1
|
Shi X, Chen Q, Liu S, Wang J, Peng D, Kong L. Combining targeted metabolite analyses and transcriptomics to reveal the specific chemical composition and associated genes in the incompatible soybean variety PI437654 infected with soybean cyst nematode HG1.2.3.5.7. BMC PLANT BIOLOGY 2021; 21:217. [PMID: 33990182 PMCID: PMC8120846 DOI: 10.1186/s12870-021-02998-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Soybean cyst nematode, Heterodera glycines, is one of the most devastating pathogens of soybean and causes severe annual yield losses worldwide. Different soybean varieties exhibit different responses to H. glycines infection at various levels, such as the genomic, transcriptional, proteomic and metabolomic levels. However, there have not yet been any reports of the differential responses of incompatible and compatible soybean varieties infected with H. glycines based on combined metabolomic and transcriptomic analyses. RESULTS In this study, the incompatible soybean variety PI437654 and three compatible soybean varieties, Williams 82, Zhonghuang 13 and Hefeng 47, were used to clarify the differences in metabolites and transcriptomics before and after the infection with HG1.2.3.5.7. A local metabolite-calibrated database was used to identify potentially differential metabolites, and the differences in metabolites and metabolic pathways were compared between the incompatible and compatible soybean varieties after inoculation with HG1.2.3.5.7. In total, 37 differential metabolites and 20 KEGG metabolic pathways were identified, which were divided into three categories: metabolites/pathways overlapped in the incompatible and compatible soybeans, and metabolites/pathways specific to either the incompatible or compatible soybean varieties. Twelve differential metabolites were found to be involved in predicted KEGG metabolite pathways. Moreover, 14 specific differential metabolites (such as significantly up-regulated nicotine and down-regulated D-aspartic acid) and their associated KEGG pathways (such as the tropane, piperidine and pyridine alkaloid biosynthesis, alanine, aspartate and glutamate metabolism, sphingolipid metabolism and arginine biosynthesis) were significantly altered and abundantly enriched in the incompatible soybean variety PI437654, and likely played pivotal roles in defending against HG1.2.3.5.7 infection. Three key metabolites (N-acetyltranexamic acid, nicotine and D,L-tryptophan) found to be significantly up-regulated in the incompatible soybean variety PI437654 infected by HG1.2.3.5.7 were classified into two types and used for combined analyses with the transcriptomic expression profiling. Associated genes were predicted, along with the likely corresponding biological processes, cellular components, molecular functions and pathways. CONCLUSIONS Our results not only identified potential novel metabolites and associated genes involved in the incompatible response of PI437654 to soybean cyst nematode HG1.2.3.5.7, but also provided new insights into the interactions between soybeans and soybean cyst nematodes.
Collapse
Affiliation(s)
- Xue Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiajun Wang
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Chen J, Li Z, Lin B, Liao J, Zhuo K. A Meloidogyne graminicola Pectate Lyase Is Involved in Virulence and Activation of Host Defense Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:651627. [PMID: 33868351 PMCID: PMC8044864 DOI: 10.3389/fpls.2021.651627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 05/27/2023]
Abstract
Plant-parasitic nematodes secrete an array of cell-wall-degrading enzymes to overcome the physical barrier formed by the plant cell wall. Here, we describe a novel pectate lyase gene Mg-PEL1 from M. graminicola. Quantitative real-time PCR assay showed that the highest transcriptional expression level of Mg-PEL1 occurred in pre-parasitic second-stage juveniles, and it was still detected during the early parasitic stage. Using in situ hybridization, we showed that Mg-PEL1 was expressed exclusively within the subventral esophageal gland cells of M. graminicola. The yeast signal sequence trap system revealed that it possessed an N-terminal signal peptide with secretion function. Recombinant Mg-PEL1 exhibited hydrolytic activity toward polygalacturonic acid. Rice plants expressing RNA interference vectors targeting Mg-PEL1 showed an increased resistance to M. graminicola. In addition, using an Agrobacterium-mediated transient expression system and plant immune response assays, we demonstrated that the cell wall localization of Mg-PEL1 was required for the activation of plant defense responses, including programmed plant cell death, reactive oxygen species (ROS) accumulation and expression of defense-related genes. Taken together, our results indicated that Mg-PEL1 could enhance the pathogenicity of M. graminicola and induce plant immune responses during nematode invasion into plants or migration in plants. This provides a new insight into the function of pectate lyases in plants-nematodes interaction.
Collapse
Affiliation(s)
- Jiansong Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
| | - Zhiwen Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
| | - Borong Lin
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - Kan Zhuo
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Uluisik S, Seymour GB. Pectate lyases: Their role in plants and importance in fruit ripening. Food Chem 2019; 309:125559. [PMID: 31679850 DOI: 10.1016/j.foodchem.2019.125559] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 11/25/2022]
Abstract
Plant cell walls are complex structures that are modified throughout development. They are a major contributor to the properties of plant structure and act as barriers against pathogens. The primary cell walls of plants are composed of polysaccharides and proteins. The polysaccharide fraction is divided into components cellulose, hemicelluloses and pectin, are all modified during fruit ripening. Pectin plays an important role in intercellular adhesion and controlling the porosity of the wall. A large number of pectin degrading enzymes have been characterised from plants and they are involved in numerous aspects of plant development. The role of pectate lyases in plant development has received little attention, probably because they are normally associated with the action of plant pathogenic organisms. However their importance in plant development and ripening is now becoming well established and new information about the role of pectate lyases in plant development forms the focus of this review.
Collapse
Affiliation(s)
- Selman Uluisik
- Burdur Mehmet Akif Ersoy University, Burdur Food Agriculture and Livestock Vocational School, 15030 Burdur, Turkey.
| | - Graham B Seymour
- Nottinham University, Division of Plant and Crop Sciences, University of Nottingham, Sutton Bonington, Loughborough LE12, UK.
| |
Collapse
|
4
|
Jin N, Liu SM, Peng H, Huang WK, Kong LA, Wu YH, Chen YP, Ge FY, Jian H, Peng DL. Isolation and characterization of Aspergillus niger NBC001 underlying suppression against Heterodera glycines. Sci Rep 2019; 9:591. [PMID: 30679719 PMCID: PMC6345943 DOI: 10.1038/s41598-018-37827-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/09/2018] [Indexed: 11/13/2022] Open
Abstract
Heterodera glycines is the most pervasive soybean pests worldwide. Biocontrol provides a strategy to sustainably control nematodes. In this study, 22 fungal isolates were obtained and identified from cysts of Heterodera spp. Among them, Aspergillus niger NBC001 showed high nematicidal activity against H. glycines. The 2-fold dilution of NBC001 culture filtrate caused 89% mortality of second-stage juveniles and inhibited more than 98% of egg hatching in vitro. In both pot and field experiments, the numbers of H. glycines cysts in soybean seedlings dressed with the the 5-fold concentrated culture filtrate of NBC001 were significantly reduced by 43% and 28%, respectively. In addition, application of NBC001 remarkably reduced the penetration of nematodes into the roots. Histochemical and fluorometric staining analyses indicate that application of NBC001 stimulated hydrogen peroxide activity in the roots and triggered callose deposition in the leaves and roots. Transcription of the PR1a and EREBP genes in the salicylic acid and ethylene signaling pathways was upregulated in soybean plants treated with NBC001. However, the application of concentrated culture filtrate of NBC001 had no significant impacts on the soil microbial community based on next generation DNA sequencing technology. In summary, NBC001 may be a good biocontrol agent against H. glycines via stimulation of the immunity/defense of the plant host.
Collapse
Affiliation(s)
- Na Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shi-Ming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen-Kun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling-An Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Huan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong-Pan Chen
- Key Laboratory of Plant Pathology of Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, China
| | - Feng-Yong Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Heng Jian
- Key Laboratory of Plant Pathology of Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, China
| | - De-Liang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
5
|
Wildermuth MC, Steinwand MA, McRae AG, Jaenisch J, Chandran D. Adapted Biotroph Manipulation of Plant Cell Ploidy. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:537-564. [PMID: 28617655 DOI: 10.1146/annurev-phyto-080516-035458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diverse plant biotrophs that establish a sustained site of nutrient acquisition induce localized host endoreduplication. Endoreduplication is a process by which cells successively replicate their genomes without mitosis, resulting in an increase in nuclear DNA ploidy. Elevated ploidy is associated with enhanced cell size, metabolic capacity, and the capacity to differentiate. Localized host endoreduplication induced by adapted plant biotrophs promotes biotroph colonization, development, and/or proliferation. When induced host endoreduplication is limited, biotroph growth and/or development are compromised. Herein, we examine a diverse set of plant-biotroph interactions to identify (a) common host components manipulated to promote induced host endoreduplication and (b) biotroph effectors that facilitate this induced host process. Shared mechanisms to promote host endoreduplication and development of nutrient exchange/feeding sites include manipulation centered on endocycle entry at the G2-M transition as well as yet undefined roles for differentiation regulators (e.g., CLE peptides) and pectin/cell wall modification.
Collapse
Affiliation(s)
- Mary C Wildermuth
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Michael A Steinwand
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Amanda G McRae
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Johan Jaenisch
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Divya Chandran
- Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India 121001
| |
Collapse
|
6
|
Yang Y, Ye Q, Li K, Li Z, Bo X, Li Z, Xu Y, Wang S, Wang P, Chen H, Wang J. Genomics and Comparative Genomic Analyses Provide Insight into the Taxonomy and Pathogenic Potential of Novel Emmonsia Pathogens. Front Cell Infect Microbiol 2017; 7:105. [PMID: 28409126 PMCID: PMC5374152 DOI: 10.3389/fcimb.2017.00105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/16/2017] [Indexed: 12/14/2022] Open
Abstract
Over the last 50 years, newly described species of Emmonsia-like fungi have been implicated globally as sources of systemic human mycosis (emmonsiosis). Their ability to convert into yeast-like cells capable of replication and extra-pulmonary dissemination during the course of infection differentiates them from classical Emmonsia species. Immunocompromised patients are at highest risk of emmonsiosis and exhibit high mortality rates. In order to investigate the molecular basis for pathogenicity of the newly described Emmonsia species, genomic sequencing and comparative genomic analyses of Emmonsia sp. 5z489, which was isolated from a non-deliberately immunosuppressed diabetic patient in China and represents a novel seventh isolate of Emmonsia-like fungi, was performed. The genome size of 5z489 was 35.5 Mbp in length, which is ~5 Mbp larger than other Emmonsia strains. Further, 9,188 protein genes were predicted in the 5z489 genome and 16% of the assembly was identified as repetitive elements, which is the largest abundance in Emmonsia species. Phylogenetic analyses based on whole genome data classified 5z489 and CAC-2015a, another novel isolate, as members of the genus Emmonsia. Our analyses showed that divergences among Emmonsia occurred much earlier than other genera within the family Ajellomycetaceae, suggesting relatively distant evolutionary relationships among the genus. Through comparisons of Emmonsia species, we discovered significant pathogenicity characteristics within the genus as well as putative virulence factors that may play a role in the infection and pathogenicity of the novel Emmonsia strains. Moreover, our analyses revealed a novel distribution mode of DNA methylation patterns across the genome of 5z489, with >50% of methylated bases located in intergenic regions. These methylation patterns differ considerably from other reported fungi, where most methylation occurs in repetitive loci. It is unclear if this difference is related to physiological adaptations of new Emmonsia, but this question warrants further investigation. Overall, our analyses provide a framework from which to further study the evolutionary dynamics of Emmonsia strains and identity the underlying molecular mechanisms that determine the infectious and pathogenic potency of these fungal pathogens, and also provide insight into potential targets for therapeutic intervention of emmonsiosis and further research.
Collapse
Affiliation(s)
- Ying Yang
- Academy of Military Medical SciencesBeijing, China.,Department of Biotechnology, Beijing Institute of Radiation MedicineBeijing, China.,Department of Biological Product Control, National Institutes for Food and Drug ControlBeijing, China
| | - Qiang Ye
- Department of Biological Product Control, National Institutes for Food and Drug ControlBeijing, China.,Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech ProductsBeijing, China
| | - Kang Li
- Department of Biological Product Control, National Institutes for Food and Drug ControlBeijing, China.,Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech ProductsBeijing, China
| | - Zongwei Li
- Center for Hospital Infection Control, Chinese PLA Institute for Disease Control and PreventionBeijing, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation MedicineBeijing, China
| | - Zhen Li
- Department of Biotechnology, Beijing Institute of Radiation MedicineBeijing, China
| | - Yingchun Xu
- Division of Medical Microbiology, Peking Union Medical College HospitalBeijing, China
| | - Shengqi Wang
- Department of Biotechnology, Beijing Institute of Radiation MedicineBeijing, China
| | - Peng Wang
- Division of Medical Microbiology, Peking Union Medical College HospitalBeijing, China
| | - Huipeng Chen
- Academy of Military Medical SciencesBeijing, China
| | - Junzhi Wang
- Department of Biological Product Control, National Institutes for Food and Drug ControlBeijing, China
| |
Collapse
|