1
|
State of the Art of the Molecular Biology of the Interaction between Cocoa and Witches’ Broom Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065684. [PMID: 36982760 PMCID: PMC10057015 DOI: 10.3390/ijms24065684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 03/19/2023] Open
Abstract
Significant scientific advances to elucidate the Moniliophthora perniciosa pathosystem have been achieved in recent years, but the molecular biology of this pathogen-host interaction is still a field with many unanswered questions. In order to present insights at the molecular level, we present the first systematic review on the theme. All told, 1118 studies were extracted from public databases. Of these, 109 were eligible for the review, based on the inclusion and exclusion criteria. The results indicated that understanding the transition from the biotrophic-necrotrophic phase of the fungus is crucial for control of the disease. Proteins with strong biotechnological potential or that can be targets for pathosystem intervention were identified, but studies regarding possible applications are still limited. The studies identified revealed important genes in the M. perniciosa-host interaction and efficient molecular markers in the search for genetic variability and sources of resistance, with Theobroma cacao being the most common host. An arsenal of effectors already identified and not explored in the pathosystem were highlighted. This systematic review contributes to the understanding of the pathosystem at the molecular level, offering new insights and proposing different paths for the development of new strategies to control witches’ broom disease.
Collapse
|
2
|
Santana Silva RJ, Alves RM, Peres Gramacho K, Marcellino LH, Micheli F. Involvement of structurally distinct cupuassu chitinases and osmotin in plant resistance to the fungus Moniliophthora perniciosa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:142-151. [PMID: 31958681 DOI: 10.1016/j.plaphy.2020.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 05/18/2023]
Abstract
The cupuassu tree (Theobroma grandiflorum) is a crop of great economic importance to Brazil, mainly for its pulp and seeds, which are used in food industry. However, cupuassu fruit production is threatened by witches' broom disease caused by the fungus Moniliophthora perniciosa. As elements of its defense mechanisms, the plant can produce and accumulate pathogenesis-related (PR) proteins such as chitinases and osmotins. Here, we identified three cupuassu PR proteins (TgPR3, TgPR5 and TgPR8) from cupuassu-M. perniciosa interaction RNA-seq data. TgPR3 and TgPR8 corresponded to chitinases, and TgPR5 to osmotin; they are phylogenetically related to cacao and to Arabidopsis PR sequences involved in biotic and abiotic stress. The TgPR proteins' tridimensional structure was obtained through homology modeling, and molecular docking with chitin and chitosan showed that the TgPR proteins can interact with both cell wall molecules and presented a higher affinity for chitosan. TgPR gene expression was analyzed by RT-qPCR on resistant and susceptible cupuassu genotypes infected by M. perniciosa at 8, 24, 48 and 72 h after infection (hai). The TgPR genes showed higher expression in resistant plants compared to the susceptible ones, mainly for TgPR5 at 8 and 24 hai, while the expression was lower in the susceptible cupuassu plants. To our knowledge, this is the first in silico and in vitro reports of cupuassu PR protein. The data suggested that TgPRs could be involved in recognizing mechanisms of the plant's innate immune system through chitin receptors. Our results also suggest a putative role of chitinase/chitosanase for the TgPR5/osmotin.
Collapse
Affiliation(s)
- Raner José Santana Silva
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Rafael Moyses Alves
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Amazônia Oriental, 66095-903, Belém, PA, Brazil
| | | | - Lucilia Helena Marcellino
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662-900, Ilhéus, BA, Brazil; CIRAD, UMR AGAP, F-34398, Montpellier, France.
| |
Collapse
|
3
|
Cross-species transferability of EST-SSR markers developed from the transcriptome of Melilotus and their application to population genetics research. Sci Rep 2017; 7:17959. [PMID: 29263338 PMCID: PMC5738344 DOI: 10.1038/s41598-017-18049-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022] Open
Abstract
Melilotus is one of the most important legume forages, but the lack of molecular markers has limited the development and utilization of Melilotus germplasm resources. In the present study, 151 M clean reads were generated from various genotypes of Melilotus albus using Illumina sequencing. A total of 19,263 potential EST-SSRs were identified from 104,358 unigene sequences. Moreover, 18,182 primer pairs were successfully designed, and 550 primer pairs were selected using criteria of base repeat type, fragment length and annealing temperature. In addition, 550 primer pairs were screened by using PCR amplification products and used to assess polymorphisms in 15 M. albus accessions. A total of 114 primer pairs were detected as being highly polymorphic, and the average polymorphism information content (PIC) value was 0.79. Furthermore, those 114 polymorphic primer pairs were used to evaluate the transferability to 18 species of the genus Melilotus, and 70 EST-SSR markers were found to be transferable among the 18 Melilotus species. According to the UPGMA dendrogram and STRUCTURE analysis, the 18 Melilotus species were classified into three clusters. This study offers a valuable resource for the genetic diversity and molecular assisted breeding of germplasm resources in the genus Melilotus.
Collapse
|
4
|
Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae). PLoS One 2017; 12:e0170799. [PMID: 28187131 PMCID: PMC5302445 DOI: 10.1371/journal.pone.0170799] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022] Open
Abstract
The genus Theobroma comprises several trees species native to the Amazon. Theobroma cacao L. plays a key economic role mainly in the chocolate industry. Both cultivated and wild forms are described within the genus. Variations in genome size and chromosome number have been used for prediction purposes including the frequency of interspecific hybridization or inference about evolutionary relationships. In this study, the nuclear DNA content, karyotype and genetic diversity using functional microsatellites (EST-SSR) of seven Theobroma species were characterized. The nuclear content of DNA for all analyzed Theobroma species was 1C = ~ 0.46 pg. These species presented 2n = 20 with small chromosomes and only one pair of terminal heterochromatic bands positively stained (CMA+/DAPI− bands). The small size of Theobroma ssp. genomes was equivalent to other Byttnerioideae species, suggesting that the basal lineage of Malvaceae have smaller genomes and that there was an expansion of 2C values in the more specialized family clades. A set of 20 EST-SSR primers were characterized for related species of Theobroma, in which 12 loci were polymorphic. The polymorphism information content (PIC) ranged from 0.23 to 0.65, indicating a high level of information per locus. Combined results of flow cytometry, cytogenetic data and EST-SSRs markers will contribute to better describe the species and infer about the evolutionary relationships among Theobroma species. In addition, the importance of a core collection for conservation purposes is highlighted.
Collapse
|
5
|
Ferraz dos Santos L, Santana Silva RJ, Oliveira Jordão do Amaral D, Barbosa de Paula MF, Ludke Falcão L, Legavre T, Alves RM, Marcellino LH, Micheli F. Selection of Reference Genes for Expression Study in Pulp and Seeds of Theobroma grandiflorum (Willd. ex Spreng.) Schum. PLoS One 2016; 11:e0160646. [PMID: 27501324 PMCID: PMC4976894 DOI: 10.1371/journal.pone.0160646] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/23/2016] [Indexed: 01/18/2023] Open
Abstract
Cupuassu (Theobroma grandiflorum [Willd. ex Spreng.] Schum) is a species of high economic importance in Brazil with great potential at international level due to the multiple uses of both its seeds and pulp in the industry of sweets and cosmetics. For this reason, the cupuassu breeding program focused on the selection of genotypes with high pulp and seed quality—selection associated with the understanding of the mechanisms involved in fruit formation. Gene expression is one of the most used approaches related to such understanding. In this sense, quantitative real-time PCR (qPCR) is a powerful tool, since it rapidly and reliably quantifies gene expression levels across different experimental conditions. The analysis by qPCR and the correct interpretation of data depend on signal normalization using reference genes, i.e. genes presenting a uniform pattern of expression in the analyzed samples. Here, we selected and analyzed the expression of five genes from cupuassu (ACP, ACT, GAPDH, MDH, TUB) to be used as candidates for reference genes on pulp and seed of young, maturing and mature cupuassu fruits. The evaluation of the gene expression stability was obtained using the NormFinder, geNorm and BestKeeper programs. In general, our results indicated that the GAPDH and MDH genes constituted the best combination as reference genes to analyze the expression of cupuassu samples. To our knowledge, this is the first report of reference gene definition in cupuassu, and these results will support subsequent analysis related to gene expression studies in cupuassu plants subjected to different biotic or abiotic conditions as well as serve as a tool for diversity analysis based on pulp and seed quality.
Collapse
Affiliation(s)
- Lucas Ferraz dos Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus-BA, Brazil
| | - Raner José Santana Silva
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus-BA, Brazil
| | - Daniel Oliveira Jordão do Amaral
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus-BA, Brazil
| | - Márcia Fabiana Barbosa de Paula
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus-BA, Brazil
| | - Loeni Ludke Falcão
- Embrapa Recursos Genéticos e Biotecnologia, Brasília-DF, 70770-917, Brazil
| | | | | | | | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus-BA, Brazil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- * E-mail:
| |
Collapse
|