1
|
Wilke GA, Apte RS. Complement regulation in the eye: implications for age-related macular degeneration. J Clin Invest 2024; 134:e178296. [PMID: 38690727 PMCID: PMC11060743 DOI: 10.1172/jci178296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Careful regulation of the complement system is critical for enabling complement proteins to titrate immune defense while also preventing collateral tissue damage from poorly controlled inflammation. In the eye, this balance between complement activity and inhibition is crucial, as a low level of basal complement activity is necessary to support ocular immune privilege, a prerequisite for maintaining vision. Dysregulated complement activation contributes to parainflammation, a low level of inflammation triggered by cellular damage that functions to reestablish homeostasis, or outright inflammation that disrupts the visual axis. Complement dysregulation has been implicated in many ocular diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD). In the last two decades, complement activity has been the focus of intense investigation in AMD pathogenesis, leading to the development of novel therapeutics for the treatment of atrophic AMD. This Review outlines recent advances and challenges, highlighting therapeutic approaches that have advanced to clinical trials, as well as providing a general overview of the complement system in the posterior segment of the eye and selected ocular diseases.
Collapse
Affiliation(s)
- Georgia A. Wilke
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences
- Department of Medicine, and
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Rathi S, Hasan R, Ueffing M, Clark SJ. Therapeutic targeting of the complement system in ocular disease. Drug Discov Today 2023; 28:103757. [PMID: 37657753 DOI: 10.1016/j.drudis.2023.103757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The complement system is involved in the pathogenesis of several ocular diseases, providing a rationale for the investigation of complement-targeting therapeutics for these conditions. Dry age-related macular degeneration, as characterised by geographic atrophy (GA), is currently the most active area of research for complement-targeting therapeutics, with a complement C3 inhibitor approved in the United States earlier this year marking the first approved therapy for GA. This review discusses the role of complement in ocular disease, provides an overview of the complement-targeting agents currently under development for ocular conditions, and reflects on the lessons that can be learned from the preclinical investigations and clinical trials conducted in this field to date.
Collapse
Affiliation(s)
- Sonika Rathi
- Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany; University Eye Clinic, University Hospital Tübingen, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Szymańska H, Dzika E, Zabolewicz TJ, Życzko K. The Relationship between Complement Components C1R and C5 Gene Polymorphism and the Values of Blood Indices in Suckling Piglets. Genes (Basel) 2023; 14:2015. [PMID: 38002958 PMCID: PMC10671359 DOI: 10.3390/genes14112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The main mechanism of innate immunity is the complement system. Its components include the protein products of the C1R and C5 genes, which are involved in the classical activation pathway as well as the inflammatory and cytolytic immune responses, respectively. The aim of this study was to determine the relationship between PCR-restriction fragment length polymorphism in C1R (726T > C) and C5 (1044A > C) genes, and the values of hematological and biochemical blood indices in suckling crossbred (Polish Large White × Polish Landrace × Duroc × Pietrain) piglets (n = 473), considering their age (younger, 21 ± 3 days, n = 274; older, 35 ± 3 days, n = 199) and health status. The frequencies of the C5 genotypes deviated from the Hardy-Weinberg expectations. Younger piglets, healthy piglets, piglets that deviated from physiological norms and older piglets with the C1R TT genotype all had lower white and red blood cell indices. In piglets with the C5 CC genotype, younger piglets, piglets that deviated from physiological norms and older piglets, a greater number and/or percentage of monocytes were recorded in the blood. Older piglets also showed an increase in the number of leukocytes and granulocytes, along with a tendency for a decrease in the percentage of lymphocytes in their blood. We concluded that a polymorphism in the C1R gene may exhibit a functional association or genetic linkage with other genes involved in the process of erythropoiesis. Furthermore the relationship between the C5 gene polymorphism and the number and/or percentage of monocytes in the blood may modify the body's defense abilities. Piglets with the CC genotype, having an increased number/proportion of these cells in their blood, probably display a weakened immune response to pathogens or a chronic stimulation of the immune system.
Collapse
Affiliation(s)
- Hanna Szymańska
- Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Żołnierska 14C, 10-561 Olsztyn, Poland
| | - Ewa Dzika
- Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Żołnierska 14C, 10-561 Olsztyn, Poland
| | - Tadeusz Jarosław Zabolewicz
- Department of Animal Genetics, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Krystyna Życzko
- Department of Animal Genetics, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
4
|
Jenkins AJ, Grant MB, Busik JV. Lipids, hyperreflective crystalline deposits and diabetic retinopathy: potential systemic and retinal-specific effect of lipid-lowering therapies. Diabetologia 2022; 65:587-603. [PMID: 35149880 PMCID: PMC9377536 DOI: 10.1007/s00125-022-05655-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The metabolically active retina obtains essential lipids by endogenous biosynthesis and from the systemic circulation. Clinical studies provide limited and sometimes conflicting evidence as to the relationships between circulating lipid levels and the development and progression of diabetic retinopathy in people with diabetes. Cardiovascular-system-focused clinical trials that also evaluated some retinal outcomes demonstrate the potential protective power of lipid-lowering therapies in diabetic retinopathy and some trials with ocular primary endpoints are in progress. Although triacylglycerol-lowering therapies with fibrates afforded some protection against diabetic retinopathy, the effect was independent of changes in traditional blood lipid classes. While systemic LDL-cholesterol lowering with statins did not afford protection against diabetic retinopathy in most clinical trials, and none of the trials focused on retinopathy as the main outcome, data from very large database studies suggest the possible effectiveness of statins. Potential challenges in these studies are discussed, including lipid-independent effects of fibrates and statins, modified lipoproteins and retinal-specific effects of lipid-lowering drugs. Dysregulation of retinal-specific cholesterol metabolism leading to retinal cholesterol accumulation and potential formation of cholesterol crystals are also addressed.
Collapse
Affiliation(s)
- Alicia J Jenkins
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - Maria B Grant
- Department of Ophthalmology and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Chen K, Lin Y, Liu Y, Liao S, Yang R, Huang J, Xu M, He J. Investigation of Association of Complement 5 Genetic Polymorphisms with Sepsis and Sepsis-Induced Inflammatory Responses. J Inflamm Res 2021; 14:6461-6475. [PMID: 34880647 PMCID: PMC8648101 DOI: 10.2147/jir.s340446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background Complement 5 (C5) and C5a production play a pivotal role in the pathophysiology of sepsis. Strong evidence demonstrates an association of C5 gene polymorphisms with various inflammatory diseases. However, no current studies have explored the clinical relevance of C5 polymorphisms in sepsis. Methods Two C5 gene polymorphisms, rs17611 and rs2269067, were identified by genotyping in 636 sepsis patients and 753 controls in a Han Chinese population. C5 gene expression was detected via quantitative real-time PCR. C5a and proinflammatory cytokine production was measured by enzyme-linked immunosorbent assay. An Annexin V apoptosis assay was performed to assess cell apoptosis. Results Our results showed significantly lower frequencies of rs2269067 GC/CC genotypes or C allele in sepsis patients than healthy controls. The frequencies of rs17611 CC/CT genotypes or C allele were significantly overrepresented in both the septic shock and non-survivor subgroups. Patients with this sepsis-associated high-risk rs17611 C allele exhibited a significant increase in C5a, TNF-α and IL-6 production. However, no significant difference in C5a and downstream proinflammatory cytokine production was observed among patients with different rs2269067 genotypes. In addition, in vitro experiments showed an effect of recombinant C5a on enhancing LPS-stimulated IL-1β, IL-6 and TNF-α production and cell apoptosis in THP-1 monocytes. Conclusion The rs2269067 polymorphism conferred protection against sepsis susceptibility. The rs17611 polymorphism was associated with increased C5a production, which ultimately potentiated the secretion of downstream proinflammatory cytokines and conferred susceptibility to sepsis progression and poor prognosis.
Collapse
Affiliation(s)
- Kaidian Chen
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Yao Lin
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Yuchun Liu
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Shuanglin Liao
- The Intensive Care Unit, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Ruoxuan Yang
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Jiefeng Huang
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Mingwei Xu
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| | - Junbing He
- The Intensive Care Unit, Jieyang Affiliated Hospital, Sun Yat-sen University, Jieyang, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Wong YH, Wong SH, Wong XT, Yi Yap Q, Yip KY, Wong LZ, Chellappan DK, Bhattamisra SK, Candasamy M. Genetic associated complications of type 2 Diabetes Mellitus: a review. Panminerva Med 2021; 64:274-288. [PMID: 34609116 DOI: 10.23736/s0031-0808.21.04285-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
According to the International Diabetes Federation, the number of adults (age of 20-79) being diagnosed with Diabetes Mellitus (DM) have increased from 285 million in year 2009 to 463 million in year 2019 which comprises of 95% Type 2 DM patient (T2DM). Research have claimed that genetic predisposition could be one of the factors causing T2DM complications. In addition, T2DMcomplications cause an incremental risk to mortality. Therefore, this article aims to discuss some complications of T2DM in and their genetic association. The complications that are discussed in this article are diabetic nephropathy, diabetes induced cardiovascular disease, diabetic neuropathy, Diabetic Foot Ulcer (DFU) and Alzheimer's disease. According to the information obtained, genes associated with diabetic nephropathy (DN) are gene GABRR1 and ELMO1 that cause injury to glomerular. Replication of genes FRMD3, CARS and MYO16/IRS2 shown to have link with DN. The increase of gene THBS2, NGAL, PIP, TRAF6 polymorphism, ICAM-1 encoded for rs5498 polymorphism and C667T increase susceptibility towards DN in T2DM patient. Genes associated with cardiovascular diseases are Adiponectin gene (ACRP30) and Apolipoprotein E (APOE) polymorphism gene with ξ2 allele. Haptoglobin (Hp) 1-1 genotype and Mitochondria Superoxide Dismutase 2 (SOD2) plays a role in cardiovascular events. As for genes related to diabetic neuropathy, Janus Kinase (JAK), mutation of SCN9A and TRPA1 gene and destruction of miRNA contribute to pathogenesis of diabetic neuropathy among T2DM patients. Expression of cytokine IL-6, IL-10, miR-146a are found to cause diabetic neuropathy. Besides, A1a16Va1 gene polymorphism, an oxidative stress influence was found as one of the gene factors. Diabetic retinopathy (DR) is believed to have association with Monocyte Chemoattractant Protein-1 (MCP-1) and Insulin-like Growth Factor 1 (IGF1). Over-expression of gene ENPP1, IL-6 pro-inflammatory cytokine, ARHGAP22's protein rs3844492 polymorphism and TLR4 heterozygous genotype are contributing to significant pathophysiological process causing DR, while research found increases level of UCP1 gene protects retina cells from oxidative stress. Diabetic Foot Ulcer (DFU) is manifested by slowing in reepithelialisation of keratinocyte, persistence wound inflammation and healing impairment. Reepithelialisation disturbance was caused by E2F3 gene, reduction of Tacl gene encoded substance P causing persistence inflammation while expression of MMp-9 polymorphism contributes to healing impairment. A decrease in HIF-1a gene expression leads to increased risk of pathogenesis, while downregulation of TLR2 increases severity of wound in DFU patients. SNPs alleles has been shown to have significant association between the genetic dispositions of T2DM and Alzheimer's disease (AD). The progression of AD can be due to the change in DNA methylation of CLOCK gene, followed with worsening of AD by APOE4 gene due to dyslipidaemia condition in T2DM patients. Insulin resistance is also a factor that contributes to pathogenesis of AD.
Collapse
Affiliation(s)
- Yee H Wong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Shen H Wong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Xiao T Wong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Qiao Yi Yap
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Khar Y Yip
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Liang Z Wong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Subrat K Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia -
| |
Collapse
|
7
|
Henes JK, Groga-Bada P, Schaeffeler E, Winter S, Hack L, Zdanyte M, Mueller K, Droppa M, Stimpfle F, Gawaz M, Langer H, Schwab M, Geisler T, Rath D. C5 Variant rs10985126 is Associated with Mortality in Patients with Symptomatic Coronary Artery Disease. Pharmgenomics Pers Med 2021; 14:893-903. [PMID: 34321906 PMCID: PMC8312322 DOI: 10.2147/pgpm.s307827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Complement component 5a (C5a) is a highly potent anaphylatoxin with a variety of pro-inflammatory effects. C5a contributes to progression of atherosclerosis and inhibition of the receptor (C5aR) might offer a therapeutic strategy in this regard. Single nucleotide polymorphisms (SNPs) of the C5 gene may modify protein expression levels and therefore function of C5a and C5aR. This study aimed to examine associations between clinically relevant C5a SNPs and the prognosis of patients with symptomatic coronary artery disease (CAD). Furthermore, we sought to investigate the influence of C5 SNPs on C5aR platelet surface expression and circulating C5a levels. METHODS C5 variants (rs25681, rs17611, rs17216529, rs12237774, rs41258306, and rs10985126) were analyzed in a consecutive cohort of 833 patients suffering from symptomatic coronary artery disease (CAD). Circulating C5a levels were determined in 116 patients whereas C5aR platelet surface expression was measured in 473 CAD patients. Endpoints included all-cause mortality, myocardial infarction (MI), and ischemic stroke (IS). Homozygous carriers (HC) of the minor allele (rs10985126) showed significantly higher all-cause mortality than major allele carriers. While we could not find significant associations between rs10985126 allele frequency and C5aR platelet surfazl ce expression, significantly elevated levels of circulating C5a were found in HC of the minor allele of the respective genotype. rs17216529 allele frequency correlated with the composite combined endpoint and bleeding events. However, since the number of HC of the minor allele of this genotype was low, we cannot draw a robust conclusion about the observed associations. CONCLUSION In this study, we provide evidence for the prognostic relevance of rs10985126 in CAD patients. C5 rs10985126 may serve as a prognostic biomarker for risk stratification in high-risk CAD patients and consequently promote tailored therapies.
Collapse
Affiliation(s)
| | - Patrick Groga-Bada
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Luis Hack
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Monika Zdanyte
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karin Mueller
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Michal Droppa
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Fabian Stimpfle
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Harald Langer
- Department of Cardiology, Angiology and Intensive Care, University Hospital Luebeck, Luebeck, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Department of Clinical Pharmacology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Tobias Geisler
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Dominik Rath
- Department of Cardiology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Holt CB, Hoffmann-Petersen IT, Hansen TK, Parving HH, Thiel S, Hovind P, Tarnow L, Rossing P, Østergaard JA. Association between severe diabetic retinopathy and lectin pathway proteins - an 18-year follow-up study with newly diagnosed type 1 diabetes patients. Immunobiology 2020; 225:151939. [PMID: 32381273 DOI: 10.1016/j.imbio.2020.151939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/18/2022]
Affiliation(s)
- C B Holt
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Aarhus University, Aarhus, Denmark.
| | | | - T K Hansen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - H-H Parving
- Department of Medical Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - S Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - P Hovind
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - L Tarnow
- Steno Diabetes Center, Sjaelland, Denmark
| | - P Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark; University of Copenhagen, Copenhagen, Denmark
| | - J A Østergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Lang HB, Xie RX, Huang ML, Fang LY, Tang YB, Zhang F. The Effect and Mechanism of TRPC1, 3, and 6 on the Proliferation, Migration, and Lumen Formation of Retinal Vascular Endothelial Cells Induced by High Glucose. Ophthalmic Res 2020; 63:284-294. [PMID: 32097940 DOI: 10.1159/000503724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Transient receptor potential canonical (TRPC) channels are involved in neovascularization repairing after vascular injury in many tissues. However, whether TRPCs play a regulatory role in the development of diabetic retinopathy (DR) has rarely been reported. In the present study, we selected TRPC1, 3, and 6 to determine their roles and mechanism in human retina vascular endothelial cells (HREC) under high glucose (HG) conditions. METHODS HRECs were cultured in vitro under HG, hyper osmosis, and normal conditions. The expression of TRPC1, 3, and 6 in the cells at 24 and 48 h were detected by RT-polymerase chain reaction (PCR), Western blot and cell immunohistochemistry (IHC); In various concentrations, SKF96365 acted on HG cultured HRECs, the expression of vascular endothelial growth factor (VEGF) were detected by the same methods above; and the CCK-8, Transwell, cell scratch assay, and Matrigel assay were used to assess cell proliferation, migration, and lumen formation. RESULTS The RT-PCR, Western blot, and IHC results showed that TRPC1 expression was increased, and TRPC6 mRNA expression was increased under high-glucose conditions. SKF96365 acted on HG cultured HRECs that VEGF expression was significantly decreased. The CCK-8 assay, Transwell assay, cell scratch assay, and Matrigel assay showed that cell proliferation, migration, and lumen formation were downregulated by SKF96365. CONCLUSION HG can induce increased expression of TRPC1 and 6 in HRECs. Inhibition of the TRPC pathway not only can decrease VEGF expression but also can prevent proliferation, migration, and lumen formation of HRECs induced by HG. Inhibition of TRPC channels is expected to become a drug target for DR.
Collapse
Affiliation(s)
- Hai-Bo Lang
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ru-Xin Xie
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Min-Li Huang
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
| | - Li-Ying Fang
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yin-Bin Tang
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Chrzanowska M, Modrzejewska A, Modrzejewska M. New insight into the role of the complement in the most common types of retinopathy-current literature review. Int J Ophthalmol 2018; 11:1856-1864. [PMID: 30450319 DOI: 10.18240/ijo.2018.11.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/25/2018] [Indexed: 11/23/2022] Open
Abstract
Pathological neovascularisation, which is a critical component of diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and retinopathy of prematurity (ROP), is a frequent cause of compromised vision or blindness. Researchers continuously investigate the role of the complement system in the pathogenesis of retinopathy. Studies have confirmed the role of factors H and I in the development of AMD, and factors H and B in the development of DR. Other components, such as C2, C3, and C5, have also been considered. However, findings on the involvement of the complement system in the pathogenesis of ROP are still inconclusive. This paper presents a review of the current literature data, pointing to the novel results and achievements from research into the role of complement components in the development of retinopathy. There is still a need to continue research in new directions, and to gather more detailed information about this problem which will be useful in the treatment of these diseases.
Collapse
Affiliation(s)
- Martyna Chrzanowska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Anna Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| | - Monika Modrzejewska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin 70-111, Poland
| |
Collapse
|
11
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
12
|
Clark SJ, Bishop PN. The eye as a complement dysregulation hotspot. Semin Immunopathol 2017; 40:65-74. [PMID: 28948331 PMCID: PMC5794836 DOI: 10.1007/s00281-017-0649-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 08/30/2017] [Indexed: 01/23/2023]
Abstract
Complement turnover is tightly regulated throughout the human body in order to prevent over-activation and subsequent damage from inflammation. In the eye, low-level complement activation is maintained to provide immune tolerance in this immune privileged organ. Conversely, the complement system is suppressed in the cornea to protect it from continuous immunological insult. Over-activation of the complement cascade has been implicated in the disease progression of glaucoma and diabetic retinopathy and is now known to be a central driver in the pathogenesis of age-related macular degeneration (AMD). Indeed, it is with AMD where the most recent and exciting work has been carried out with complement-based therapies entering into clinical trials. However, the success of these trials will depend upon delivering the therapeutics to the correct anatomical sites within the eye, so a full understanding of how complement regulation is compartmentalized in the eye is required, a topic that will be highlighted in this review.
Collapse
Affiliation(s)
- Simon J Clark
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Paul N Bishop
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Manchester Royal Eye Hospital, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
13
|
Diabetic retinopathy and dysregulated innate immunity. Vision Res 2017; 139:39-46. [PMID: 28571700 DOI: 10.1016/j.visres.2017.04.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is the progressive degeneration of retinal blood vessels and neurons. Inflammation is known to play an important role in the pathogenesis of DR. During diabetes, metabolic disorder leads to the release of damage-associated molecular patterns (DAMPs) both in the retina and elsewhere in the body. The innate immune system provides the first line of defense against the DAMPs. In the early stages of DR when the blood retinal barrier (BRB) is intact, retinal microglia and the complement system are activated at low levels. This low-level of inflammation (para-inflammation) is believed to be essential to maintain homeostasis and restore functionality. However, prolonged stimulation by DAMPs in the diabetic eye leads to maladaptation of the innate immune system and dysregulated para-inflammation may contribute to DR development. In the advanced stages of DR where immune privilege is comprised, circulating immune cells and serum proteins may infiltrate the retina and participate in retinal chronic inflammation and retinal vascular and neuronal damage. This review discusses how the innate immune system is activated in diabetes and DR. The view also discusses why the protective immune response becomes detrimental in DR.
Collapse
|