1
|
Takiguchi S, Takeuchi N, Shenshin V, Gines G, Genot AJ, Nivala J, Rondelez Y, Kawano R. Harnessing DNA computing and nanopore decoding for practical applications: from informatics to microRNA-targeting diagnostics. Chem Soc Rev 2025; 54:8-32. [PMID: 39471098 PMCID: PMC11521203 DOI: 10.1039/d3cs00396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 11/01/2024]
Abstract
DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Nanami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Vasily Shenshin
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
2
|
Takiguchi S, Kambara F, Tani M, Sugiura T, Kawano R. Simultaneous Recognition of Over- and Under-Expressed MicroRNAs Using Nanopore Decoding. Anal Chem 2023; 95:14675-14685. [PMID: 37675494 PMCID: PMC10797591 DOI: 10.1021/acs.analchem.3c02560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
This paper describes a strategy for simultaneous recognition of over- and under-expressed microRNAs (miRNAs) using the method of signal classification-based nanopore decoding. MiRNA has attracted attention as a promising biomarker for cancer diagnosis owing to its cancer-type-specific expression patterns. While nanopore technology has emerged as a simple and label-free method to detect miRNAs and their expression patterns, recognizing patterns involving simultaneous over/under-expression is still challenging due to the inherent working principles. Here, inspired by the sequence design for DNA computation with nanopore decoding, we designed diagnostic DNA probes targeting two individual over/under-expressed miRNAs in the serum of oral squamous cell carcinoma. Through nanopore measurements, our designed probes exhibited characteristic current signals depending on the hybridized miRNA species, which were plotted on the scatter plot of duration versus current blocking ratio. The classified signals reflected the relative abundance of target miRNAs, thereby enabling successful pattern recognition of over/under-expressed miRNAs, even when using clinical samples. We believe that our method paves the way for miRNA-targeting simple diagnosis as a liquid biopsy.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Fumika Kambara
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Mika Tani
- Department
of Maxillofacial Diagnostic and Surgical Science, Field of Oral and
Maxillofacial Rehabilitation, Graduate School of Medical and Dental
Science, Kagoshima University, Kagoshima 890-8544, Japan
| | - Tsuyoshi Sugiura
- Department
of Maxillofacial Diagnostic and Surgical Science, Field of Oral and
Maxillofacial Rehabilitation, Graduate School of Medical and Dental
Science, Kagoshima University, Kagoshima 890-8544, Japan
- Division
of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate
School of Dentistry, Tohoku University, Miyagi 980-8577, Japan
| | - Ryuji Kawano
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
3
|
Tada A, Takeuchi N, Shoji K, Kawano R. Nanopore Filter: A Method for Counting and Extracting Single DNA Molecules Using a Biological Nanopore. Anal Chem 2023; 95:9805-9812. [PMID: 37279035 PMCID: PMC10797584 DOI: 10.1021/acs.analchem.3c00573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
This paper describes a method for the real-time counting and extraction of DNA molecules at the single-molecule level by nanopore technology. As a powerful tool for electrochemical single-molecule detection, nanopore technology eliminates the need for labeling or partitioning sample solutions at the femtoliter level. Here, we attempt to develop a DNA filtering system utilizing an α-hemolysin (αHL) nanopore. This system comprises two droplets, one filling with and one emptying DNA molecules, separated by a planar lipid bilayer containing αHL nanopores. The translocation of DNA through the nanopores is observed by measuring the channel current, and the number of translocated molecules can also be verified by quantitative polymerase chain reaction (qPCR). However, we found that the issue of contamination seems to be an almost insolvable problem in single-molecule counting. To tackle this problem, we tried to optimize the experimental environment, reduce the volume of solution containing the target molecule, and use the PCR clamp method. Although further efforts are still needed to achieve a single-molecule filter with electrical counting, our proposed method shows a linear relationship between the electrical counting and qPCR estimation of the number of DNA molecules.
Collapse
Affiliation(s)
- Asuka Tada
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Nanami Takeuchi
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kan Shoji
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Department
of Mechanical Engineering, Nagaoka University
of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Ryuji Kawano
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
4
|
Takeuchi N, Hiratani M, Kawano R. Pattern Recognition of microRNA Expression in Body Fluids Using Nanopore Decoding at Subfemtomolar Concentrations. JACS AU 2022; 2:1829-1838. [PMID: 36032536 PMCID: PMC9400052 DOI: 10.1021/jacsau.2c00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper describes a method for detecting microRNA (miRNA) expression patterns using the nanopore-based DNA computing technology. miRNAs have shown promise as markers for cancer diagnosis due to their cancer type specificity, and therefore simple strategies for miRNA pattern recognition are required. We propose a system for pattern recognition of five types of miRNAs overexpressed in bile duct cancer (BDC). The information of miRNAs from BDC is encoded in diagnostic DNAs (dgDNAs) and decoded electrically by nanopore analysis. With this system, we succeeded in the label-free detection of miRNA expression patterns from the plasma of BDC patients. Moreover, our dgDNA-miRNA complexes can be detected at subfemtomolar concentrations, which is a significant improvement compared to previously reported limits of detection (∼10-12 M) for similar analytical platforms. Nanopore decoding of dgDNA-encoded information represents a promising tool for simple and early cancer diagnosis.
Collapse
|
5
|
Zhang K, Chen YJ, Wilde D, Doroschak K, Strauss K, Ceze L, Seelig G, Nivala J. A nanopore interface for higher bandwidth DNA computing. Nat Commun 2022; 13:4904. [PMID: 35987925 PMCID: PMC9392746 DOI: 10.1038/s41467-022-32526-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractDNA has emerged as a powerful substrate for programming information processing machines at the nanoscale. Among the DNA computing primitives used today, DNA strand displacement (DSD) is arguably the most popular, with DSD-based circuit applications ranging from disease diagnostics to molecular artificial neural networks. The outputs of DSD circuits are generally read using fluorescence spectroscopy. However, due to the spectral overlap of typical small-molecule fluorescent reporters, the number of unique outputs that can be detected in parallel is limited, requiring complex optical setups or spatial isolation of reactions to make output bandwidths scalable. Here, we present a multiplexable sequencing-free readout method that enables real-time, kinetic measurement of DSD circuit activity through highly parallel, direct detection of barcoded output strands using nanopore sensor array technology (Oxford Nanopore Technologies’ MinION device). These results increase DSD output bandwidth by an order of magnitude over what is currently feasible with fluorescence spectroscopy.
Collapse
|
6
|
Wang L, Wang H, Chen X, Zhou S, Wang Y, Guan X. Chemistry solutions to facilitate nanopore detection and analysis. Biosens Bioelectron 2022; 213:114448. [PMID: 35716643 DOI: 10.1016/j.bios.2022.114448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Characteristic ionic current modulations will be produced in a single molecule manner during the communication of individual molecules with a nanopore. Hence, the information regarding the length, composition, and structure of a molecule can be extracted from deciphering the electrical message. However, until now, achieving a satisfactory resolution for observation and quantification of a target analyte in a complex system remains a nontrivial task. In this review, we summarize the progress and especially the recent advance in utilizing chemistry solutions to facilitate nanopore detection and analysis. The discussed chemistry solutions are classified into several major categories, including covalent/non-covalent chemistry, redox chemistry, displacement chemistry, back titration chemistry, chelation chemistry, hydrolysis-chemistry, and click chemistry. Considering the significant success of using chemical reaction-assisted nanopore sensing strategies to improve sensor sensitivity & selectivity and to study various topics, other non-chemistry based methodologies can undoubtedly be employed by nanopore sensors to explore new applications in the interdisciplinary area of chemistry, biology, materials, and nanotechnology.
Collapse
Affiliation(s)
- Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Han Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
7
|
Lee W, Yu M, Lim D, Kang T, Song Y. Programmable DNA-Based Boolean Logic Microfluidic Processing Unit. ACS NANO 2021; 15:11644-11654. [PMID: 34232017 DOI: 10.1021/acsnano.1c02153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As molecular computing materials, information-encoded deoxyribonucleic acid (DNA) strands provide a logical computing process by cascaded and parallel chain reactions. However, the reactions in DNA-based combinational logic computing are mostly achieved through a manual process by adding desired DNA molecules in a single microtube or a substrate. For DNA-based Boolean logic, using microfluidic chips can afford automated operation, programmable control, and seamless combinational logic operation, similar to electronic microprocessors. In this paper, we present a programmable DNA-based microfluidic processing unit (MPU) chip that can be controlled via a personal computer for performing DNA calculations. To fabricate this DNA-based MPU, polydimethylsiloxane was cast using double-sided molding techniques for alignment between the microfluidics and valve switch. For a uniform surface, molds fabricated using a three-dimensional printer were spin-coated by a polymer. For programming control, the valve switch arms were operated by servo motors. In the MPU controlled via a personal computer or smartphone application, the molecules with two input DNAs and a logic template DNA were reacted for the basic AND and OR operations. Furthermore, the DNA molecules reacted in a cascading manner for combinational AND and OR operations. Finally, we demonstrated a 2-to-1 multiplexer and the XOR operation with a three-step cascade reaction using the simple DNA-based MPU, which can perform Boolean logic operations (AND, OR, and NOT). Through logic combination, this DNA-based Boolean logic MPU, which can be operated using programming language, is expected to facilitate the development of complex functional circuits such as arithmetic logical units and neuromorphic circuits.
Collapse
Affiliation(s)
- Wonjin Lee
- Department of Nano-bioengineering, Incheon National University, Academy-to 119, Incheon, Korea, 22012
| | - Minsang Yu
- Department of Nano-bioengineering, Incheon National University, Academy-to 119, Incheon, Korea, 22012
| | - Doyeon Lim
- Department of Nano-bioengineering, Incheon National University, Academy-to 119, Incheon, Korea, 22012
| | - Taeseok Kang
- Department of Nano-bioengineering, Incheon National University, Academy-to 119, Incheon, Korea, 22012
| | - Youngjun Song
- Department of Nano-bioengineering, Incheon National University, Academy-to 119, Incheon, Korea, 22012
| |
Collapse
|
8
|
Fu S, Zhang T, Jiang H, Xu Y, Chen J, Zhang L, Su X. DNA nanotechnology enhanced single-molecule biosensing and imaging. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Abstract
DNA computing has attracted attention as a tool for solving mathematical problems due to the potential for massive parallelism with low energy consumption. However, decoding the output information to a human-recognizable signal is generally time-consuming owing to the requirement for multiple steps of biological operations. Here, we describe simple and rapid decoding of the DNA-computed output for a directed Hamiltonian path problem (HPP) using nanopore technology. In this approach, the output DNA duplex undergoes unzipping whilst passing through an α-hemolysin nanopore, with information electrically decoded as the unzipping time of the hybridized strands. As a proof of concept, we demonstrate nanopore decoding of the HPP of a small graph encoded in DNA. Our results show the feasibility of nanopore measurement as a rapid and label-free decoding method for mathematical DNA computation using parallel self-assembly.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| | | |
Collapse
|
10
|
|
11
|
Kamiya K. Development of Artificial Cell Models Using Microfluidic Technology and Synthetic Biology. MICROMACHINES 2020; 11:E559. [PMID: 32486297 PMCID: PMC7345299 DOI: 10.3390/mi11060559] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Giant lipid vesicles or liposomes are primarily composed of phospholipids and form a lipid bilayer structurally similar to that of the cell membrane. These vesicles, like living cells, are 5-100 μm in diameter and can be easily observed using an optical microscope. As their biophysical and biochemical properties are similar to those of the cell membrane, they serve as model cell membranes for the investigation of the biophysical or biochemical properties of the lipid bilayer, as well as its dynamics and structure. Investigation of membrane protein functions and enzyme reactions has revealed the presence of soluble or membrane proteins integrated in the giant lipid vesicles. Recent developments in microfluidic technologies and synthetic biology have enabled the development of well-defined artificial cell models with complex reactions based on the giant lipid vesicles. In this review, using microfluidics, the formations of giant lipid vesicles with asymmetric lipid membranes or complex structures have been described. Subsequently, the roles of these biomaterials in the creation of artificial cell models including nanopores, ion channels, and other membrane and soluble proteins have been discussed. Finally, the complex biological functions of giant lipid vesicles reconstituted with various types of biomolecules has been communicated. These complex artificial cell models contribute to the production of minimal cells or protocells for generating valuable or rare biomolecules and communicating between living cells and artificial cell models.
Collapse
Affiliation(s)
- Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu city, Gunma 376-8515, Japan
| |
Collapse
|
12
|
Ding T, Yang J, Pan V, Zhao N, Lu Z, Ke Y, Zhang C. DNA nanotechnology assisted nanopore-based analysis. Nucleic Acids Res 2020; 48:2791-2806. [PMID: 32083656 PMCID: PMC7102975 DOI: 10.1093/nar/gkaa095] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/29/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
Nanopore technology is a promising label-free detection method. However, challenges exist for its further application in sequencing, clinical diagnostics and ultra-sensitive single molecule detection. The development of DNA nanotechnology nonetheless provides possible solutions to current obstacles hindering nanopore sensing technologies. In this review, we summarize recent relevant research contributing to efforts for developing nanopore methods associated with DNA nanotechnology. For example, DNA carriers can capture specific targets at pre-designed sites and escort them from nanopores at suitable speeds, thereby greatly enhancing capability and resolution for the detection of specific target molecules. In addition, DNA origami structures can be constructed to fulfill various design specifications and one-pot assembly reactions, thus serving as functional nanopores. Moreover, based on DNA strand displacement, nanopores can also be utilized to characterize the outputs of DNA computing and to develop programmable smart diagnostic nanodevices. In summary, DNA assembly-based nanopore research can pave the way for the realization of impactful biological detection and diagnostic platforms via single-biomolecule analysis.
Collapse
Affiliation(s)
- Taoli Ding
- Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of engineering, Peking University, Beijing 100871, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Victor Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Nan Zhao
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Zuhong Lu
- Department of Biomedical Engineering, College of engineering, Peking University, Beijing 100871, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Cheng Zhang
- Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Omersa N, Aden S, Kisovec M, Podobnik M, Anderluh G. Design of Protein Logic Gate System Operating on Lipid Membranes. ACS Synth Biol 2020; 9:316-328. [PMID: 31995709 PMCID: PMC7308068 DOI: 10.1021/acssynbio.9b00340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Lipid membranes are becoming increasingly popular in synthetic biology due to their biophysical properties and crucial role in communication between different compartments. Several alluring protein-membrane sensors have already been developed, whereas protein logic gates designs on membrane-embedded proteins are very limited. Here we demonstrate the construction of a two-level protein-membrane logic gate with an OR-AND logic. The system consists of an engineered pH-dependent pore-forming protein listeriolysin O and its DARPin-based inhibitor, conjugated to a lipid vesicle membrane. The gate responds to low pH and removal of the inhibitor from the membrane either by switching to a reducing environment, protease cleavage, or any other signal depending on the conjugation chemistry used for inhibitor attachment to the membrane. This unique protein logic gate vesicle system advances generic sensing and actuator platforms used in synthetic biology and could be utilized in drug delivery.
Collapse
Affiliation(s)
- Neža Omersa
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
- Biomedicine
Doctoral Program, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Saša Aden
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
- Biomedicine
Doctoral Program, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Matic Kisovec
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| | - Gregor Anderluh
- Department
of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
14
|
Lenhart B, Wei X, Zhang Z, Wang X, Wang Q, Liu C. Nanopore Fabrication and Application as Biosensors in Neurodegenerative Diseases. Crit Rev Biomed Eng 2020; 48:29-62. [PMID: 32749118 PMCID: PMC8020784 DOI: 10.1615/critrevbiomedeng.2020033151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Since its conception as an applied biomedical technology nearly 30 years ago, nanopore is emerging as a promising, high-throughput, biomarker-targeted diagnostic tool for clinicians. The attraction of a nanopore-based detection system is its simple, inexpensive, robust, user-friendly, high-throughput blueprint with minimal sample preparation needed prior to analysis. The goal of clinical-based nanopore biosensing is to go from sample acquisition to a meaningful readout quickly. The most extensive work in nanopore applications has been targeted at DNA, RNA, and peptide identification. Although, biosensing of pathological biomarkers, which is covered in this review, is on the rise. This review is broken into two major sections: (i) the current state of existing biological, solid state, and hybrid nanopore systems and (ii) the applications of nanopore biosensors toward detecting neurodegenerative biomarkers.
Collapse
Affiliation(s)
- Brian Lenhart
- Department of Chemical Engineering, University of South Carolina, Columbia, SC
| | - Xiaojun Wei
- Department of Chemical Engineering, University of South Carolina, Columbia, SC
- Biomedical Engineering Program, University of South Carolina, Columbia, SC
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, SC
| | - Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, SC
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC
| | - Chang Liu
- Department of Chemical Engineering, University of South Carolina, Columbia, SC
- Biomedical Engineering Program, University of South Carolina, Columbia, SC
| |
Collapse
|
15
|
Controlled deprotection and release of a small molecule from a compartmented synthetic tissue module. Commun Chem 2019. [DOI: 10.1038/s42004-019-0244-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AbstractSynthetic tissues built from communicating aqueous droplets offer potential applications in biotechnology, however, controlled release of their contents has not been achieved. Here we construct two-droplet synthetic tissue modules that function in an aqueous environment. One droplet contains a cell-free protein synthesis system and a prodrug-activating enzyme and the other a small-molecule prodrug analog. When a Zn2+-sensitive protein pore is made in the first droplet, it allows the prodrug to migrate from the second droplet and become activated by the enzyme. With Zn2+ in the external medium, the activated molecule is retained in the module until it is released on-demand by a divalent cation chelator. The module is constructed in such a manner that one or more, potentially with different properties, might be incorporated into extended synthetic tissues, including patterned materials generated by 3D-printing. Such modules will thereby increase the sophistication of synthetic tissues for applications including controlled multidrug delivery.
Collapse
|
16
|
Abstract
While significant advances have been achieved with non-living synthetic cells built from the bottom-up, less progress has been made with the fabrication of synthetic tissues built from such cells. Synthetic tissues comprise patterned three-dimensional (3D) collections of communicating compartments. They can include both biological and synthetic parts and may incorporate features that do more than merely mimic nature. 3D-printed materials based on droplet-interface bilayers are the basis of the most advanced synthetic tissues and are being developed for several applications, including the controlled release of therapeutic agents and the repair of damaged organs. Current goals include the ability to manipulate synthetic tissues by remote signaling and the formation of hybrid structures with fabricated or natural living tissues.
Collapse
|
17
|
Fabry-Wood A, Fetrow ME, Oloyede A, Yang KA, Stojanovic MN, Stefanovic D, Graves SW, Carroll NJ, Lakin MR. Microcompartments for Protection and Isolation of Nanoscale DNA Computing Elements. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11262-11269. [PMID: 30848118 DOI: 10.1021/acsami.9b03143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Physical isolation of molecular computing elements holds the potential for increasing system complexity by enabling the reuse of standardized components and by protecting the components from environmental degradation. However, once elements have been compartmentalized, methods for communicating into these compartments are needed. We report the compartmentalization of steroid-responsive DNA aptamers within giant unilamellar vesicles (GUVs) that are permeable to steroid inputs. Monodisperse GUVs are loaded with aptamers using a microfluidic platform. We demonstrate the target-specific activation of individual aptamers within the GUVs and then load two noninterfering aptamers into the same GUV and demonstrate specific responses to all possible combinations of the two input steroids. Crucially, GUVs prevent the degradation of DNA components by nucleases, providing a potential mechanism for deploying nucleic acid components in vivo. Importantly, our compartments also prevent nonspecific cross-talk between complementary strands, thereby providing a method for parallel execution of cross-reacting molecular logic components. Thus, we provide a mechanism for spatially organizing molecular computing elements, which will increase system modularity by allowing standardized components to be reused.
Collapse
|
18
|
Dupin A, Simmel FC. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat Chem 2018; 11:32-39. [PMID: 30478365 PMCID: PMC6298583 DOI: 10.1038/s41557-018-0174-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/19/2018] [Indexed: 01/18/2023]
Abstract
Multicellularity enables the growth of complex life forms as it allows for specialization of cell types, differentiation, and large scale spatial organization. In a similar way, modular construction of synthetic multicellular systems will lead to dynamic biomimetic materials that can respond to their environment in complex ways. In order to achieve this goal, artificial cellular communication and developmental programs still have to be established. Here, we create geometrically controlled spatial arrangements of emulsion-based artificial cellular compartments containing synthetic in vitro gene circuitry, separated by lipid bilayer membranes. We quantitatively determine the membrane pore-dependent response of the circuits to artificial morphogen gradients, which are established via diffusion from dedicated organizer cells. Utilizing different types of feed-forward and feedback in vitro gene circuits, we then implement artificial signaling and differentiation processes, demonstrating the potential for the realization of complex spatiotemporal dynamics in artificial multicellular systems.
Collapse
Affiliation(s)
- Aurore Dupin
- Physics Department E14 and ZNN, Technical University Munich, Garching, Germany
| | - Friedrich C Simmel
- Physics Department E14 and ZNN, Technical University Munich, Garching, Germany.
| |
Collapse
|
19
|
Kawano R. Nanopore Decoding of Oligonucleotides in DNA Computing. Biotechnol J 2018; 13:e1800091. [PMID: 30076732 DOI: 10.1002/biot.201800091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/24/2018] [Indexed: 12/17/2022]
Abstract
In conventional DNA-computation methods involving logic gate operations, the output molecules are detected and decoded mainly by gel electrophoresis or fluorescence measurements. To employ rapid and label-free decoding, nanopore technology, an emerging methodology for single-molecule detection or DNA sequencing, is proposed as a candidate for electrical and simple decoding of DNA computations. This review describes recent approaches to decoding DNA computation using label-free and electrical nanopore measurements. Several attempts have been successful in DNA decoding with the nanopore either through enzymatic reactions or in water-in-oil droplets. Additionally, DNA computing combined with nanopore decoding has clinical applications, including microRNA detection for early diagnosis of cancers. Because this decoding methodology is still in development and not yet widely accepted, this review aims to inform the scientific community regarding usefulness.
Collapse
Affiliation(s)
- Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Harumicho, Fuchu, Tokyo 183-8538, Japan
| |
Collapse
|
20
|
Hiratani M, Kawano R. DNA Logic Operation with Nanopore Decoding To Recognize MicroRNA Patterns in Small Cell Lung Cancer. Anal Chem 2018; 90:8531-8537. [DOI: 10.1021/acs.analchem.8b01586] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Moe Hiratani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
21
|
Shoji K, Kawano R. Microfluidic Formation of Double-Stacked Planar Bilayer Lipid Membranes by Controlling the Water-Oil Interface. MICROMACHINES 2018; 9:mi9050253. [PMID: 30424186 PMCID: PMC6187563 DOI: 10.3390/mi9050253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 11/24/2022]
Abstract
This study reports double-stacked planar bilayer lipid membranes (pBLMs) formed using a droplet contact method (DCM) for microfluidic formation with five-layered microchannels that have four micro guide pillars. pBLMs are valuable for analyzing membrane proteins and modeling cell membranes. Furthermore, multiple-pBLM systems have broadened the field of application such as electronic components, light-sensors, and batteries because of electrical characteristics of pBLMs and membrane proteins. Although multiple-stacked pBLMs have potential, the formation of multiple-pBLMs on a micrometer scale still faces challenges. In this study, we applied a DCM strategy to pBLM formation using microfluidic techniques and attempted to form double-stacked pBLMs in micro-meter scale. First, microchannels with micro pillars were designed via hydrodynamic simulations to form a five-layered flow with aqueous and lipid/oil solutions. Then, pBLMs were successfully formed by controlling the pumping pressure of the solutions and allowing contact between the two lipid monolayers. Finally, pore-forming proteins were reconstituted in the pBLMs, and ion current signals of nanopores were obtained as confirmed by electrical measurements, indicating that double-stacked pBLMs were successfully formed. The strategy for the double-stacked pBLM formation can be applied to highly integrated nanopore-based systems.
Collapse
Affiliation(s)
- Kan Shoji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
22
|
Booth MJ, Restrepo Schild V, Downs FG, Bayley H. Functional aqueous droplet networks. MOLECULAR BIOSYSTEMS 2018; 13:1658-1691. [PMID: 28766622 DOI: 10.1039/c7mb00192d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Droplet interface bilayers (DIBs), comprising individual lipid bilayers between pairs of aqueous droplets in an oil, are proving to be a useful tool for studying membrane proteins. Recently, attention has turned to the elaboration of networks of aqueous droplets, connected through functionalized interface bilayers, with collective properties unachievable in droplet pairs. Small 2D collections of droplets have been formed into soft biodevices, which can act as electronic components, light-sensors and batteries. A substantial breakthrough has been the development of a droplet printer, which can create patterned 3D droplet networks of hundreds to thousands of connected droplets. The 3D networks can change shape, or carry electrical signals through defined pathways, or express proteins in response to patterned illumination. We envisage using functional 3D droplet networks as autonomous synthetic tissues or coupling them with cells to repair or enhance the properties of living tissues.
Collapse
Affiliation(s)
- Michael J Booth
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | |
Collapse
|
23
|
Kawano R. Synthetic Ion Channels and DNA Logic Gates as Components of Molecular Robots. Chemphyschem 2017; 19:359-366. [PMID: 29124837 DOI: 10.1002/cphc.201700982] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 12/21/2022]
Abstract
A molecular robot is a next-generation biochemical machine that imitates the actions of microorganisms. It is made of biomaterials such as DNA, proteins, and lipids. Three prerequisites have been proposed for the construction of such a robot: sensors, intelligence, and actuators. This Minireview focuses on recent research on synthetic ion channels and DNA computing technologies, which are viewed as potential candidate components of molecular robots. Synthetic ion channels, which are embedded in artificial cell membranes (lipid bilayers), sense ambient ions or chemicals and import them. These artificial sensors are useful components for molecular robots with bodies consisting of a lipid bilayer because they enable the interface between the inside and outside of the molecular robot to function as gates. After the signal molecules arrive inside the molecular robot, they can operate DNA logic gates, which perform computations. These functions will be integrated into the intelligence and sensor sections of molecular robots. Soon, these molecular machines will be able to be assembled to operate as a mass microrobot and play an active role in environmental monitoring and in vivo diagnosis or therapy.
Collapse
Affiliation(s)
- Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| |
Collapse
|
24
|
Fabry-Wood A, Fetrow ME, Brown CW, Baker NA, Oropeza NF, Shreve AP, Montaño GA, Stefanovic D, Lakin MR, Graves SW. A Microsphere-Supported Lipid Bilayer Platform for DNA Reactions on a Fluid Surface. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30185-30195. [PMID: 28809101 PMCID: PMC6119471 DOI: 10.1021/acsami.7b11046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a versatile microsphere-supported lipid bilayer system that can serve as a general-purpose platform for implementing DNA nanotechnologies on a fluid surface. To demonstrate our platform, we implemented both toehold-mediated strand displacement (TMSD) and DNAzyme reactions, which are typically performed in solution and which are the cornerstone of DNA-based molecular logic and dynamic DNA nanotechnology, on the surface. We functionalized microspheres bearing supported lipid bilayers (μSLBs) with membrane-bound nucleic acid components. Using functionalized μSLBs, we developed TMSD and DNAzyme reactions by optimizing reaction conditions to reduce nonspecific interactions between DNA and phospholipids and to enhance bilayer stability. Additionally, the physical and optical properties of the bilayer were tuned via lipid composition and addition of fluorescently tagged lipids to create stable and multiplexable μSLBs that are easily read out by flow cytometry. Multiplexed TMSD reactions on μSLBs enabled the successful operation of a Dengue serotyping assay that correctly identified all 16 patterns of target sequences to demonstrate detection of DNA strands derived from the sequences of all four Dengue serotypes. The limit of detection for this assay was 3 nM. Furthermore, we demonstrated DNAzyme reactions on a fluid lipid surface, which benefit from free diffusion on the surface. This work provides the basis for expansion of both TMSD and DNAzyme based molecular reactions on supported lipid bilayers for use in molecular logic and DNA nanotechnology. As our system is multiplexable and results in fluid surfaces, it may be of use in compartmentalization and improved kinetics of molecular logic reactions and as a useful building block in a variety of DNA nanotechnology systems.
Collapse
Affiliation(s)
| | | | - Carl W. Brown
- Center for Biomedical Engineering, University of New Mexico
| | - Nicholas A. Baker
- Center for Biomedical Engineering, University of New Mexico
- Department of Chemical and Biological Engineering, University of New Mexico
| | | | - Andrew P. Shreve
- Center for Biomedical Engineering, University of New Mexico
- Department of Chemical and Biological Engineering, University of New Mexico
| | | | - Darko Stefanovic
- Center for Biomedical Engineering, University of New Mexico
- Department of Computer Science, University of New Mexico
| | - Matthew R. Lakin
- Center for Biomedical Engineering, University of New Mexico
- Department of Chemical and Biological Engineering, University of New Mexico
- Department of Computer Science, University of New Mexico
| | - Steven W. Graves
- Center for Biomedical Engineering, University of New Mexico
- Department of Chemical and Biological Engineering, University of New Mexico
| |
Collapse
|
25
|
Booth MJ, Restrepo Schild V, Box SJ, Bayley H. Light-patterning of synthetic tissues with single droplet resolution. Sci Rep 2017; 7:9315. [PMID: 28839174 PMCID: PMC5570938 DOI: 10.1038/s41598-017-09394-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Synthetic tissues can be generated by forming networks of aqueous droplets in lipid-containing oil. Each droplet contains a cell-free expression system and is connected to its neighbor through a lipid bilayer. In the present work, we have demonstrated precise external control of such networks by activating protein expression within single droplets, by using light-activated DNA to encode either a fluorescent or a pore-forming protein. By controlling the extent of activation, synthetic tissues were generated with graded levels of protein expression in patterns of single droplets. Further, we have demonstrated reversible activation within individual compartments in synthetic tissues by turning a fluorescent protein on-and-off. This is the first example of the high-resolution patterning of droplet networks, following their formation. Single-droplet control will be essential to power subsets of compartments within synthetic tissues or to stimulate subsets of cells when synthetic tissues are interfaced with living tissues.
Collapse
Affiliation(s)
- Michael J Booth
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK.
| | | | - Stuart J Box
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Hagan Bayley
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK.
| |
Collapse
|
26
|
Ohara M, Takinoue M, Kawano R. Nanopore Logic Operation with DNA to RNA Transcription in a Droplet System. ACS Synth Biol 2017; 6:1427-1432. [PMID: 28414903 DOI: 10.1021/acssynbio.7b00101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This paper describes an AND logic operation with amplification and transcription from DNA to RNA, using T7 RNA polymerase. All four operations, (0 0) to (1 1), with an enzyme reaction can be performed simultaneously, using four-droplet devices that are directly connected to a patch-clamp amplifier. The output RNA molecule is detected using a biological nanopore with single-molecule translocation. Channel current recordings can be obtained using the enzyme solution. The integration of DNA logic gates into electrochemical devices is necessary to obtain output information in a human-recognizable form. Our method will be useful for rapid and confined DNA computing applications, including the development of programmable diagnostic devices.
Collapse
Affiliation(s)
- Masayuki Ohara
- Department of Biotechnology
and Life Science, Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Masahiro Takinoue
- Department
of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama, Kanagawa 226-8502, Japan
| | - Ryuji Kawano
- Department of Biotechnology
and Life Science, Tokyo University of Agriculture and Technology (TUAT), 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
27
|
Yasuga H, Inoue K, Kawano R, Takinoue M, Osaki T, Kamiya K, Miki N, Takeuchi S. Serial DNA relay in DNA logic gates by electrical fusion and mechanical splitting of droplets. PLoS One 2017; 12:e0180876. [PMID: 28700641 PMCID: PMC5507272 DOI: 10.1371/journal.pone.0180876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022] Open
Abstract
DNA logic circuits utilizing DNA hybridization and/or enzymatic reactions have drawn increasing attention for their potential applications in the diagnosis and treatment of cellular diseases. The compartmentalization of such a system into a microdroplet considerably helps to precisely regulate local interactions and reactions between molecules. In this study, we introduced a relay approach for enabling the transfer of DNA from one droplet to another to implement multi-step sequential logic operations. We proposed electrical fusion and mechanical splitting of droplets to facilitate the DNA flow at the inputs, logic operation, output, and serial connection between two logic gates. We developed Negative-OR operations integrated by a serial connection of the OR gate and NOT gate incorporated in a series of droplets. The four types of input defined by the presence/absence of DNA in the input droplet pair were correctly reflected in the readout at the Negative-OR gate. The proposed approach potentially allows for serial and parallel logic operations that could be used for complex diagnostic applications.
Collapse
Affiliation(s)
- Hiroki Yasuga
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- School of Integrated Design Engineering, Keio University, Yokohama, Japan
| | - Kosuke Inoue
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- School of Integrated Design Engineering, Keio University, Yokohama, Japan
| | - Ryuji Kawano
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masahiro Takinoue
- Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Koki Kamiya
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Norihisa Miki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- School of Integrated Design Engineering, Keio University, Yokohama, Japan
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
28
|
An Automated Microfluidic System for the Generation of Droplet Interface Bilayer Networks. MICROMACHINES 2017. [PMCID: PMC6190347 DOI: 10.3390/mi8030093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Networks of droplets, in which aqueous compartments are separated by lipid bilayers, have shown great potential as a model for biological transmembrane communication. We present a microfluidic system which allows for on-demand generation of droplets that are hydrodynamically locked in a trapping structure. As a result, the system enables the formation of a network of four droplets connected via lipid bilayers and the positions of each droplet in the network can be controlled thanks to automation of microfluidic operations. We perform electrophysiological measurements of ionic currents indicating interactions between nanopores and small molecules to prove the potential of the device in screening of the inhibitors acting on membrane proteins. We also demonstrate, for the first time, a microfluidic droplet interface bilayer (DIB) system in which the testing of inhibitors can be performed without direct contact between the tested sample and the electrodes recording picoampere currents.
Collapse
|
29
|
Hiratani M, Ohara M, Kawano R. Amplification and Quantification of an Antisense Oligonucleotide from Target microRNA Using Programmable DNA and a Biological Nanopore. Anal Chem 2017; 89:2312-2317. [PMID: 28192937 DOI: 10.1021/acs.analchem.6b03830] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This paper describes a strategy for autonomous diagnoses of cancers using microRNA (miRNA) and therapy for tumor cells by DNA computing techniques and nanopore measurement. Theranostics, which involves the combination of diagnosis and therapy, has emerged as an approach for personalized medicine or point-of-care cancer diagnostics. DNA computing will become a potent tool for theranostics because it functions completely autonomously without the need for external regulations. However, conventional theranostics using DNA computing involves a one-to-one reaction in which a single input molecule generates a single output molecule; the concentration of the antisense drug is insufficient for the therapy in this type of reaction. Herein we developed an amplification system involving an isothermal reaction in which a large amount of the antisense DNA drug was autonomously generated after detecting miRNA from small cell lung cancer. In addition, we successfully quantified the amount of the generated drug molecule by nanopore measurement with high accuracy, which was more accurate than conventional gel electrophoresis. This autonomous amplification strategy is a potent candidate for a broad range of theranostics using DNA computing.
Collapse
Affiliation(s)
- Moe Hiratani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT) , 2-24-16 Naka-cho Koganei-shi, Tokyo 184-8588, Japan
| | - Masayuki Ohara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT) , 2-24-16 Naka-cho Koganei-shi, Tokyo 184-8588, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT) , 2-24-16 Naka-cho Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|