1
|
Coulombe P, Cole G, Fentiman A, Parker JDK, Yung E, Bilenky M, Degefie L, Lac P, Ling MYM, Tam D, Humphries RK, Karsan A. Meis1 establishes the pre-hemogenic endothelial state prior to Runx1 expression. Nat Commun 2023; 14:4537. [PMID: 37500618 PMCID: PMC10374625 DOI: 10.1038/s41467-023-40283-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) originate from an endothelial-to-hematopoietic transition (EHT) during embryogenesis. Characterization of early hemogenic endothelial (HE) cells is required to understand what drives hemogenic specification and to accurately define cells capable of undergoing EHT. Using Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq), we define the early subpopulation of pre-HE cells based on both surface markers and transcriptomes. We identify the transcription factor Meis1 as an essential regulator of hemogenic cell specification in the embryo prior to Runx1 expression. Meis1 is expressed at the earliest stages of EHT and distinguishes pre-HE cells primed towards the hemogenic trajectory from the arterial endothelial cells that continue towards a vascular fate. Endothelial-specific deletion of Meis1 impairs the formation of functional Runx1-expressing HE which significantly impedes the emergence of pre-HSPC via EHT. Our findings implicate Meis1 in a critical fate-determining step for establishing EHT potential in endothelial cells.
Collapse
Affiliation(s)
- Patrick Coulombe
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Grace Cole
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Amanda Fentiman
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Jeremy D K Parker
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Eric Yung
- Terry Fox Laboratory, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Misha Bilenky
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Lemlem Degefie
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Patrick Lac
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Maggie Y M Ling
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Derek Tam
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - R Keith Humphries
- Terry Fox Laboratory, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
2
|
Benyoucef A, Haigh JJ, Brand M. Unveiling the complexity of transcription factor networks in hematopoietic stem cells: implications for cell therapy and hematological malignancies. Front Oncol 2023; 13:1151343. [PMID: 37441426 PMCID: PMC10333584 DOI: 10.3389/fonc.2023.1151343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The functionality and longevity of hematopoietic tissue is ensured by a tightly controlled balance between self-renewal, quiescence, and differentiation of hematopoietic stem cells (HSCs) into the many different blood lineages. Cell fate determination in HSCs is influenced by signals from extrinsic factors (e.g., cytokines, irradiation, reactive oxygen species, O2 concentration) that are translated and integrated by intrinsic factors such as Transcription Factors (TFs) to establish specific gene regulatory programs. TFs also play a central role in the establishment and/or maintenance of hematological malignancies, highlighting the need to understand their functions in multiple contexts. TFs bind to specific DNA sequences and interact with each other to form transcriptional complexes that directly or indirectly control the expression of multiple genes. Over the past decades, significant research efforts have unraveled molecular programs that control HSC function. This, in turn, led to the identification of more than 50 TF proteins that influence HSC fate. However, much remains to be learned about how these proteins interact to form molecular networks in combination with cofactors (e.g. epigenetics factors) and how they control differentiation, expansion, and maintenance of cellular identity. Understanding these processes is critical for future applications particularly in the field of cell therapy, as this would allow for manipulation of cell fate and induction of expansion, differentiation, or reprogramming of HSCs using specific cocktails of TFs. Here, we review recent findings that have unraveled the complexity of molecular networks controlled by TFs in HSCs and point towards possible applications to obtain functional HSCs ex vivo for therapeutic purposes including hematological malignancies. Furthermore, we discuss the challenges and prospects for the derivation and expansion of functional adult HSCs in the near future.
Collapse
Affiliation(s)
- Aissa Benyoucef
- Department of Pharmacology and Therapeutics, Rady Faulty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Jody J. Haigh
- Department of Pharmacology and Therapeutics, Rady Faulty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Elucidating the importance and regulation of key enhancers for human MEIS1 expression. Leukemia 2022; 36:1980-1989. [PMID: 35624144 PMCID: PMC9343249 DOI: 10.1038/s41375-022-01602-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Myeloid ecotropic virus insertion site 1 (MEIS1) is essential for normal hematopoiesis and is a critical factor in the pathogenesis of a large subset of acute myeloid leukemia (AML). Despite the clinical relevance of MEIS1, its regulation is largely unknown. To understand the transcriptional regulatory mechanisms contributing to human MEIS1 expression, we created a knock-in green florescent protein (GFP) reporter system at the endogenous MEIS1 locus in a human AML cell line. Using this model, we have delineated and dissected a critical enhancer region of the MEIS1 locus for transcription factor (TF) binding through in silico prediction in combination with oligo pull-down, mass-spectrometry and knockout analysis leading to the identification of FLI1, an E-twenty-six (ETS) transcription factor, as an important regulator of MEIS1 transcription. We further show direct binding of FLI1 to the MEIS1 locus in human AML cell lines as well as enrichment of histone acetylation in MEIS1-high healthy and leukemic cells. We also observe a positive correlation between high FLI1 transcript levels and worse overall survival in AML patients. Our study expands the role of ETS factors in AML and our model constitutes a feasible tool for a more detailed understanding of transcriptional regulatory elements and their interactome.
Collapse
|
4
|
Steinberg-Shemer O, Orenstein N, Krasnov T, Noy-Lotan S, Marcoux N, Dgany O, Yacobovich J, Gilad O, Shabad E, Basel-Salmon L, Tamary H. Congenital Thrombocytopenia Associated with a Heterozygous Variant in the MEIS1 Gene Encoding a Transcription Factor Essential for Megakaryopoiesis. Platelets 2022; 33:645-648. [PMID: 35130804 DOI: 10.1080/09537104.2021.1961704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The transcription factor MEIS1 (myeloid ectotrophic insertion site 1) is crucial for the maintenance of hematopoietic stem cells and for megakaryopoiesis. Germline variants in MEIS1 are associated with restless-leg syndrome, but were not previously shown to cause cytopenias. This is the first report of a patient with congenital thrombocytopenia associated with a sequence variant in MEIS1, presenting with early onset severe thrombocytopenia and mild signs of bone marrow stress. Whole exome sequencing revealed a de novo monoallelic splice site variant in MEIS1, NM_002398.3:exon4:c.432 + 5 G > C, leading to a premature stop codon. We propose that heterozygous mutations in MEIS1 may cause congenital thrombocytopenia.
Collapse
Affiliation(s)
- Orna Steinberg-Shemer
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Petach Tikva, Israel.,Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naama Orenstein
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Genetic Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Petach Tikva, Israel
| | - Sharon Noy-Lotan
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Petach Tikva, Israel
| | - Nathaly Marcoux
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Petach Tikva, Israel
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Petach Tikva, Israel
| | - Joanne Yacobovich
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oded Gilad
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Lina Basel-Salmon
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel
| | - Hannah Tamary
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Petach Tikva, Israel.,Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Blasi F, Bruckmann C. MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction Can Be Used in Therapy. J Dev Biol 2021; 9:jdb9040044. [PMID: 34698191 PMCID: PMC8544432 DOI: 10.3390/jdb9040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Recently MEIS1 emerged as a major determinant of the MLL-r leukemic phenotype. The latest and most efficient drugs effectively decrease the levels of MEIS1 in cancer cells. Together with an overview of the latest drugs developed to target MEIS1 in MLL-r leukemia, we review, in detail, the role of MEIS1 in embryonic and adult hematopoiesis and suggest how a more profound knowledge of MEIS1 biochemistry can be used to design potent and effective drugs against MLL-r leukemia. In addition, we present data showing that the interaction between MEIS1 and PBX1 can be blocked efficiently and might represent a new avenue in anti-MLL-r and anti-leukemic therapy.
Collapse
|
6
|
Chung HY, Lin BA, Lin YX, Chang CW, Tzou WS, Pei TW, Hu CH. Meis1, Hi1α, and GATA1 are integrated into a hierarchical regulatory network to mediate primitive erythropoiesis. FASEB J 2021; 35:e21915. [PMID: 34496088 DOI: 10.1096/fj.202001044rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
During development, erythroid cells are generated by two waves of hematopoiesis. In zebrafish, primitive erythropoiesis takes place in the intermediate cell mass region, and definitive erythropoiesis arises from the aorta-gonad mesonephros. TALE-homeoproteins Meis1 and Pbx1 function upstream of GATA1 to specify the erythroid lineage. Embryos lacking Meis1 or Pbx1 have weak gata1 expression and fail to produce primitive erythrocytes. Nevertheless, the underlying mechanism of how Meis1 and Pbx1 mediate gata1 transcription in erythrocytes remains unclear. Here we show that Hif1α acts downstream of Meis1 to mediate gata1 expression in zebrafish embryos. Inhibition of Meis1 expression resulted in suppression of hif1a expression and abrogated primitive erythropoiesis, while injection with in vitro-synthesized hif1α mRNA rescued gata1 transcription in Meis1 morphants and recovered their erythropoiesis. Ablation of Hif1α expression either by morpholino knockdown or Crispr-Cas9 knockout suppressed gata1 transcription and abrogated primitive erythropoiesis. Results of chromatin immunoprecipitation assays showed that Hif1α associates with hypoxia-response elements located in the 3'-flanking region of gata1 during development, suggesting that Hif1α regulates gata1 expression in vivo. Together, our results indicate that Meis1, Hif1α, and GATA1 indeed comprise a hierarchical regulatory network in which Hif1α acts downstream of Meis1 to activate gata1 transcription through direct interactions with its cis-acting elements in primitive erythrocytes.
Collapse
Affiliation(s)
- Hsin-Yu Chung
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Bo-An Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Xuan Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chen-Wei Chang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Shyong Tzou
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pei
- Department of Computer Science and Information Engineering, National Taipei University of Technology
| | - Chin-Hwa Hu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
7
|
Niu Y, Yang X, Chen Y, Jin X, Li L, Guo Y, Li X, Xie Y, Zhang Y, Wang H. EVI1 induces autophagy to promote drug resistance via regulation of ATG7 expression in leukemia cells. Carcinogenesis 2020; 41:961-971. [PMID: 31593983 DOI: 10.1093/carcin/bgz167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/31/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2023] Open
Abstract
Ecotropic viral integration site 1 (EVI1) is an oncogenic transcription factor, which is abnormally expressed in myeloid leukemia and other several solid cancers. It is associated with short survival as well as anticancer drug resistance. Autophagy is a protective mechanism that promotes cancer cell growth and survival under stressed conditions including clinical drug treatment. Here evidences are provided that EVI1 induces autophagy and mediated drug resistance in myeloid leukemia cells. Both knockdown using RNAi and pharmacological inhibition of autophagy significantly increase sensitivity to cytotoxic drug treatment in EVI1high cells. Mechanistic studies revealed that EVI1 regulated autophagy by directly binding to autophagy-related gene autophagy related 7 (ATG7) promoter and transcriptionally upregulating its expression. Notably, ATG7 expression was positively correlated with EVI1 in bone marrow mononuclear cells from myeloid leukemia patients. Acute myeloid leukemia patients with high level of EVI1 are associated with unfavorable overall survival, which was aggravated by simultaneous high expression of ATG7 in these patients. Furthermore, ChIP and firefly luciferase reporter assay identified an EVI1-binding site at 227 upstream promoter region of ATG7 which regulated its transcription. In addition, enforced expression of EVI1 also increased intracellular reactive oxygen species and ATG7 mRNA levels as well as autophagy activity, whereas the increase was attenuated after treatment with reactive oxygen species scavenger, suggesting the involvement of reactive oxygen species in EVI1-induced autophagy. These findings demonstrate that EVI protects myeloid leukemia cell from anticancer drug treatment by inducing autophagy through dual control of ATG7. These results might present a new therapeutic approach for improving treatment outcome in myelogenous leukemia with EVI1high.
Collapse
Affiliation(s)
- Yuna Niu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Xue Yang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Yifei Chen
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Xinyue Jin
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Li Li
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Yilin Guo
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Xuelu Li
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Yecheng Xie
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
| | - Yun Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang, Henan, PR China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China
| |
Collapse
|
8
|
Conditions of embryo culture from days 5 to 7 of development alter the DNA methylome of the bovine fetus at day 86 of gestation. J Assist Reprod Genet 2019; 37:417-426. [PMID: 31838628 DOI: 10.1007/s10815-019-01652-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/03/2019] [Indexed: 01/30/2023] Open
Abstract
PURPOSE We tested whether in vitro production (IVP) causes changes in DNA methylation in fetal liver and skeletal muscle and if exposure of cultured embryos to colony-stimulating factor 2 (CSF2) alters DNA methylation. METHODS Female fetuses were produced by artificial insemination or transfer of an IVP embryo. Embryos were treated from days 5 to 7 after fertilization with CSF2 or vehicle. DNA methylation in fetal liver and skeletal muscle was determined by post-bisulfite adaptor tagging-based sequencing. The degree of DNA methylation for CpG sites in 50-bp windows of the promoter region 500 bp upstream of the transcriptional start site was compared between treatments. RESULTS For liver, there were 12 genes (6% of those analyzed) in which DNA methylation was affected by treatment, with one 50-bp window per gene affected by treatment. For muscle, the degree of DNA methylation was affected by treatment for 32 windows (19% of the total windows analyzed) representing 28 distinct genes (23% of analyzed genes). For 19 of the 28 genes in muscle, the greatest deviation in DNA methylation was for the CSF2 group. CONCLUSION Results are consistent with alterations in the methylome being one of the mechanisms by which IVP can result in altered fetal development and postnatal function in the resultant offspring. In addition, results indicate that maternally derived cell-signaling molecules can regulate the pattern of DNA methylation.
Collapse
|
9
|
Sanz-Navarro M, Delgado I, Torres M, Mustonen T, Michon F, Rice DP. Dental Epithelial Stem Cells Express the Developmental Regulator Meis1. Front Physiol 2019; 10:249. [PMID: 30914971 PMCID: PMC6423187 DOI: 10.3389/fphys.2019.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/25/2019] [Indexed: 11/13/2022] Open
Abstract
MEIS1 is a key developmental regulator of several organs and participates in stem cell maintenance in different niches. However, despite the murine continuously growing incisor being a well described model for the study of adult stem cells, Meis1 has not been investigated in a dental context. Here, we uncover that Meis1 expression in the tooth is confined to the epithelial compartment. Its expression arises during morphogenesis and becomes restricted to the mouse incisor epithelial stem cell niche, the labial cervical loop. Meis1 is specifically expressed by Sox2+ stem cells, which give rise to all dental epithelial cell lineages. Also, we have found that Meis1 in the incisor is coexpressed with potential binding partner Pbx1 during both embryonic and adult stages. Interestingly, Meis2 is present in different areas of the forming tooth and it is not expressed by dental epithelial stem cells, suggesting different roles for these two largely homologous genes. Additionally, we have established the expression patterns of Meis1 and Meis2 during tongue, hair, salivary gland and palate formation. Finally, analysis of Meis1-null allele mice indicated that, similarly, to SOX2, MEIS1 is not essential for tooth initiation, but might have a role during adult incisor renewal.
Collapse
Affiliation(s)
- Maria Sanz-Navarro
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Irene Delgado
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Torres
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Tuija Mustonen
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Frederic Michon
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,The Institute for Neurosciences of Montpellier, Inserm UMR1051, University of Montpellier, Saint Eloi Hospital, Montpellier, France
| | - David P Rice
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Mitochondrial Role in Stemness and Differentiation of Hematopoietic Stem Cells. Stem Cells Int 2019; 2019:4067162. [PMID: 30881461 PMCID: PMC6381553 DOI: 10.1155/2019/4067162] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/24/2018] [Indexed: 01/07/2023] Open
Abstract
Quiescent and self-renewing hematopoietic stem cells (HSCs) rely on glycolysis rather than on mitochondrial oxidative phosphorylation (OxPHOS) for energy production. HSC reliance on glycolysis is considered an adaptation to the hypoxic environment of the bone marrow (BM) and reflects the low energetic demands of HSCs. Metabolic rewiring from glycolysis to mitochondrial-based energy generation accompanies HSC differentiation and lineage commitment. Recent evidence, however, highlights that alterations in mitochondrial metabolism and activity are not simply passive consequences but active drivers of HSC fate decisions. Modulation of mitochondrial activity and metabolism is therefore critical for maintaining the self-renewal potential of primitive HSCs and might be beneficial for ex vivo expansion of transplantable HSCs. In this review, we emphasize recent advances in the emerging role of mitochondria in hematopoiesis, cellular reprograming, and HSC fate decisions.
Collapse
|
11
|
Wang H, Liu C, Liu X, Wang M, Wu D, Gao J, Su P, Nakahata T, Zhou W, Xu Y, Shi L, Ma F, Zhou J. MEIS1 Regulates Hemogenic Endothelial Generation, Megakaryopoiesis, and Thrombopoiesis in Human Pluripotent Stem Cells by Targeting TAL1 and FLI1. Stem Cell Reports 2018; 10:447-460. [PMID: 29358086 PMCID: PMC5830947 DOI: 10.1016/j.stemcr.2017.12.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/11/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) provide an unlimited source for generating various kinds of functional blood cells. However, efficient strategies for generating large-scale functional blood cells from hPSCs are still lacking, and the mechanism underlying human hematopoiesis remains largely unknown. In this study, we identified myeloid ectopic viral integration site 1 homolog (MEIS1) as a crucial regulator of hPSC early hematopoietic differentiation. MEIS1 is vital for specification of APLNR+ mesoderm progenitors to functional hemogenic endothelial progenitors (HEPs), thereby controlling formation of hematopoietic progenitor cells (HPCs). TAL1 mediates the function of MEIS1 in HEP specification. In addition, MEIS1 is vital for megakaryopoiesis and thrombopoiesis from hPSCs. Mechanistically, FLI1 acts as a downstream gene necessary for the function of MEIS1 during megakaryopoiesis. Thus, MEIS1 controls human hematopoiesis in a stage-specific manner and can be potentially manipulated for large-scale generation of HPCs or platelets from hPSCs for therapeutic applications in regenerative medicine. MEIS1 knockout impairs hematopoiesis of hPSCs by suppressing HEP specification MEIS1−/− megakaryocytes fail to undergo polyploidization and thrombopoiesis TAL1 mediates the function of MEIS1 in HEP specification FLI1 acts as a downstream target of MEIS1 during megakaryopoiesis and thrombopoiesis
Collapse
Affiliation(s)
- Hongtao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Cuicui Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Xin Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Mengge Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Dan Wu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Wen Zhou
- School of Basic Medical Science and Cancer Research Institute, Central South University, Changsha 410013, China
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Feng Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
12
|
A knock-in mouse strain facilitates dynamic tracking and enrichment of MEIS1. Blood Adv 2017; 1:2225-2235. [PMID: 29296870 DOI: 10.1182/bloodadvances.2017010355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Myeloid ecotropic viral integration site 1 (MEIS1), a HOX transcription cofactor, is a critical regulator of normal hematopoiesis, and its overexpression is implicated in a wide range of leukemias. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) gene-editing system, we generated a knock-in transgenic mouse line in which a green fluorescent protein (GFP) reporter and a hemagglutinin (HA) epitope tag are inserted near the translational start site of endogenous Meis1. This novel reporter strain readily enables tracking of MEIS1 expression at single-cell-level resolution via the fluorescence reporter GFP, and facilitates MEIS1 detection and purification via the HA epitope tag. This new Meis1 reporter mouse line provides powerful new approaches to track Meis1-expressing hematopoietic cells and to explore Meis1 function and regulation during normal and leukemic hematopoiesis.
Collapse
|
13
|
Lai CK, Norddahl GL, Maetzig T, Rosten P, Lohr T, Sanchez Milde L, von Krosigk N, Docking TR, Heuser M, Karsan A, Humphries RK. Meis2 as a critical player in MN1-induced leukemia. Blood Cancer J 2017; 7:e613. [PMID: 28960191 PMCID: PMC5709755 DOI: 10.1038/bcj.2017.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023] Open
Abstract
Meningioma 1 (MN1) is an independent prognostic marker for normal karyotype acute myeloid leukemia (AML), with high expression linked to all-trans retinoic acid resistance and poor survival. MN1 is also a potent and sufficient oncogene in murine leukemia models, strongly dependent on the MEIS1/AbdB-like HOX protein complex to transform common myeloid progenitors, block myeloid differentiation, and promote leukemic stem cell self-renewal. To identify key genes and pathways underlying leukemic activity, we functionally assessed MN1 cell phenotypic heterogeneity, revealing leukemic and non-leukemic subsets. Using gene expression profiling of these subsets combined with previously published comparisons of full-length MN1 and mutants with varying leukemogenic activity, we identified candidate genes critical to leukemia. Functional analysis identified Hlf and Hoxa9 as critical to MN1 in vitro proliferation, self-renewal and impaired myeloid differentiation. Although critical to transformation, Meis1 knockdown had little impact on these properties in vitro. However, we identified Meis2 as critical to MN1-induced leukemia, with essential roles in proliferation, self-renewal, impairment of differentiation and disease progression in vitro and in vivo. Here, we provide evidence of phenotypic and functional hierarchy in MN1-induced leukemic cells, characterise contributions of Hlf, Hoxa9 and Meis1 to in vitro leukemic properties, and reveal Meis2 as a novel player in MN1-induced leukemogenesis.
Collapse
Affiliation(s)
- C K Lai
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - G L Norddahl
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - T Maetzig
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - P Rosten
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - T Lohr
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - L Sanchez Milde
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - N von Krosigk
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - T R Docking
- Genome Sciences Centre, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - M Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - A Karsan
- Genome Sciences Centre, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - R K Humphries
- Terry Fox Laboratory, BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Mohr S, Doebele C, Comoglio F, Berg T, Beck J, Bohnenberger H, Alexe G, Corso J, Ströbel P, Wachter A, Beissbarth T, Schnütgen F, Cremer A, Haetscher N, Göllner S, Rouhi A, Palmqvist L, Rieger MA, Schroeder T, Bönig H, Müller-Tidow C, Kuchenbauer F, Schütz E, Green AR, Urlaub H, Stegmaier K, Humphries RK, Serve H, Oellerich T. Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia. Cancer Cell 2017; 31:549-562.e11. [PMID: 28399410 PMCID: PMC5389883 DOI: 10.1016/j.ccell.2017.03.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia.
Collapse
Affiliation(s)
- Sebastian Mohr
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Carmen Doebele
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Federico Comoglio
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Tobias Berg
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Julia Beck
- Chronix Biomedical, Goetheallee 8, 37073 Göttingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37073 Göttingen, Germany
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Jasmin Corso
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37073 Göttingen, Germany
| | - Astrid Wachter
- Institute of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany
| | - Tim Beissbarth
- Institute of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany
| | - Frank Schnütgen
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Anjali Cremer
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Nadine Haetscher
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Stefanie Göllner
- Department of Hematology and Oncology, University of Halle, Ernst-Grube-Street 40, 06120 Halle, Germany
| | - Arefeh Rouhi
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Lars Palmqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Su sahlgrenska, 41345 Gothenburg, Sweden
| | - Michael A Rieger
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Sandhofstraße 1, 60590 Frankfurt, Germany
| | - Carsten Müller-Tidow
- Department of Hematology and Oncology, University of Halle, Ernst-Grube-Street 40, 06120 Halle, Germany
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Anthony R Green
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Georg August University, Robert-Koch-Straße 40, 37073 Göttingen, Germany
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hubert Serve
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Feuer S, Liu X, Donjacour A, Simbulan R, Maltepe E, Rinaudo P. Common and specific transcriptional signatures in mouse embryos and adult tissues induced by in vitro procedures. Reproduction 2016; 153:REP-16-0473. [PMID: 27799627 PMCID: PMC5411347 DOI: 10.1530/rep-16-0473] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022]
Abstract
Stressful environmental exposures incurred early in development can affect postnatal metabolic health and susceptibility to non-communicable diseases in adulthood, although the molecular mechanisms by which this occurs have yet to be elucidated. Here we use a mouse model to investigate how assorted in vitro exposures restricted exclusively to the preimplantation period affect transcription both acutely in embryos and long-term in subsequent offspring adult tissues, to determine if reliable transcriptional markers of in vitro stress are present at specific developmental time points and throughout development. Each in vitro fertilization or embryo culture environment led to a specific and unique blastocyst transcriptional profile, but we identified a common 18-gene and 9-pathway signature of preimplantation embryo manipulation that was present in all in vitro embryos irrespective of culture condition or method of fertilization. This fingerprint did not persist throughout development and there was no clear transcriptional cohesion between adult IVF offspring tissues or compared to their preceding embryos, indicating a tissue-specific impact of in vitro stress on gene expression. However, the transcriptional changes present in each IVF tissue were targeted by the same upstream transcriptional regulators, which provide insight as to how acute transcriptional responses to stressful environmental exposures might be preserved throughout development to influence adult gene expression.
Collapse
Affiliation(s)
- Sky Feuer
- S Feuer, Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
| | - Xiaowei Liu
- X Liu, Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
| | - Annemarie Donjacour
- A Donjacour, Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
| | - Rhodel Simbulan
- R Simbulan, Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
| | - Emin Maltepe
- E Maltepe, Obstetrics and Gynecology, University of California, San Francisco, San Francisco, United States
| | - Paolo Rinaudo
- P Rinaudo, Obstetrics and Gynecology, University of California, San Francisco, San Francisco, 94115, United States
| |
Collapse
|