1% of nucleotide divergence and excluding those suspected to be of low-quality or from misidentified taxa. Our final alignment included 220 taxa representing 2,442 mitogenomes. Our analyses led to a robust resolution of suprafamilial and intrafamilial relationships. We identified 21 fossil calibration points to estimate a molecular timescale for carnivorans. According to our divergence time estimates, crown carnivorans appeared during or just after the Early Eocene Climatic Optimum; all major groups of Caniformia (Cynoidea/Arctoidea; Ursidae; Musteloidea/Pinnipedia) diverged from each other during the Eocene, while all major groups of Feliformia (Nandiniidae; Feloidea; Viverroidea) diversified more recently during the Oligocene, with a basal divergence of Nandinia at the Eocene/Oligocene transition; intrafamilial divergences occurred during the Miocene, except for the Procyonidae, as Potos separated from other genera during the Oligocene.
Collapse
Affiliation(s)
- Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
| | - Géraldine Veron
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
| | - Anne Ropiquet
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University, London, United Kingdom
| | - Bettine Jansen van Vuuren
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
| | - Alexis Lécu
- Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris, France
| | - Steven M. Goodman
- Field Museum of Natural History, Chicago, IL, United States of America
| | - Jibran Haider
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
- Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Forest Parks & Wildlife Department Gilgit-Baltistan, Skardu, Pakistan
| | - Trung Thanh Nguyen
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA, Paris, France
| |
Collapse
|
11
|
Basnet A, Ghimire P, Timilsina YP, Bist BS. Otter research in Asia: Trends, biases and future directions. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Affiliation(s)
- Naoyuki Nakahama
- Institute of Natural and Environmental Sciences, University of Hyogo Sanda City Japan
- The Museum of Nature and Human Activities, Hyogo Sanda City Japan
| |
Collapse
|
13
|
Khoo MDY, Lee BPY. The urban Smooth‐coated otters
Lutrogale perspicillata
of Singapore: a review of the reasons for success. ACTA ACUST UNITED AC 2020. [DOI: 10.1111/izy.12262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. D. Y. Khoo
- Wildlife Management Research Wildlife Management Division National Parks Board 50 Dairy Farm Road Singapore 679059
| | - B. P. Y.‐H. Lee
- Wildlife Management Research Wildlife Management Division National Parks Board 50 Dairy Farm Road Singapore 679059
| |
Collapse
|
14
|
Beichman AC, Koepfli KP, Li G, Murphy W, Dobrynin P, Kliver S, Tinker MT, Murray MJ, Johnson J, Lindblad-Toh K, Karlsson EK, Lohmueller KE, Wayne RK. Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant Otter. Mol Biol Evol 2019; 36:2631-2655. [PMID: 31212313 PMCID: PMC7967881 DOI: 10.1093/molbev/msz101] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite its recent invasion into the marine realm, the sea otter (Enhydra lutris) has evolved a suite of adaptations for life in cold coastal waters, including limb modifications and dense insulating fur. This uniquely dense coat led to the near-extinction of sea otters during the 18th-20th century fur trade and an extreme population bottleneck. We used the de novo genome of the southern sea otter (E. l. nereis) to reconstruct its evolutionary history, identify genes influencing aquatic adaptation, and detect signals of population bottlenecks. We compared the genome of the southern sea otter with the tropical freshwater-living giant otter (Pteronura brasiliensis) to assess common and divergent genomic trends between otter species, and with the closely related northern sea otter (E. l. kenyoni) to uncover population-level trends. We found signals of positive selection in genes related to aquatic adaptations, particularly limb development and polygenic selection on genes related to hair follicle development. We found extensive pseudogenization of olfactory receptor genes in both the sea otter and giant otter lineages, consistent with patterns of sensory gene loss in other aquatic mammals. At the population level, the southern sea otter and the northern sea otter showed extremely low genomic diversity, signals of recent inbreeding, and demographic histories marked by population declines. These declines may predate the fur trade and appear to have resulted in an increase in putatively deleterious variants that could impact the future recovery of the sea otter.
Collapse
Affiliation(s)
- Annabel C Beichman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Gang Li
- College of Life Science, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Pasha Dobrynin
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sergei Kliver
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Martin T Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA
| | | | - Jeremy Johnson
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Kerstin Lindblad-Toh
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elinor K Karlsson
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, MA
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
| |
Collapse
|
15
|
Nakanishi N, Izawa M. Rediscovery of Otters on the Tsushima Islands, Japan by Trail Cameras. MAMMAL STUDY 2019. [DOI: 10.3106/ms2018-0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Nozomi Nakanishi
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Masako Izawa
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
16
|
Park HC, Kurihara N, Kim KS, Min MS, Han S, Lee H, Kimura J. What is the taxonomic status of East Asian otter species based on molecular evidence?: focus on the position of the Japanese otter holotype specimen from museum. Anim Cells Syst (Seoul) 2019; 23:228-234. [PMID: 31231587 PMCID: PMC6567078 DOI: 10.1080/19768354.2019.1601133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/17/2019] [Accepted: 03/24/2019] [Indexed: 11/06/2022] Open
Abstract
The Japanese otter (Lutra nippon), once inhabited in most islands of Japan, is now considered as an extinct species. Although the Japanese otter is regarded as a distinct species from the Eurasian otter (L. lutra), its phylogeny and taxonomic status are based on limited information on morphological and genetic data, and thus further clarification is required. Here, we assessed the phylogenetic relationship among the genus Lutra and taxonomic status of L. nippon by using the complete sequences of cytochrome b gene of its holotype. The present phylogenic trees supported that the genus Lutra specimens largely formed monophyletic group, with L. sumatrana as a basal to other Lutra species. Within Lutra species, L. nippon was distantly related with L. lutra. The European otter population of L. l. lutra were clustered together with its subspecies, L. l. chinensis rather than the same subspecies, Korean otter population. The discrepancy between the genetic data and traditional taxonomy justifies the necessity of reexamination of the current subspecific classification system of Eurasian otters. Level of genetic divergence between the holotype of L. nippon and L. lutra was two to three-fold lower than those among the other sister species of the Lutrinae. Based on the level of divergence between the L. nippon and L. lutra, and insufficient evidence of morphological difference between them, it is suggested that designation of Japanese otter as a separate species from L. lutra will be reconsidered.
Collapse
Affiliation(s)
- Han-Chan Park
- Conservation Genome Resource Bank for Korean Wildlife, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Nozomi Kurihara
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Kyung Seok Kim
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | - Mi-Sook Min
- Conservation Genome Resource Bank for Korean Wildlife, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sungyong Han
- Korean Otter Research Center, Hwacheon, Republic of Korea
| | - Hang Lee
- Conservation Genome Resource Bank for Korean Wildlife, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Junpei Kimura
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Hwang JY, Cho GJ. Identification of novel haplotypes and interpretation of gene flow of mitochondrial DNA control region of Eurasian otter (Lutra lutra) for the effective conservation. J Vet Med Sci 2018; 80:1791-1800. [PMID: 30224573 PMCID: PMC6261830 DOI: 10.1292/jvms.17-0678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The number and distribution of Eurasian otters have declined during twentieth century due to human activity and water pollution. The global conservation status of Eurasian otter is
presently ‘Near Threatened (NT)’ and strictly protected by being listed on the international legislation and conventions. A number of studies using the mitochondrial DNA (mtDNA) control
region (CR) have been conducted in order to effectively apply conservation and reintroduction programs, especially in Europe. However, aside from Europe, there have been few studies
concerning genetic diversity and phylogeny of Eurasian otters. Therefore, in this study, we sequenced partial mtDNA CR sequences (232 bp) from five South Korean Eurasian otters and analyzed
27 otters originating from parts of northeast Asia (South Korea, China, Japan and Russia (Sakhalin)), and Europe. Out of 232 bp partial mtDNA CR sequences, 13 polymorphic sites (5.6%) were
identified and 4 novel mtDNA CR haplotypes (Lut16–19) were discovered from 12 Eurasian otters originating from northeast Asian region. In this study, a comprehensive analysis of genetic
diversity and population structure of Eurasian otter between Europe and northeast Asia continents were conducted. Of these, different past demographic histories in Pleistocene period might
have largely impacted the genetic structure of each population differently. In addition, low degree of gene flow, isolation by distance (IBD) pattern from geographically wide distanced
dataset and analysis of molecular variance (AMOVA) also represented distinct genetic characteristics of Eurasian otter between Europe and northeast Asia.
Collapse
Affiliation(s)
- Ji-Yong Hwang
- Institute of Equine Science, College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Gil-Jae Cho
- Institute of Equine Science, College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| |
Collapse
|
18
|
Characterization of the complete mitochondrial genome of Ortleppascaris sinensis (Nematoda: Heterocheilidae) and comparative mitogenomic analysis of eighteen Ascaridida nematodes. J Helminthol 2017. [PMID: 28637530 DOI: 10.1017/s0022149x17000542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ortleppascaris sinensis (Nematoda: Ascaridida) is a dominant intestinal nematode of the captive Chinese alligator. However, the epidemiology, molecular ecology and population genetics of this parasite remain largely unexplored. In this study, the complete mitochondrial (mt) genome sequence of O. sinensis was first determined using a polymerase chain reaction (PCR)-based primer-walking strategy, and this is also the first sequencing of the complete mitochondrial genome of a member of the genus Ortleppascaris. The circular mitochondrial genome (13,828 bp) of O. sinensis contained 12 protein-coding, 22 transfer RNA and 2 ribosomal RNA genes, but lacked the ATP synthetase subunit 8 gene. Finally, phylogenetic analysis of mtDNAs indicated that the genus Ortleppascaris should be attributed to the family Heterocheilidae. It is necessary to sequence more mtNDAs of Ortleppascaris nematodes in the future to test and confirm our conclusion. The complete mitochondrial genome sequence of O. sinensis reported here should contribute to molecular diagnosis, epidemiological investigations and ecological studies of O. sinensis and other related Ascaridida nematodes.
Collapse
|
19
|
Lau ACC, Asahara M, Han SY, Kimura J. Geographic variation of craniodental morphology of the Eurasian otter (Lutra lutra) in East Asia. J Vet Med Sci 2016; 79:144-152. [PMID: 27644315 PMCID: PMC5289252 DOI: 10.1292/jvms.16-0250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Craniodental morphology of the Eurasian otter (Lutra lutra) in the Korean Peninsula, Japanese islands and Kinmen Island (Taiwan) was studied
using geometric morphometrics to identify the skull variations between the populations. Forty adult skulls were examined (29 specimens from the Korean
Peninsula, six from Shikoku, Honshu and Hokkaido of Japan, and five from Kinmen Island). Images of the dorsal and ventral views of the skull and the right
lateral view of the mandible were analyzed. Specimens from the Korean Peninsula were larger than those from the Japanese islands and Kinmen Island. However, no
correlation was observed between the shape variations in the three populations and the centroid size of the skull. The Mann-Whitney U-test
showed that relative warps (RWs) RW1, RW2 and RW4 of the dorsal view and RW2 of the ventral view of the skull differed significantly between the populations.
Some craniodental differences between the populations were seen in the dorsal and ventral views of the skull, mostly at the snout and parietal regions. The
MANOVA test revealed significant differences between the specimens from the Japanese islands and Korean Peninsula and between the specimens from the Korean
Peninsula and Kinmen Island. RWs plots showed an overlap of all three populations. In conclusion, the comparisons of the three examined populations revealed
significant differences in their craniodental morphology.
Collapse
Affiliation(s)
- Alice Ching Ching Lau
- Laboratory of Anatomy and Cell Biology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|