1
|
Wang YC, Fu HM, Shen Y, Wang J, Wang N, Chen YP, Yan P. Biosynthetic potential of uncultured anammox community bacteria revealed through multi-omics analysis. BIORESOURCE TECHNOLOGY 2024; 401:130740. [PMID: 38677385 DOI: 10.1016/j.biortech.2024.130740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Microbial secondary metabolites (SMs) and their derivatives have been widely used in medicine, agriculture, and energy. Growing needs for renewable energy and the challenges posed by antibiotic resistance, cancer, and pesticides emphasize the crucial hunt for new SMs. Anaerobic ammonium-oxidation (anammox) systems harbor many uncultured or underexplored bacteria, representing potential resources for discovering novel SMs. Leveraging HiFi long-read metagenomic sequencing, 1,040 biosynthetic gene clusters (BGCs) were unearthed from the anammox microbiome with 58% being complete and showcasing rich diversity. Most of them showed distant relations to known BGCs, implying novelty. Members of the underexplored lineages (Chloroflexota and Planctomycetota) and Proteobacteria contained lots of BGCs, showcasing substantial biosynthetic potential. Metaproteomic results indicated that Planctomycetota members harbored the most active BGCs, particularly those involved in producing potential biofuel-ladderane. Overall, these findings underscore that anammox microbiomes could serve as valuable resources for mining novel BGCs and discovering new SMs for practical application.
Collapse
Affiliation(s)
- Yi-Cheng Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Hui-Min Fu
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Nuo Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
2
|
Sun J, Feng Y, Zheng R, Kong L, Wu X, Zhang K, Zhou J, Liu S. Chameleon-like Anammox Bacteria for Surface Color Change after Suffering Starvation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15087-15098. [PMID: 37754765 DOI: 10.1021/acs.est.3c04000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Bacteria are often exposed to long-term starvation during transportation and storage, during which a series of enzymes and metabolic pathways are activated to ensure survival. However, why the surface color of the bacteria changes during starvation is still not well-known. In this study, we found black anammox consortia suffering from long-term starvation contained 0.86 mmol gVSS-1 cytochrome c, which had no significant discrepancy compared with the red anammox consortia (P > 0.05), indicating cytochrome c was not the key issue for chromaticity change. Conversely, we found that under starvation conditions cysteine degradation is an important metabolic pathway for the blackening of the anammox consortia for H2S production. In particular, anammox bacteria contain large amounts of iron-rich nanoparticles, cytochrome c, and other iron-sulfur clusters that are converted to produce free iron. H2S combines with free iron in bacteria to form Fe-S compounds, which eventually exist stably as FeS2, mainly in the extracellular space. Interestingly, FeS2 could be oxidized by air aeration, which makes the consortia turn red again. The unique self-protection mechanism makes the whole consortia appear black, avoiding inhibition by high concentrations of H2S and achieving Fe storage. This study expands the understanding of the metabolites of anammox bacteria as well as the bacterial survival mechanism during starvation.
Collapse
Affiliation(s)
- Jingqi Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| |
Collapse
|
3
|
Dietl A, Wellach K, Mahadevan P, Mertes N, Winter S, Kutsch T, Walz C, Schlichting I, Fabritz S, Barends TM. Structures of an unusual 3-hydroxyacyl dehydratase (FabZ) from a ladderane-producing organism with an unexpected substrate preference. J Biol Chem 2023; 299:104602. [PMID: 36907440 PMCID: PMC10139942 DOI: 10.1016/j.jbc.2023.104602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The genomes of anaerobic ammonium-oxidizing (anammox) bacteria contain a gene cluster comprising genes of unusual fatty acid biosynthesis enzymes that were suggested to be involved in the synthesis of the unique "ladderane" lipids produced by these organisms. This cluster encodes an acyl carrier protein (denoted as "amxACP") and a variant of FabZ, an ACP-3-hydroxyacyl dehydratase. In this study, we characterize this enzyme, which we call anammox-specific FabZ ("amxFabZ"), to investigate the unresolved biosynthetic pathway of ladderane lipids. We find that amxFabZ displays distinct sequence differences to "canonical" FabZ, such as a bulky, apolar residue on the inside of the substrate binding tunnel, where the canonical enzyme has a glycine. Additionally, substrate screens suggest that amxFabZ efficiently converts substrates with acyl chain lengths of up to eight carbons, whereas longer substrates are converted much more slowly under the conditions used. We also present crystal structures of amxFabZs, mutational studies and the structure of a complex between amxFabZ and amxACP, which show that the structures alone cannot explain the apparent differences from canonical FabZ. Moreover, we find that while amxFabZ does dehydrate substrates bound to amxACP, it does not convert substrates bound to canonical ACP of the same anammox organism. We discuss the possible functional relevance of these observations in the light of proposals for the mechanism for ladderane biosynthesis.
Collapse
Affiliation(s)
- Andreas Dietl
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany.
| | - Kathrin Wellach
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Pavithra Mahadevan
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Nicole Mertes
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - SophieL Winter
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Tobias Kutsch
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Carlo Walz
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Sebastian Fabritz
- Mass Spectrometry Core Facility, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - ThomasR M Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Uegaki T, Takei T, Yamaguchi S, Fujiyama K, Sato Y, Hino T, Nagano S. Anammox Bacterial S-Adenosyl-l-Methionine Dependent Methyltransferase Crystal Structure and Its Interaction with Acyl Carrier Proteins. Int J Mol Sci 2023; 24:ijms24010744. [PMID: 36614187 PMCID: PMC9821293 DOI: 10.3390/ijms24010744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Ladderane lipids (found in the membranes of anaerobic ammonium-oxidizing [anammox] bacteria) have unique ladder-like hydrophobic groups, and their highly strained exotic structure has attracted the attention of scientists. Although enzymes encoded in type II fatty acid biosynthesis (FASII) gene clusters in anammox bacteria, such as S-adenosyl-l-methionine (SAM)-dependent enzymes, have been proposed to construct a ladder-like structure using a substrate connected to acyl carrier protein from anammox bacteria (AmxACP), no experimental evidence to support this hypothesis was reported to date. Here, we report the crystal structure of a SAM-dependent methyltransferase from anammox bacteria (AmxMT1) that has a substrate and active site pocket between a class I SAM methyltransferase-like core domain and an additional α-helix inserted into the core domain. Structural comparisons with homologous SAM-dependent C-methyltransferases in polyketide synthase, AmxACP pull-down assays, AmxACP/AmxMT1 complex structure predictions by AlphaFold, and a substrate docking simulation suggested that a small compound connected to AmxACP could be inserted into the pocket of AmxMT1, and then the enzyme transfers a methyl group from SAM to the substrate to produce branched lipids. Although the enzymes responsible for constructing the ladder-like structure remain unknown, our study, for the first time, supports the hypothesis that biosynthetic intermediates connected to AmxACP are processed by SAM-dependent enzymes, which are not typically involved in the FASII system, to produce the ladder-like structure of ladderane lipids in anammox bacteria.
Collapse
Affiliation(s)
- Tesshin Uegaki
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Taisei Takei
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Shuhei Yamaguchi
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Keisuke Fujiyama
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Tomoya Hino
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Shingo Nagano
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- Correspondence:
| |
Collapse
|
5
|
Kouba V, Hůrková K, Navrátilová K, Kok D, Benáková A, Laureni M, Vodičková P, Podzimek T, Lipovová P, van Niftrik L, Hajšlová J, van Loosdrecht MCM, Weissbrodt DG, Bartáček J. Effect of temperature on the compositions of ladderane lipids in globally surveyed anammox populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154715. [PMID: 35337864 PMCID: PMC7612979 DOI: 10.1016/j.scitotenv.2022.154715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The adaptation of bacteria involved in anaerobic ammonium oxidation (anammox) to low temperatures will enable more efficient removal of nitrogen from sewage across seasons. At lower temperatures, bacteria typically tune the synthesis of their membrane lipids to promote membrane fluidity. However, such adaptation of anammox bacteria lipids, including unique ladderane phospholipids and especially shorter ladderanes with absent phosphatidyl headgroup, is yet to be described in detail. We investigated the membrane lipids composition (UPLC-HRMS/MS) and dominant anammox populations (16S rRNA gene amplicon sequencing, Fluorescence in situ hybridization) in 14 anammox enrichments cultivated at 10-37 °C. "Candidatus Brocadia" appeared to be the dominant organism in all but two laboratory enrichments of "Ca. Scalindua" and "Ca. Kuenenia". At lower temperatures, the membranes of all anammox populations were composed of shorter [5]-ladderane ester (reduced chain length demonstrated by decreased fraction of C20/(C18 + C20)). This confirmed the previous preliminary evidence on the prominent role of this ladderane fatty acid in low-temperature adaptation. "Ca. Scalindua" and "Ca. Kuenenia" had distinct profile of ladderane lipids compared to "Ca. Brocadia" biomasses with potential implications for adaptability to low temperatures. "Ca. Brocadia" membranes contained a much lower amount of C18 [5]-ladderane esters than reported in the literature for "Ca. Scalindua" at similar temperature and measured here, suggesting that this could be one of the reasons for the dominance of "Ca. Scalindua" in cold marine environments. Furthermore, we propose additional and yet unreported mechanisms for low-temperature adaptation of anammox bacteria, one of which involves ladderanes with absent phosphatidyl headgroup. In sum, we deepen the understanding of cold anammox physiology by providing for the first time a consistent comparison of anammox-based communities across multiple environments.
Collapse
Affiliation(s)
- Vojtěch Kouba
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia.
| | - Kamila Hůrková
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technická 5, 166 28 Prague, Czechia
| | - Klára Navrátilová
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technická 5, 166 28 Prague, Czechia
| | - Dana Kok
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia
| | - Andrea Benáková
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia
| | - Michele Laureni
- TU Delft, Department of Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; TU Delft, Department of Water Management, Building 23, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - Patricie Vodičková
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia; University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology, Technická 5, 166 28 Prague, Czechia
| | - Tomáš Podzimek
- University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology, Technická 5, 166 28 Prague, Czechia
| | - Petra Lipovová
- University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology, Technická 5, 166 28 Prague, Czechia
| | - Laura van Niftrik
- Radboud University, Department of Microbiology, Institute for Water and Wetland Research, 1Heyendaalseweg 135, 6525 ED AJ Nijmegen, the Netherlands
| | - Jana Hajšlová
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technická 5, 166 28 Prague, Czechia
| | - Mark C M van Loosdrecht
- TU Delft, Department of Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - David Gregory Weissbrodt
- TU Delft, Department of Biotechnology, Building 58, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Jan Bartáček
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28 Prague, Czechia
| |
Collapse
|
6
|
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E. Microbial production of advanced biofuels. Nat Rev Microbiol 2021; 19:701-715. [PMID: 34172951 DOI: 10.1038/s41579-021-00577-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Concerns over climate change have necessitated a rethinking of our transportation infrastructure. One possible alternative to carbon-polluting fossil fuels is biofuels produced by engineered microorganisms that use a renewable carbon source. Two biofuels, ethanol and biodiesel, have made inroads in displacing petroleum-based fuels, but their uptake has been limited by the amounts that can be used in conventional engines and by their cost. Advanced biofuels that mimic petroleum-based fuels are not limited by the amounts that can be used in existing transportation infrastructure but have had limited uptake due to costs. In this Review, we discuss engineering metabolic pathways to produce advanced biofuels, challenges with substrate and product toxicity with regard to host microorganisms and methods to engineer tolerance, and the use of functional genomics and machine learning approaches to produce advanced biofuels and prospects for reducing their costs.
Collapse
Affiliation(s)
- Jay Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA. .,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Center for Biosustainability, Danish Technical University, Lyngby, Denmark. .,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Hector Garcia Martin
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,DOE Agile BioFoundry, Emeryville, CA, USA.,BCAM,Basque Center for Applied Mathematics, Bilbao, Spain.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Sundstrom
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA
| |
Collapse
|
7
|
Kang D, Shoaie S, Jacquiod S, Sørensen SJ, Ledesma-Amaro R. Comparative Genomics Analysis of Keratin-Degrading Chryseobacterium Species Reveals Their Keratinolytic Potential for Secondary Metabolite Production. Microorganisms 2021; 9:microorganisms9051042. [PMID: 34066089 PMCID: PMC8151938 DOI: 10.3390/microorganisms9051042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 01/07/2023] Open
Abstract
A promising keratin-degrading strain from the genus Chryseobacterium (Chryseobacterium sp. KMC2) was investigated using comparative genomic tools against three publicly available reference genomes to reveal the keratinolytic potential for biosynthesis of valuable secondary metabolites. Genomic features and metabolic potential of four species were compared, showing genomic differences but similar functional categories. Eleven different secondary metabolite gene clusters of interest were mined from the four genomes successfully, including five common ones shared across all genomes. Among the common metabolites, we identified gene clusters involved in biosynthesis of flexirubin-type pigment, microviridin, and siderophore, showing remarkable conservation across the four genomes. Unique secondary metabolite gene clusters were also discovered, for example, ladderane from Chryseobacterium sp. KMC2. Additionally, this study provides a more comprehensive understanding of the potential metabolic pathways of keratin utilization in Chryseobacterium sp. KMC2, with the involvement of amino acid metabolism, TCA cycle, glycolysis/gluconeogenesis, propanoate metabolism, and sulfate reduction. This work uncovers the biosynthesis of secondary metabolite gene clusters from four keratinolytic Chryseobacterium species and shades lights on the keratinolytic potential of Chryseobacterium sp. KMC2 from a genome-mining perspective, can provide alternatives to valorize keratinous materials into high-value bioactive natural products.
Collapse
Affiliation(s)
- Dingrong Kang
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark;
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Lodon SE1 9RT, UK;
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Correspondence: (D.K.); (R.L-A.)
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Lodon SE1 9RT, UK;
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 114 17 Stockholm, Sweden
| | - Samuel Jacquiod
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, F-21000 Dijon, France;
| | - Søren J. Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Correspondence: (D.K.); (R.L-A.)
| |
Collapse
|
8
|
Abstract
The ladderane family of natural products are well known for their linearly concatenated cyclobutane skeletal structure. Owing to their unique carbocyclic framework, several chemical syntheses have been reported since their discovery in 2002. The focus of this review is to showcase the novel tactics that have been used to generate the ladderane core and the challenges that are associated with the synthesis of these unusual and complex natural products.
Collapse
Affiliation(s)
- Erin N Hancock
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| |
Collapse
|
9
|
Chen SS, Tantillo DJ. Potential for Ladderane (Bio)synthesis from Oligo-Cyclopropane Precursors. ACS OMEGA 2020; 5:26134-26140. [PMID: 33073141 PMCID: PMC7558033 DOI: 10.1021/acsomega.0c03735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Quantum chemical calculations were used to determine the energetic viability of several mechanisms for formation of ladderanes from oligocyclopropanes. Pathways involving radical cations, diradicals, and carbocations were considered, and a hybrid of carbocation and radical cation pathways was predicted to have the lowest overall barrier.
Collapse
|
10
|
Sharrar AM, Crits-Christoph A, Méheust R, Diamond S, Starr EP, Banfield JF. Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type. mBio 2020; 11:e00416-20. [PMID: 32546614 PMCID: PMC7298704 DOI: 10.1128/mbio.00416-20] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/08/2020] [Indexed: 01/12/2023] Open
Abstract
Bacteria isolated from soils are major sources of specialized metabolites, including antibiotics and other compounds with clinical value that likely shape interactions among microbial community members and impact biogeochemical cycles. Yet, isolated lineages represent a small fraction of all soil bacterial diversity. It remains unclear how the production of specialized metabolites varies across the phylogenetic diversity of bacterial species in soils and whether the genetic potential for production of these metabolites differs with soil depth and vegetation type within a geographic region. We sampled soils and saprolite from three sites in a northern California Critical Zone Observatory with various vegetation and bedrock characteristics and reconstructed 1,334 metagenome-assembled genomes containing diverse biosynthetic gene clusters (BGCs) for secondary metabolite production. We obtained genomes for prolific producers of secondary metabolites, including novel groups within the Actinobacteria, Chloroflexi, and candidate phylum "Candidatus Dormibacteraeota." Surprisingly, one genome of a candidate phyla radiation (CPR) bacterium coded for a ribosomally synthesized linear azole/azoline-containing peptide, a capacity we found in other publicly available CPR bacterial genomes. Overall, bacteria with higher biosynthetic potential were enriched in shallow soils and grassland soils, with patterns of abundance of BGC type varying by taxonomy.IMPORTANCE Microbes produce specialized compounds to compete or communicate with one another and their environment. Some of these compounds, such as antibiotics, are also useful in medicine and biotechnology. Historically, most antibiotics have come from soil bacteria which can be isolated and grown in the lab. Though the vast majority of soil bacteria cannot be isolated, we can extract their genetic information and search it for genes which produce these specialized compounds. These understudied soil bacteria offer a wealth of potential for the discovery of new and important microbial products. Here, we identified the ability to produce these specialized compounds in diverse and novel bacteria in a range of soil environments. This information will be useful to other researchers who wish to isolate certain products. Beyond their use to humans, understanding the distribution and function of microbial products is key to understanding microbial communities and their effects on biogeochemical cycles.
Collapse
Affiliation(s)
- Allison M Sharrar
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
| | - Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, Berkeley, California, USA
| | - Spencer Diamond
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
| | - Evan P Starr
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, Berkeley, California, USA
| |
Collapse
|
11
|
Momeni SS, Beno SM, Baker JL, Edlund A, Ghazal T, Childers NK, Wu H. Caries-Associated Biosynthetic Gene Clusters in Streptococcus mutans. J Dent Res 2020; 99:969-976. [PMID: 32298190 DOI: 10.1177/0022034520914519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Early childhood caries (ECC) is a chronic disease affecting the oral health of children globally. This disease is multifactorial, but a primary factor is cariogenic microorganisms such as Streptococcus mutans. Biosynthetic gene clusters (BGCs) encode small molecules with diverse biological activities that influence the development of many microbial diseases, including caries. The purpose of this study was to identify BGCs in S. mutans from a high-caries risk study population using whole-genome sequencing and assess their association with ECC. Forty representative S. mutans isolates were selected for genome sequencing from a large-scale epidemiological study of oral microbiology and dental caries in children from a localized Alabama population. A total of 252 BGCs were identified using the antiSMASH BGC-mining tool. Three types of BGCs identified herein-butyrolactone-like, ladderane-like, and butyrolactone-ladderane-like hybrid (BL-BGC)-have not been reported in S. mutans. These 3 BGCs were cross-referenced against public transcriptomics data, and were found to be highly expressed in caries subjects. Furthermore, based on a polymerase chain reaction screening for core BL genes, 93% of children with BL-BGC had ECC. The role of BL-BGC was further investigated by examining cariogenic traits and strain fitness in a deletion mutant using in vitro biofilm models. Deletion of the BL-BGC significantly increased biofilm pH as compared to the parent strain, while other virulence and fitness properties remained unchanged. Intriguingly, BL-BGC containing strains produced more acid, a key cariogenic feature, and less biofilm than the model cariogenic strain S. mutans UA159, suggesting the importance of this BL-BGC in S. mutans-mediated cariogenesity. The structure of any BL-BGC derived metabolites, their functions, and mechanistic connection with acid production remain to be elucidated. Nevertheless, this study is the first to report the clinical significance of a BL-BGC in S. mutans. This study also highlights pangenomic diversity, which is likely to affect phenotype and virulence.
Collapse
Affiliation(s)
- S S Momeni
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S M Beno
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J L Baker
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - A Edlund
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - T Ghazal
- Department of Preventive and Community Dentistry, University of Iowa, Iowa City, IA, USA
| | - N K Childers
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - H Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Ziko L, Adel M, Malash MN, Siam R. Insights into Red Sea Brine Pool Specialized Metabolism Gene Clusters Encoding Potential Metabolites for Biotechnological Applications and Extremophile Survival. Mar Drugs 2019; 17:md17050273. [PMID: 31071993 PMCID: PMC6562949 DOI: 10.3390/md17050273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
The recent rise in antibiotic and chemotherapeutic resistance necessitates the search for novel drugs. Potential therapeutics can be produced by specialized metabolism gene clusters (SMGCs). We mined for SMGCs in metagenomic samples from Atlantis II Deep, Discovery Deep and Kebrit Deep Red Sea brine pools. Shotgun sequence assembly and secondary metabolite analysis shell (antiSMASH) screening unraveled 2751 Red Sea brine SMGCs, pertaining to 28 classes. Predicted categorization of the SMGC products included those (1) commonly abundant in microbes (saccharides, fatty acids, aryl polyenes, acyl-homoserine lactones), (2) with antibacterial and/or anticancer effects (terpenes, ribosomal peptides, non-ribosomal peptides, polyketides, phosphonates) and (3) with miscellaneous roles conferring adaptation to the environment/special structure/unknown function (polyunsaturated fatty acids, ectoine, ladderane, others). Saccharide (80.49%) and putative (7.46%) SMGCs were the most abundant. Selected Red Sea brine pool sites had distinct SMGC profiles, e.g., for bacteriocins and ectoine. Top promising candidates, SMs with pharmaceutical applications, were addressed. Prolific SM-producing phyla (Proteobacteria, Actinobacteria, Cyanobacteria), were ubiquitously detected. Sites harboring the largest numbers of bacterial and archaeal phyla, had the most SMGCs. Our results suggest that the Red Sea brine niche constitutes a rich biological mine, with the predicted SMs aiding extremophile survival and adaptation.
Collapse
Affiliation(s)
- Laila Ziko
- Graduate Program of Biotechnology, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
| | - Mustafa Adel
- Graduate Program of Biotechnology, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
| | - Mohamed N Malash
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt.
| | - Rania Siam
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
| |
Collapse
|
13
|
Peeters SH, van Niftrik L. Trending topics and open questions in anaerobic ammonium oxidation. Curr Opin Chem Biol 2018; 49:45-52. [PMID: 30308437 DOI: 10.1016/j.cbpa.2018.09.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/04/2018] [Accepted: 09/21/2018] [Indexed: 02/07/2023]
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria are major players in the biological nitrogen cycle and can be applied in wastewater treatment for the removal of nitrogen compounds. Anammox bacteria anaerobically convert the substrates ammonium and nitrite into dinitrogen gas in a specialized intracellular compartment called the anammoxosome. The anammox cell biology, physiology and biochemistry is of exceptional interest but also difficult to study because of the lack of a pure culture, standard cultivation techniques and genetic tools. Here we review the most important recent developments regarding the cell structure - anammoxosome and cell envelope - and anammox energy metabolism - nitrite reductase, hydrazine synthase and energy conversion - including the trending topics electro-anammox, extracellular polymeric substances and ladderane lipids.
Collapse
Affiliation(s)
- Stijn H Peeters
- Department of Microbiology, Institute for Water & Wetland Research, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water & Wetland Research, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
14
|
|
15
|
Wang Z, Miller B, Butz J, Randazzo K, Wang ZD, Chu QR. Polyladderane Constructed from a Gemini Monomer through Photoreaction. Angew Chem Int Ed Engl 2017; 56:12155-12159. [DOI: 10.1002/anie.201705937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/10/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Zhihan Wang
- Department of Chemistry; University of North Dakota; Grand Forks ND 58202 USA
| | - Benjamin Miller
- Department of Chemistry; University of North Dakota; Grand Forks ND 58202 USA
| | - Jonathan Butz
- Department of Chemistry; University of North Dakota; Grand Forks ND 58202 USA
| | - Katelyn Randazzo
- Department of Chemistry; University of North Dakota; Grand Forks ND 58202 USA
| | - Zijun D. Wang
- Department of Chemistry; University of North Dakota; Grand Forks ND 58202 USA
| | - Qianli R. Chu
- Department of Chemistry; University of North Dakota; Grand Forks ND 58202 USA
| |
Collapse
|
16
|
Widespread distribution of encapsulin nanocompartments reveals functional diversity. Nat Microbiol 2017; 2:17029. [DOI: 10.1038/nmicrobiol.2017.29] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/03/2017] [Indexed: 11/09/2022]
|
17
|
Mercer JAM, Cohen CM, Shuken SR, Wagner AM, Smith MW, Moss FR, Smith MD, Vahala R, Gonzalez-Martinez A, Boxer SG, Burns NZ. Chemical Synthesis and Self-Assembly of a Ladderane Phospholipid. J Am Chem Soc 2016; 138:15845-15848. [PMID: 27960308 DOI: 10.1021/jacs.6b10706] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ladderane lipids produced by anammox bacteria constitute some of the most structurally fascinating yet poorly studied molecules among biological membrane lipids. Slow growth of the producing organism and the inherent difficulty of purifying complex lipid mixtures have prohibited isolation of useful amounts of natural ladderane lipids. We have devised a highly selective total synthesis of ladderane lipid tails and a full phosphatidylcholine to enable biophysical studies on chemically homogeneous samples of these molecules. Additionally, we report the first proof of absolute configuration of a natural ladderane.
Collapse
Affiliation(s)
- Jaron A M Mercer
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Carolyn M Cohen
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Steven R Shuken
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Anna M Wagner
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Myles W Smith
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Frank R Moss
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Matthew D Smith
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Riku Vahala
- Department of Built Environment, School of Engineering, Aalto University, Aalto , FI-00076 Espoo, Finland
| | | | - Steven G Boxer
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Noah Z Burns
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|