1
|
Silveira F, García F, García G, Chabalgoity JA, Rossi S, Baz M. Intranasal Delivery of Quillaja brasiliensis Saponin-Based Nanoadjuvants Improve Humoral Immune Response of Influenza Vaccine in Aged Mice. Vaccines (Basel) 2024; 12:902. [PMID: 39204028 PMCID: PMC11360193 DOI: 10.3390/vaccines12080902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Increasing the effectiveness of vaccines against respiratory viruses is particularly relevant for the elderly, since they are prone to develop serious infections due to comorbidities and the senescence of the immune system. The addition of saponin-based adjuvants is an interesting strategy to increase the effectiveness of vaccines. We have previously shown that ISCOM matrices from Q. brasiliensis (IMXQB) are a safe and potent adjuvant. In this study, we evaluated the use of IMXQB as an adjuvant for the seasonal trivalent influenza vaccine (TIV) in an aged mice model. Herein, we show that subcutaneous injection of the adjuvanted vaccine promoted higher titers of IgM, IgG (and isotypes), and serum hemagglutination inhibition titers (HAI). Notably, aged mice immunized by intranasal route also produced higher IgG (and isotypes) and IgA titers up to 120 days after priming, as well as demonstrating an improvement in the HAI antibodies against the TIV. Further, experimental infected aged mice treated once with sera from adult naïve mice previously immunized with TIV-IMXQB subcutaneously successfully controlled the infection. Overall, TIV-IMXQB improved the immunogenicity compared to TIV by enhancing systemic and mucosal immunity in old mice conferring a faster recovery after the H1N1pdm09-like virus challenge. Thus, IMXQB nanoparticles may be a promising platform for next-generation viral vaccines.
Collapse
Affiliation(s)
- Fernando Silveira
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, Montevideo 16100, Uruguay; (F.G.); (G.G.)
| | - Florencia García
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, Montevideo 16100, Uruguay; (F.G.); (G.G.)
| | - Gabriel García
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, Montevideo 16100, Uruguay; (F.G.); (G.G.)
| | - José A. Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, Montevideo 16100, Uruguay; (F.G.); (G.G.)
| | - Silvina Rossi
- Departamento de Bioquímica Clínica, Instituto Polo Tecnológico, Facultad de Química, UdelaR, Ramal ‘‘José D’Elía” Ruta 101 y 8, Canelones 91000, Uruguay;
| | - Mariana Baz
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada;
| |
Collapse
|
2
|
Yang J, Kim J, Kwak C, Poo H. Poly-γ-glutamic acid/Alum adjuvanted pH1N1 vaccine-immunized aged mice exhibit a significant increase in vaccine efficacy with a decrease in age-associated CD8+ T cell proportion in splenocytes. Immun Ageing 2022; 19:22. [PMID: 35606855 PMCID: PMC9124744 DOI: 10.1186/s12979-022-00282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Background Highly contagious respiratory diseases caused by viral infections are a constantly emerging threat, particularly the elderly with the higher risk of developing serious complications. Vaccines are the best strategy for protection against influenza-related diseases. However, the elderly has lower vaccine efficacy than young population and the age-driven decline of the influenza vaccine efficacy remains unresolved. Objectives This study investigates the effect of an adjuvant, poly-γ-glutamic acid and alum (PGA/Alum) on vaccine efficacy in aged mice (18-months) and its mechanism is investigated using ovalbumin as a model antigen and a commercial pandemic H1N1 (pH1N1) flu vaccine. Antigen trafficking, dendritic cell (DC) activation, and the DC-mediated T cell activation were analyzed via in vivo imaging and flow cytometry. Antigen-specific humoral and cellular immune responses were evaluated in sera and splenocytes from the vaccinated mice. Also, we analyzed gene expression profiles of splenocytes from the vaccinated mice via single-cell transcriptome sequencing and evaluated the protective efficacy against pH1N1 virus challenge. Results Aged mice had lower antigen trafficking and DC activation than younger mice (6-weeks), which was ameliorated by PGA/Alum with increased antigen uptake and DC activation leading to improved antigen-specific IFN-γ+CD8+ T lymphocyte frequencies higher in the vaccinated aged mice, to a similar extent as PGA/Alum adjuvanted vaccine-immunized young mice. The results of single-cell transcriptome sequencing display that PGA/Alum also reduced the proportion of age-associated CD8+ T cell subsets and gene levels of inhibitory regulators in CD8+ T cells, which may play a role in the recovery of CD8+ T cell activation. Finally, PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice were completely protected (100% survival) compared to aged mice immunized with vaccine only (0% survival) after pH1N1 virus challenge, akin to the efficacy of the vaccinated young mice (100% survival). Conclusions PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice showed a significant increase in vaccine efficacy compared to aged mice administered with vaccine only. The enhanced vaccine efficacy by PGA/Alum is associated with significant increases of activation of DCs and effector CD8+ T cells and a decrease in age-associated CD8+ T cell proportion of splenocytes. Collectively, PGA/Alum adjuvanted flu vaccine may be a promising vaccine candidate for the elderly. Supplementary information The online version contains supplementary material available at 10.1186/s12979-022-00282-z.
Collapse
|
3
|
Kang X, Li Y, Zhao Y, Chen X. Overcoming Aging-Associated Poor Influenza Vaccine Responses with CpG 1018 Adjuvant. Vaccines (Basel) 2022; 10:1894. [PMID: 36366402 PMCID: PMC9695697 DOI: 10.3390/vaccines10111894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Aging is associated with diminished immune system function, which renders old people vulnerable to influenza infection and also less responsive to influenza vaccination. This study explored whether the CpG 1018 adjuvant was effective in enhancing influenza vaccine efficacy in aged mice equivalent to human beings in their late 50s to early 60s. Using the influenza pandemic 2009 H1N1 (pdm09) vaccine as a model, we found that the CpG 1018 adjuvant could significantly enhance the pdm09 vaccine-induced serum antibody titer, while the pdm09 vaccine alone failed to elicit significant antibody titer. In contrast, the pdm09 vaccine alone elicited significant antibody titer in young adult mice. Antibody subtype analysis found that the pdm09 vaccine alone elicited Th2-biased antibody responses in young adult mice, while incorporation of the CpG 1018 adjuvant promoted the elicitation of potent Th1-biased antibody responses in aged mice. The pdm09 vaccine alone was further found to induce significant expansion of Th2 cells in young adult mice, while incorporation of the CpG 1018 adjuvant stimulated significant expansion of Th1 cells in aged mice. The CpG 1018 adjuvant also stimulated vaccine-specific cytotoxic T lymphocytes in aged mice. The pdm09 vaccine in the presence of CpG 1018 elicited significant protection against lethal viral challenges, while the pdm09 vaccine alone failed to confer significant protection in young adult or aged mice. Our study provided strong evidence to support the high effectiveness of the CpG 1018 adjuvant to boost influenza vaccination in aged mouse models.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Chen
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Pharmacy Building, Room 480, Kingston, RI 02881, USA
| |
Collapse
|
4
|
Oshiumi H. Circulating Extracellular Vesicles Carry Immune Regulatory miRNAs and Regulate Vaccine Efficacy and Local Inflammatory Response After Vaccination. Front Immunol 2021; 12:685344. [PMID: 34211472 PMCID: PMC8239358 DOI: 10.3389/fimmu.2021.685344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the best prophylaxis for the prevention of infectious diseases, including coronavirus disease 2019. However, the efficacy of vaccines and onset of adverse reactions vary among individuals. Circulating extracellular vesicles (EVs) regulate the immune responses after vaccination by delivering microRNAs (miRNAs) to myeloid and lymphoid cells. Among these, miR-192 levels in serum EVs increase with aging, in an IL-6-dependent manner, reducing excessive IL-6 expression in aged mice, creating a negative feedback loop. Excessive IL-6 expression reduces vaccination efficacy in aged mice, while EV miR-192 improves efficacy in these aged mice as well, making this miRNA an interesting focus of study. miR-21 levels in serum EVs also increase with aging, and regulates the expression of IL-12 required for Th1 responses; therefore, EV miR-21 is expected to regulate vaccine efficacy. miR-451a, another important miRNA, is abundant in serum EVs and controls the expression of cytokines, such as type I interferon and IL-6. However, levels differ among individuals and correlate with local inflammatory symptoms experienced after a seasonal flu vaccination. These findings suggest the importance of EV miRNAs as a tool to improve vaccine efficacy and also as biomarkers to predict the immune response and adverse reactions after vaccinations.
Collapse
Affiliation(s)
- Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Vassilieva EV, Li S, Korniychuk H, Taylor DM, Wang S, Prausnitz MR, Compans RW. cGAMP/Saponin Adjuvant Combination Improves Protective Response to Influenza Vaccination by Microneedle Patch in an Aged Mouse Model. Front Immunol 2021; 11:583251. [PMID: 33603732 PMCID: PMC7884748 DOI: 10.3389/fimmu.2020.583251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Current strategies for improving protective response to influenza vaccines during immunosenescence do not adequately protect individuals over 65 years of age. Here, we used an aged mouse model to investigate the potential of co-delivery of influenza vaccine with the recently identified combination of a saponin adjuvant Quil-A and an activator of the STING pathway, 2’3 cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) via dissolving microneedle patches (MNPs) applied to skin. We demonstrate that synergy between the two adjuvant components is observed after their incorporation with H1N1 vaccine into MNPs as revealed by analysis of the immune responses in adult mice. Aged 21-month-old mice were found to be completely protected against live influenza challenge after vaccination with the MNPs adjuvanted with the Quil-A/cGAMP combination (5 µg each) and demonstrated significantly reduced morbidity compared to the observed responses in these mice vaccinated with unadjuvanted MNPs. Analysis of the lung lysates of the surviving aged mice post challenge revealed the lowest level of residual inflammation in the adjuvanted groups. We conclude that combining influenza vaccine with a STING pathway activator and saponin-based adjuvant in MNPs is a novel option for skin vaccination of the immunosenescent population, which is at high risk for influenza.
Collapse
Affiliation(s)
- Elena V Vassilieva
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Heorhiy Korniychuk
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Dahnide M Taylor
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Shelly Wang
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Richard W Compans
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
6
|
Boukhvalova MS, Mortensen E, Mbaye A, McKay J, Blanco JCG. Effect of aging on immunogenicity and efficacy of inactivated influenza vaccines in cotton rats Sigmodon hispidus. Hum Vaccin Immunother 2020; 17:133-145. [PMID: 32614696 PMCID: PMC7872023 DOI: 10.1080/21645515.2020.1766334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inactivated influenza vaccines are known to be less immunogenic in human elderly in regards to serologic antibody response induced by vaccination. Accumulating evidence, however, points to a comparable effectiveness of influenza vaccines in the young and the elderly individuals. In the current study, we assessed immunogenicity and effectiveness of trivalent inactivated vaccine FluLaval in young and aged cotton rats Sigmodon hispidus and found that while serologic response to immunization was indeed reduced in older animals, comparable protection against influenza infection was afforded by prime-boost vaccination in both young and aged cotton rats. Both hemagglutination inhibition (HAI) titers and seroconversion rates were lower in the aged animals compared to the young ones. Reduction of viral load in the lung and nose, however, was comparable between young and aged animals vaccinated twice. One-time immunization with FluLaval was less efficacious at protecting the nose of aged animals, indicating that boosting of preexisting immunity can be particularly important for nasal protection in the elderly. Coincidentally, a one-time immunization with FluLaval had a detrimental effect on pulmonary pathology in the young animals, suggesting that boosting of immunity is essential for the young as well. Overall, these results suggest that reduced antibody response to and sufficient efficacy of influenza vaccines in the elderly are not two irreconcilable phenomena and that incomplete immunity to influenza can be detrimental at any age.
Collapse
|
7
|
Vassilieva EV, Taylor DW, Compans RW. Combination of STING Pathway Agonist With Saponin Is an Effective Adjuvant in Immunosenescent Mice. Front Immunol 2019; 10:3006. [PMID: 31921219 PMCID: PMC6935580 DOI: 10.3389/fimmu.2019.03006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
There is an urgent need to improve protective responses to influenza vaccination in the elderly population, which is at especially high risk for adverse outcomes from influenza infection. Currently available inactivated vaccines provide limited protection, even when a 4-fold higher dose of the vaccine is administered. Adjuvants are often added to vaccines to boost protective efficacy. Here we describe a novel combination of an activator of the STING pathway, 2′,3′-cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) with a saponin adjuvant, that we found to be highly effective in boosting protective immunity from vaccination in an aged mouse model. Using this combination with a subunit influenza vaccine, we observed that survival of vaccinated 20 month-old mice after lethal challenge increased from 0 to 20% with unadjuvanted vaccine to 80–100%, depending on the vaccination route. Compared to unadjuvanted vaccine, the levels of vaccine-specific IgG and IgG2a increased by almost two orders of magnitude as early as 2 weeks after a single immunization with the adjuvanted formulation. By analyzing phosphorylation of interferon regulatory factor 3 (IRF3) in cell culture, we provide evidence that the saponin component increases access of exogenous cGAMP to the intracellular STING pathway. Our findings suggest that combining a STING activator with a saponin-based adjuvant increases the effectiveness of influenza vaccine in aged hosts, without having to increase dose or perform additional vaccinations. This study reports a novel adjuvant combination that (a) is more effective than current methods of boosting vaccine efficacy, (b) can be used to enhance efficacy of licensed influenza vaccines, and (c) results in effective protection using a single vaccine dose.
Collapse
Affiliation(s)
- Elena V Vassilieva
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Dahnide W Taylor
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Richard W Compans
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
Gestal MC, Johnson HM, Harvill ET. Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Front Immunol 2019; 10:2869. [PMID: 31921136 PMCID: PMC6923730 DOI: 10.3389/fimmu.2019.02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Well-adapted pathogens have evolved to survive the many challenges of a robust immune response. Defending against all host antimicrobials simultaneously would be exceedingly difficult, if not impossible, so many co-evolved organisms utilize immunomodulatory tools to subvert, distract, and/or evade the host immune response. Bordetella spp. present many examples of the diversity of immunomodulators and an exceptional experimental system in which to study them. Recent advances in this experimental system suggest strategies for interventions that tweak immunity to disrupt bacterial immunomodulation, engaging more effective host immunity to better prevent and treat infections. Here we review advances in the understanding of respiratory pathogens, with special focus on Bordetella spp., and prospects for the use of immune-stimulatory interventions in the prevention and treatment of infection.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Dhakal S, Klein SL. Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. J Virol 2019; 93:e00797-19. [PMID: 31391269 PMCID: PMC6803252 DOI: 10.1128/jvi.00797-19] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.
Collapse
Affiliation(s)
- Santosh Dhakal
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. J Virol 2019. [PMID: 31391269 DOI: 10.1128/jvi.00797‐19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.
Collapse
|
11
|
A Single Intramuscular Dose of a Plant-Made Virus-Like Particle Vaccine Elicits a Balanced Humoral and Cellular Response and Protects Young and Aged Mice from Influenza H1N1 Virus Challenge despite a Modest/Absent Humoral Response. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00273-17. [PMID: 29021303 DOI: 10.1128/cvi.00273-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/05/2017] [Indexed: 12/21/2022]
Abstract
Virus-like-particle (VLP) influenza vaccines can be given intramuscularly (i.m.) or intranasally (i.n.) and may have advantages over split-virion formulations in the elderly. We tested a plant-made VLP vaccine candidate bearing the viral hemagglutinin (HA) delivered either i.m. or i.n. in young and aged mice. Young adult (5- to 8-week-old) and aged (16- to 20-month-old) female BALB/c mice received a single 3-μg dose based on the HA (A/California/07/2009 H1N1) content of a plant-made H1-VLP (i.m. or i.n.) split-virion vaccine (i.m.) or were left naive. After vaccination, humoral and splenocyte responses were assessed, and some mice were challenged. Both VLP and split vaccines given i.m. protected 100% of the young animals, but the VLP group lost the least weight and had stronger humoral and cellular responses. Compared to split-vaccine recipients, aged animals vaccinated i.m. with VLP were more likely to survive challenge (80% versus 60%). The lung viral load postchallenge was lowest in the VLP i.m. groups. Mice vaccinated with VLP i.n. had little detectable immune response, but survival was significantly increased. In both age groups, i.m. administration of the H1-VLP vaccine elicited more balanced humoral and cellular responses and provided better protection from homologous challenge than the split-virion vaccine.
Collapse
|
12
|
Huang J, Hilchey SP, Wang J, Gerigan J, Zand MS. IL-15 enhances cross-reactive antibody recall responses to seasonal H3 influenza viruses in vitro. F1000Res 2017; 6:2015. [PMID: 29479423 PMCID: PMC5801566 DOI: 10.12688/f1000research.12999.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 01/26/2023] Open
Abstract
Background: Recently, several human monoclonal antibodies that target conserved epitopes on the stalk region of influenza hemagglutinin (HA) have shown broad reactivity to influenza A subtypes. Also, vaccination with recombinant chimeric HA or stem fragments from H3 influenza viruses induce broad immune protection in mice and humans. However, it is unclear whether stalk-binding antibodies can be induced in human memory B cells by seasonal H3N2 viruses. Methods: In this study, we recruited 13 donors previously exposed to H3 viruses, the majority (12 of 13) of which had been immunized with seasonal influenza vaccines. We evaluated plasma baseline strain-specific and stalk-reactive anti-HA antibodies and B cell recall responses to inactivated H3N2 A/Victoria/361/2011 virus
in vitro using a high throughput multiplex (mPlex-Flu) assay. Results: Stalk-reactive IgG was detected in the plasma of 7 of the subjects. Inactivated H3 viral particles rapidly induced clade cross-reactive antibodies in B cell cultures derived from all 13 donors. In addition, H3 stalk-reactive antibodies were detected in culture supernatants from 7 of the 13 donors (53.8%). H3 stalk-reactive antibodies were also induced by H1 and H7 subtypes. Interestingly, broadly cross-reactive antibody recall responses to H3 strains were also enhanced by stimulating B cells
in vitro with CpG
2006 ODN in the presence of IL-15. H3 stalk-reactive antibodies were detected in CpG
2006 ODN + IL-15 stimulated B cell cultures derived from 12 of the 13 donors (92.3%), with high levels detected in cultures from 7 of the 13 donors. Conclusions: Our results demonstrate that stalk-reactive antibody recall responses induced by seasonal H3 viruses and CpG
2006 ODN can be enhanced by IL-15.
Collapse
Affiliation(s)
- Junqiong Huang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi Guizhou, 563099, China
| | - Shannon P Hilchey
- Division of Nephrology, University of Rochester Medical Center, Rochester , NY, 14642, USA
| | - Jiong Wang
- Division of Nephrology, University of Rochester Medical Center, Rochester , NY, 14642, USA
| | - Jessica Gerigan
- Division of Nephrology, University of Rochester Medical Center, Rochester , NY, 14642, USA
| | - Martin S Zand
- Division of Nephrology, University of Rochester Medical Center, Rochester , NY, 14642, USA
| |
Collapse
|
13
|
Ernszt D, Banfai K, Kellermayer Z, Pap A, Lord JM, Pongracz JE, Kvell K. PPARgamma Deficiency Counteracts Thymic Senescence. Front Immunol 2017; 8:1515. [PMID: 29163553 PMCID: PMC5681731 DOI: 10.3389/fimmu.2017.01515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Thymic senescence contributes to increased incidence of infection, cancer and autoimmunity at senior ages. This process manifests as adipose involution. As with other adipose tissues, thymic adipose involution is also controlled by PPARgamma. This is supported by observations reporting that systemic PPARgamma activation accelerates thymic adipose involution. Therefore, we hypothesized that decreased PPARgamma activity could prevent thymic adipose involution, although it may trigger metabolic adverse effects. We have confirmed that both human and murine thymic sections show marked staining for PPARgamma at senior ages. We have also tested the thymic lobes of PPARgamma haplo-insufficient and null mice. Supporting our working hypothesis both adult PPARgamma haplo-insufficient and null mice show delayed thymic senescence by thymus histology, thymocyte mouse T-cell recombination excision circle qPCR and peripheral blood naive T-cell ratio by flow-cytometry. Delayed senescence showed dose-response with respect to PPARgamma deficiency. Functional immune parameters were also evaluated at senior ages in PPARgamma haplo-insufficient mice (null mice do not reach senior ages due to metabolic adverse affects). As expected, sustained and elevated T-cell production conferred oral tolerance and enhanced vaccination efficiency in senior PPARgamma haplo-insufficient, but not in senior wild-type littermates according to ELISA IgG measurements. Of note, humans also show increased oral intolerance issues and decreased protection by vaccines at senior ages. Moreover, PPARgamma haplo-insufficiency also exists in human known as a rare disease (FPLD3) causing metabolic adverse effects, similar to the mouse. When compared to age- and metabolic disorder-matched other patient samples (FPLD2 not affecting PPARgamma activity), FPLD3 patients showed increased human Trec (hTrec) values by qPCR (within healthy human range) suggesting delayed thymic senescence, in accordance with mouse results and supporting our working hypothesis. In summary, our experiments prove that systemic decrease of PPARgamma activity prevents thymic senescence, albeit with metabolic drawbacks. However, thymic tissue-specific PPARgamma antagonism would likely solve the issue.
Collapse
Affiliation(s)
- David Ernszt
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Krisztina Banfai
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Zoltan Kellermayer
- Faculty of Medicine, Department of Immunology and Biotechnology, University of Pecs, Pecs, Hungary
| | - Attila Pap
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Janet M Lord
- College of Medical and Dental Sciences, Institute of Inflammation and Aging, University of Birmingham, Birmingham, United Kingdom
| | - Judit E Pongracz
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
14
|
McDonald JU, Zhong Z, Groves HT, Tregoning JS. Inflammatory responses to influenza vaccination at the extremes of age. Immunology 2017; 151:451-463. [PMID: 28375554 DOI: 10.1111/imm.12742] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/01/2017] [Accepted: 03/27/2017] [Indexed: 12/27/2022] Open
Abstract
Age affects the immune response to vaccination, with individuals at the extremes of age responding poorly. The initial inflammatory response to antigenic materials shapes the subsequent adaptive response and so understanding is required about the effect of age on the profile of acute inflammatory mediators. In this study we measured the local and systemic inflammatory response after influenza vaccination or infection in neonatal, young adult and aged mice. Mice were immunized intramuscularly with inactivated influenza vaccine with and without the adjuvant MF59 and then challenged with H1N1 influenza. Age was the major factor affecting the inflammatory profile after vaccination: neonatal mice had more interleukin-1α (IL-1α), C-reactive protein (CRP) and granulocyte-macrophage colony-stimulating factor (GMCSF), young adults more tumour necrosis factor-α (TNF), and elderly mice more interleukin-1 receptor antagonist (IL-1RA), IL-2RA and interferon-γ-induced protein 10 (IP10). Notably the addition of MF59 induced IL-5, granulocyte colony-stimulating factor (G-CSF), Keratinocyte Chemotractant (KC) and monocyte chemoattractant protein 1 (MCP1) in all ages of animals and levels of these cytokines correlated with antibody responses. Age also had an impact on the efficacy of vaccination: neonatal and young adult mice were protected against challenge, but aged mice were not. There were striking differences in the localization of the cytokine response depending on the route of exposure: vaccination led to a high serum response whereas intranasal infection led to a low serum response but a high lung response. In conclusion, we demonstrate that age affects the inflammatory response to both influenza vaccination and infection. These age-induced differences need to be considered when developing vaccination strategies for different age groups.
Collapse
Affiliation(s)
- Jacqueline U McDonald
- Mucosal Infection and Immunity group, Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Ziyun Zhong
- Mucosal Infection and Immunity group, Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - Helen T Groves
- Mucosal Infection and Immunity group, Section of Virology, Department of Medicine, Imperial College London, London, UK
| | - John S Tregoning
- Mucosal Infection and Immunity group, Section of Virology, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|