1
|
Shi Z, Wu H. CTPredictor: A comprehensive and robust framework for predicting cell types by integrating multi-scale features from single-cell Hi-C data. Comput Biol Med 2024; 173:108336. [PMID: 38513390 DOI: 10.1016/j.compbiomed.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/01/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Single-cell Hi-C (scHi-C) has emerged as a powerful technology for deciphering cell-to-cell variability in three-dimensional (3D) chromatin organization, providing insights into genome-wide chromatin interactions and their correlation with cellular functions. Nevertheless, the accurate identification of cell types across different datasets remains a formidable challenge, hindering comprehensive investigations into genome structure. In response, we introduce CTPredictor, an innovative computational method that integrates multi-scale features to accurately predict cell types in various datasets. CTPredictor strategically incorporates three distinct feature sets, namely, small intra-domain contact probability (SICP), smoothed small intra-domain contact probability (SSICP), and smoothed bin contact probability (SBCP). The resulting fusion classification model significantly enhances the accuracy of cell type prediction based on single-cell Hi-C data (scHi-C). Rigorous benchmarking against established methods and three conventional machine learning approaches demonstrates the robust performance of CTPredictor, positioning it as an advanced tool for cell type prediction within scHi-C data. Beyond its prediction capabilities, CTPredictor holds promise in illuminating 3D genome structures and their functional significance across a wide array of biological processes.
Collapse
Affiliation(s)
- Zhenqi Shi
- School of Software, Shandong University, 250100, Jinan, China
| | - Hao Wu
- School of Software, Shandong University, 250100, Jinan, China.
| |
Collapse
|
2
|
Muhammad T, Jamal MA, Ashraf M, Zafar N, Shahzadi S, Maqbool T, Hadi F, Riaz A. Gold nanoparticles improve the embryonic developmental competency of artificially activated mouse oocytes. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:415-420. [PMID: 35529824 PMCID: PMC9010841 DOI: 10.30466/vrf.2020.119759.2829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/06/2020] [Indexed: 11/03/2022]
Abstract
Currently, artificial oocyte activation has attracted wide attention in assisted reproduction due to extensive range of applications, particularly in somatic cell nuclear transfer and deriving pluripotent stem cell lines and it is the unique model to determine the role of paternal genome. Numbers of artificial activating agents have been used extensively to induce the oocytes activation; however, embryos developmental competency of artificially activated oocytes is still very low. In the present study, we determined the functional impact of strontium chloride supplementation with gold nanoparticles (AuNPs) in artificial oocytes activation and subsequent embryonic development. Oocytes were activated artificially in the culture medium containing 250 nM AuNPs with constant concentration of strontium chloride 10.00 mM. We found that adding 250 nM AuNPs with constant concentration of strontium chloride (10.00 mM for 3 hr) in culture medium improves the proportion of embryos reaching to the morula and blastocyst stages from 61.00% and 42.00% (controls) to 75.00% and 58.00% (250 nM AuNPs), respectively. In addition, foster mothers receiving AuNPs-treated embryos showed more implantation percentage and pregnancy rate relative to females received control embryos. Finally, embryos treated with 250 nM AuNPs concentration showed no toxic effect in term of blastocyst development. Collectively, our findings suggest the potential role of AuNPs in early embryonic development for mouse oocytes activated artificially and provide new insights in the field of animal biotechnology and assisted reproduction in humans.
Collapse
Affiliation(s)
- Tahir Muhammad
- Department of Theriogenology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan; ,Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Muhammad Ameen Jamal
- Department of Theriogenology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ashraf
- Department of Theriogenology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nosheen Zafar
- Department of Physics, Faculty of Natural Sciences, University of Engineering and Technology, Lahore, Pakistan
| | - Shamaila Shahzadi
- Department of Physics, Faculty of Natural Sciences, University of Engineering and Technology, Lahore, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Faheem Hadi
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Amjad Riaz
- Department of Theriogenology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan; ,Correspondence Amjad Riaz. DVM, PhD, Department of Theriogenology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan. E-mail:
| |
Collapse
|
3
|
Chen LN, Fan XY, Liu YT, Chen SQ, Xie FY, Zeng L, Wen J, Li J, Ma JY, Ou XH, Luo SM, Guo L. High-Survival Rate After Microinjection of Mouse Oocytes and Early Embryos With mRNA by Combining a Tip Pipette and Piezoelectric-Assisted Micromanipulator. Front Cell Dev Biol 2021; 9:735971. [PMID: 34540848 PMCID: PMC8446388 DOI: 10.3389/fcell.2021.735971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Utilizing microinjection to introduce biological molecules such as DNA, mRNA, siRNA, and proteins into the cell is well established to study oocyte maturation and early embryo development in vitro. However, microinjection is an empirical technology. The cellular survival after microinjection is mainly dependent on the operator, and an experienced operator should be trained for a long time, from several months to years. Optimizing the microinjection to be highly efficient and quickly learned should be helpful for new operators and some newly established laboratories. Here, we combined the tip pipette and piezo-assisted micromanipulator to microinject the oocyte and early embryos at different stages of mouse. The results showed that the survival rate after microinjection was more than 85% for cumulus-oocyte complex, germinal vesicle oocyte, two-cell, and four-cell embryos, and close to 100% for MII oocyte and zygotes. The high-rate survival of microinjection can save many experimental samples. Thus, it should be helpful in studying some rare animal models such as aging and conditional gene knockout mice. Furthermore, our protocol is much easier to learn for new operators, who can usually master the method proficiently after several training times. Therefore, we would like to publicly share this experience, which will help some novices master microinjection skillfully and save many laboratory animals.
Collapse
Affiliation(s)
- Lei-Ning Chen
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiao-Yan Fan
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi-Tong Liu
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shao-Qing Chen
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Feng-Yun Xie
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Li Zeng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Juan Wen
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jin Li
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jun-Yu Ma
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shi-Ming Luo
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei Guo
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
4
|
McCourt JL, Talsness DM, Lindsay A, Arpke RW, Chatterton PD, Nelson DM, Chamberlain CM, Olthoff JT, Belanto JJ, McCourt PM, Kyba M, Lowe DA, Ervasti JM. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy. Hum Mol Genet 2019; 27:451-462. [PMID: 29194514 DOI: 10.1093/hmg/ddx414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/17/2017] [Indexed: 01/03/2023] Open
Abstract
Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo.
Collapse
Affiliation(s)
| | - Dana M Talsness
- Department of Biochemistry, Molecular Biology and Biophysics
| | | | - Robert W Arpke
- Department of Pediatrics University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | | | - D'anna M Nelson
- Department of Biochemistry, Molecular Biology and Biophysics
| | | | - John T Olthoff
- Department of Biochemistry, Molecular Biology and Biophysics
| | | | | | - Michael Kyba
- Department of Pediatrics University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Dawn A Lowe
- Department of Physical Medicine and Rehabilitation
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics
| |
Collapse
|
5
|
Shi LY, Ma Y, Zhu GY, Liu JW, Zhou CX, Chen LJ, Wang Y, Li RC, Yang ZX, Zhang D. Placenta‐specific 1 regulates oocyte meiosis and fertilization through furin. FASEB J 2018; 32:5483-5494. [DOI: 10.1096/fj.201700922rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Li-Ya Shi
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yang Ma
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Gang-Yi Zhu
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Jin-Wei Liu
- Department of GynecologyZhejiang Provincial People's HospitalHangzhouChina
| | - Chun-Xiang Zhou
- Prenatal Diagnosis Center of Jiangsu ProvinceAffiliated Drum Tower Hospital, Nanjing University Medical SchoolNanjingChina
| | - Liang-Jian Chen
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yang Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | | | - Zhi-Xia Yang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Dong Zhang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|