1
|
Yang H, Wang T, Yu X, Yang Y, Wang C, Yang Q, Wang X. Enhanced sugar accumulation and regulated plant hormone signalling genes contribute to cold tolerance in hypoploid Saccharum spontaneum. BMC Genomics 2020; 21:507. [PMID: 32698760 PMCID: PMC7376677 DOI: 10.1186/s12864-020-06917-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Wild sugarcane Saccharum spontaneum plants vary in ploidy, which complicates the utilization of its germplasm in sugarcane breeding. Investigations on cold tolerance in relation to different ploidies in S. spontaneum may promote the exploitation of its germplasm and accelerate the improvement of sugarcane varieties. RESULTS A hypoploid clone 12-23 (2n = 54) and hyperploid clone 15-28 (2n = 92) of S. spontaneum were analysed under cold stress from morphological, physiological, and transcriptomic perspectives. Compared with clone 15-28, clone 12-23 plants had lower plant height, leaf length, internode length, stem diameter, and leaf width; depressed stomata and prominent bristles and papillae; and thick leaves with higher bulliform cell groups and thicker adaxial epidermis. Compared with clone 15-28, clone 12-23 showed significantly lower electrical conductivity, significantly higher water content, soluble protein content, and superoxide dismutase activity, and significantly higher soluble sugar content and peroxidase activity. Under cold stress, the number of upregulated genes and downregulated genes of clone 12-23 was higher than clone 15-28, and many stress response genes and pathways were affected and enriched to varying degrees, particularly sugar and starch metabolic pathways and plant hormone signalling pathways. Under cold stress, the activity of 6-phosphate glucose trehalose synthase, trehalose phosphate phosphatase, and brassinosteroid-signalling kinase and the content of trehalose and brassinosteroids of clone 12-23 increased. CONCLUSIONS Compared with hyperploid clone 15-28, hypoploid clone 12-23 maintained a more robust osmotic adjustment system through sugar accumulation and hormonal regulation, which resulted in stronger cold tolerance.
Collapse
Affiliation(s)
- Hongli Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China
| | - Tianju Wang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China.,Chuxiong normal university, Chuxiong, 675000, Yunnan Province, PR China
| | - Xinghua Yu
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China.,Wenshan Academy of Agricultural Sciences, Wenshan, 663000, Yunnan Province, PR China
| | - Yang Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China
| | - Chunfang Wang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China
| | - Qinghui Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China.
| | - Xianhong Wang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China.
| |
Collapse
|
2
|
Yang HL, Yu XH, Wang CF, Yang Y, Wang XH, Yang QH. Evaluation of the cold tolerance of Saccharum spontaneum L. clones with different ploidy levels on the basis of morphological and physiological indices. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:623-633. [PMID: 32145146 DOI: 10.1111/plb.13110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Saccharum spontaneum L. is one of the most important germplasm resources for modern sugarcane breeding. Exploring the cold tolerance of S. spontaneum clones with different ploidy levels and screening for cold-tolerant material can be helpful in parent selection for breeding cold-tolerant sugarcane. Morphological indices, leaf ultrastructure and physiological indices were used to evaluate the cold tolerance of 36 S. spontaneum clones with different ploidy levels (2n = 40, 48, 54, 60, 64, 78, 80, 88, 92 and 96). The morphological indices of S. spontaneum clones with different ploidy levels were positively correlated with ploidy. Under low-temperature stress, the chloroplast and mitochondrial structures of the clones with high ploidy were more severely damaged than were those of clones with low ploidy. A comprehensive evaluation of the physiological indices showed that the 36 S. spontaneum clones could be divided into four categories: strongly cold tolerant, cold tolerant, moderately cold tolerant and cold sensitive. Correlation analysis of the morphological indices and cold tolerance revealed a significant negative correlation between cold tolerance and ploidy. On the basis of the morphological and physiological indices, optimal stepwise regression equations that can be used for the selection of cold-tolerant S. spontaneum resources were established. The S. spontaneum clones with low ploidy are more cold tolerant than those with high ploidy. Clones 12-37, 13-10 and 12-23 are strongly cold-tolerant germplasm resources, which suggests these germplasm sources have high potential for use in breeding cold-tolerant sugarcane.
Collapse
Affiliation(s)
- H-L Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, China
| | - X-H Yu
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, China
- Wenshan Academy of Agricultural Sciences, Wenshan, China
| | - C-F Wang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, China
| | - Y Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, China
| | - X-H Wang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, China
| | - Q-H Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Yu F, Huang Y, Luo L, Li X, Wu J, Chen R, Zhang M, Deng Z. An improved suppression subtractive hybridization technique to develop species-specific repetitive sequences from Erianthus arundinaceus (Saccharum complex). BMC PLANT BIOLOGY 2018; 18:269. [PMID: 30400857 PMCID: PMC6220460 DOI: 10.1186/s12870-018-1471-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/05/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Sugarcane has recently attracted increased attention for its potential as a source of bioethanol and methane. However, a narrow genetic base has limited germplasm enhancement of sugarcane. Erianthus arundinaceus is an important wild genetic resource that has many excellent traits for improving cultivated sugarcane via wide hybridization. Species-specific repetitive sequences are useful for identifying genome components and investigating chromosome inheritance in noblization between sugarcane and E. arundinaceus. Here, suppression subtractive hybridization (SSH) targeting E. arundinaceus-specific repetitive sequences was performed. The five critical components of the SSH reaction system, including enzyme digestion of genomic DNA (gDNA), adapters, digested gDNA concentrations, primer concentrations, and LA Taq polymerase concentrations, were improved using a stepwise optimization method to establish a SSH system suitable for obtaining E. arundinaceus-specific gDNA fragments. RESULTS Specificity of up to 85.42% was confirmed for the SSH method as measured by reverse dot blot (RDB) of an E. arundinaceus subtractive library. Furthermore, various repetitive sequences were obtained from the E. arundinaceus subtractive library via fluorescence in situ hybridization (FISH), including subtelomeric and centromeric regions. EaCEN2-166F/R and EaSUB1-127F/R primers were then designed as species-specific markers to accurately validate E. arundinaceus authenticity. CONCLUSIONS This is the first report that E. arundinaceus-specific repetitive sequences were obtained via an improved SSH method. These results suggested that this novel SSH system could facilitate screening of species-specific repetitive sequences for species identification and provide a basis for development of similar applications for other plant species.
Collapse
Affiliation(s)
- Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Ling Luo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Jiayun Wu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangdong Provincial Bioengineering Institute, Guangzhou, China
| | - Rukai Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Muqing Zhang
- State Key Laboratory for protection and utilization of subtropical agro-bioresources, Guangxi University, Nanning, 530004 China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- State Key Laboratory for protection and utilization of subtropical agro-bioresources, Guangxi University, Nanning, 530004 China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
4
|
A new method based on SNP of nrDNA-ITS to identify Saccharum spontaneum and its progeny in the genus Saccharum. PLoS One 2018; 13:e0197458. [PMID: 29768494 PMCID: PMC5955562 DOI: 10.1371/journal.pone.0197458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/02/2018] [Indexed: 11/19/2022] Open
Abstract
The identification of germplasm resources is an important aspect of sugarcane breeding. The aim of this study was to introduce a new method for identifying Saccharum spontaneum and its progeny. First, we cloned and sequenced nuclear ribosomal DNA internal transcribed spacer (nrDNA-ITS) sequences from 20 Saccharum germplasms. Analysis of these nrDNA-ITS sequences showed a stable mutation at base 89. Primers (FO13, RO13, FI16, and RI16) were then designed for tetra-primer amplification refractory mutation system (ARMS) PCR based on mutations at base 89 of the nrDNA-ITS sequence. An additional 71 Saccharum germplasms were identified using this tetra-primer ARMS PCR method, which confirmed that the method using the described primers successfully identified Saccharum spontaneum and progeny. These results may help improve the efficiency of modern molecular breeding of sugarcane and lay a foundation for identification of sugarcane germplasms and the relationships among them.
Collapse
|
5
|
Manechini JRV, da Costa JB, Pereira BT, Carlini-Garcia LA, Xavier MA, Landell MGDA, Pinto LR. Unraveling the genetic structure of Brazilian commercial sugarcane cultivars through microsatellite markers. PLoS One 2018; 13:e0195623. [PMID: 29684082 PMCID: PMC5912765 DOI: 10.1371/journal.pone.0195623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/26/2018] [Indexed: 01/20/2023] Open
Abstract
The Brazilian sugarcane industry plays an important role in the worldwide supply of sugar and ethanol. Investigation into the genetic structure of current commercial cultivars and comparisons to the main ancestor species allow sugarcane breeding programs to better manage crosses and germplasm banks as well as to promote its rational use. In the present study, the genetic structure of a group of Brazilian cultivars currently grown by commercial producers was assessed through microsatellite markers and contrasted with a group of basic germplasm mainly composed of Saccharum officinarum and S. spontaneum accessions. A total of 285 alleles was obtained by a set of 12 SSRs primer pairs that taken together were able to efficiently distinguish and capture the genetic variability of sugarcane commercial cultivars and basic germplasm accessions allowing its application in a fast and cost-effective way for routine cultivar identification and management of sugarcane germplasm banks. Allelic distribution revealed that 97.6% of the cultivar alleles were found in the basic germplasm while 42% of the basic germplasm alleles were absent in cultivars. Of the absent alleles, 3% was exclusive to S. officinarum, 33% to S. spontaneum and 19% to other species/exotic hybrids. We found strong genetic differentiation between the Brazilian commercial cultivars and the two main species (S. officinarum: Φ^ST = 0.211 and S. spontaneum: Φ^ST = 0.216, P<0.001), and significant contribution of the latter in the genetic variability of commercial cultivars. Average dissimilarity within cultivars was 1.2 and 1.4 times lower than that within S. officinarum and S. spontaneum. Genetic divergence found between cultivars and S. spontaneum accessions has practical applications for energy cane breeding programs as the choice of more divergent parents will maximize the frequency of transgressive individuals in the progeny.
Collapse
Affiliation(s)
- João Ricardo Vieira Manechini
- Departamento de Genética e Melhoramento de Plantas, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP, Brasil
- Centro de Cana, Instituto Agronômico de Campinas (IAC), Ribeirão Preto, SP, Brasil
| | | | | | | | | | | | - Luciana Rossini Pinto
- Departamento de Genética e Melhoramento de Plantas, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP, Brasil
- Centro de Cana, Instituto Agronômico de Campinas (IAC), Ribeirão Preto, SP, Brasil
- * E-mail:
| |
Collapse
|
6
|
Huang Y, Yu F, Li X, Luo L, Wu J, Yang Y, Deng Z, Chen R, Zhang M. Comparative genetic analysis of the 45S rDNA intergenic spacers from three Saccharum species. PLoS One 2017; 12:e0183447. [PMID: 28817651 PMCID: PMC5560572 DOI: 10.1371/journal.pone.0183447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 08/06/2017] [Indexed: 12/12/2022] Open
Abstract
The 45S ribosomal DNA (rDNA) units are separated by an intergenic spacer (IGS) containing the signals for transcription and processing of rRNAs. For the first time, we sequenced and analyzed the entire IGS region from three original species within the genus Saccharum, including S. spontaneum, S. robustum, and S. officinarum in this study. We have compared the IGS organization within three original species of the genus Saccharum. The IGS of these three original species showed similar overall organizations comprised of putative functional elements needed for rRNA gene activity as well as a non-transcribed spacer (NTS), a promoter region, and an external transcribed spacer (ETS). The variability in length of the IGS sequences was assessed at the individual, intraspecies, and interspecies levels of the genus Saccharum, including S. spontaneum, S. robustum, and S. officinarum. The ETS had greater similarity than the NTS across species, but nevertheless exhibited variation in length. Within the IGS of the Saccharum species, base substitutions and copy number variation of sub-repeat were causes of the divergence in IGS sequences. We also identified a significant number of methylation sites. Furthermore, fluorescent in situ hybridization (FISH) co-localization of IGS and pTa71 probes was detected on all representative species of the genus Saccharum tested. Taken together, the results of this study provide a better insight into the structure and organization of the IGS in the genus Saccharum.
Collapse
Affiliation(s)
- Yongji Huang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fan Yu
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueting Li
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Luo
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayun Wu
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou, China
- Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Yongqing Yang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuhu Deng
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Guangxi Collaborative Innovation Center of Sugar Industries, Guangxi University, Nanning, China
- * E-mail:
| | - Rukai Chen
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muqing Zhang
- Guangxi Collaborative Innovation Center of Sugar Industries, Guangxi University, Nanning, China
| |
Collapse
|