1
|
Wang CI, Maier JC, Jackson NE. Accessing the electronic structure of liquid crystalline semiconductors with bottom-up electronic coarse-graining. Chem Sci 2024; 15:8390-8403. [PMID: 38846409 PMCID: PMC11151863 DOI: 10.1039/d3sc06749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/01/2024] [Indexed: 06/09/2024] Open
Abstract
Understanding the relationship between multiscale morphology and electronic structure is a grand challenge for semiconducting soft materials. Computational studies aimed at characterizing these relationships require the complex integration of quantum-chemical (QC) calculations, all-atom and coarse-grained (CG) molecular dynamics simulations, and back-mapping approaches. However, these methods pose substantial computational challenges that limit their application to the requisite length scales of soft material morphologies. Here, we demonstrate the bottom-up electronic coarse-graining (ECG) of morphology-dependent electronic structure in the liquid-crystal-forming semiconductor, 2-(4-methoxyphenyl)-7-octyl-benzothienobenzothiophene (BTBT). ECG is applied to construct density functional theory (DFT)-accurate valence band Hamiltonians of the isotropic and smectic liquid crystal (LC) phases using only the CG representation of BTBT. By bypassing the atomistic resolution and its prohibitive computational costs, ECG enables the first calculations of the morphology dependence of the electronic structure of charge carriers across LC phases at the ∼20 nm length scale, with robust statistical sampling. Kinetic Monte Carlo (kMC) simulations reveal a strong morphology dependence on zero-field charge mobility among different LC phases as well as the presence of two-molecule charge carriers that act as traps and hinder charge transport. We leverage these results to further evaluate the feasibility of developing mesoscopic, field-based ECG models in future works. The fully CG approach to electronic property predictions in LC semiconductors opens a new computational direction for designing electronic processes in soft materials at their characteristic length scales.
Collapse
Affiliation(s)
- Chun-I Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign 505 S Mathews Avenue Urbana Illinois 61801 USA
| | - J Charlie Maier
- Department of Chemistry, University of Illinois at Urbana-Champaign 505 S Mathews Avenue Urbana Illinois 61801 USA
| | - Nicholas E Jackson
- Department of Chemistry, University of Illinois at Urbana-Champaign 505 S Mathews Avenue Urbana Illinois 61801 USA
| |
Collapse
|
2
|
Becerra D, Jois PR, Hall LM. Coarse-grained modeling of polymers with end-on and side-on liquid crystal moieties: Effect of architecture. J Chem Phys 2023; 158:2895229. [PMID: 37290072 DOI: 10.1063/5.0152817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023] Open
Abstract
Mesogens, which are typically stiff rodlike or disklike molecules, are able to self-organize into liquid crystal (LC) phases in a certain temperature range. Such mesogens, or LC groups, can be attached to polymer chains in various configurations including within the backbone (main-chain LC polymers) or at the ends of side-chains attached to the backbone in an end-on or side-on configuration (side-chain LC polymers or SCLCPs), which can display synergistic properties arising from both their LC and polymeric character. At lower temperatures, chain conformations may be significantly altered due to the mesoscale LC ordering; thus, when heated from the LC ordered state through the LC to isotropic phase transition, the chains return from a more stretched to a more random coil conformation. This can cause macroscopic shape changes, which depend significantly on the type of LC attachment and other architectural properties of the polymer. Here, to study the structure-property relationships for SCLCPs with a range of different architectures, we develop a coarse-grained model that includes torsional potentials along with LC interactions of a Gay-Berne form. We create systems of different side-chain lengths, chain stiffnesses, and LC attachment types and track their structural properties as a function of temperature. Our modeled systems indeed form a variety of well-organized mesophase structures at low temperatures, and we predict higher LC-to-isotropic transition temperatures for the end-on side-chain systems than for analogous side-on side-chain systems. Understanding these phase transitions and their dependence on polymer architecture can be useful in designing materials with reversible and controllable deformations.
Collapse
Affiliation(s)
- Diego Becerra
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Pranav R Jois
- Department of Mathematics and Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lisa M Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
3
|
Huang D, Du Y, Jiang H, Hou Z. Emergent spiral vortex of confined biased active particles. Phys Rev E 2021; 104:034606. [PMID: 34654190 DOI: 10.1103/physreve.104.034606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/15/2021] [Indexed: 11/07/2022]
Abstract
Confinement is known to have profound effects on the collective dynamics of many active systems. Here, we investigate a modeled active system in circular confinement consisting of biased active particles, where the direction of active force deviates a biased angle from the principle orientation of the anisotropic interaction. We find that such particles can spontaneously form a spiral vortex with two concentric and counter-rotating regions near the boundary. The emerged vortex can be measured by the vortex order parameter which shows nonmonotonic dependencies on both the biased angle and the strength of the anisotropic interaction. Our work can provide an understanding of such dynamic behaviors and enable different strategies for designing ordered collective behaviors.
Collapse
Affiliation(s)
- Deping Huang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunfei Du
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Floyd C, Chandresekaran A, Ni H, Ni Q, Papoian GA. Segmental Lennard-Jones interactions for semi-flexible polymer networks. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1910358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Carlos Floyd
- Biophysics Program, University of Maryland, College Park, MD, USA
| | | | - Haoran Ni
- Biophysics Program, University of Maryland, College Park, MD, USA
| | - Qin Ni
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Garegin A. Papoian
- Biophysics Program, University of Maryland, College Park, MD, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| |
Collapse
|
5
|
Paul T, Saha J. Origin and structure of liquid crystalline Blue Phase III. Sci Rep 2020; 10:16016. [PMID: 32994422 PMCID: PMC7525552 DOI: 10.1038/s41598-020-72086-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
We report here an off-lattice NVT molecular dynamics simulation study of a system of polar chiral ellipsoidal molecules, which spontaneously exhibits Blue Phase III (BPIII), considering coarse-grained attractive-repulsive pair interaction appropriate for anisotropic liquid crystal mesogens. We have observed that suitable selection of chiral and dipolar strengths not only gives rise to thermodynamically stable BPIII but novel Smectic and Bilayered BPIII as well. Further, we have demonstrated that the occurrence of BPIII and its layered counterparts depend crucially on molecular elongation.
Collapse
Affiliation(s)
- Tanay Paul
- Department of Physics, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India
| | - Jayashree Saha
- Department of Physics, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India.
| |
Collapse
|
6
|
Rolland N, Mehandzhiyski AY, Garg M, Linares M, Zozoulenko IV. New Patchy Particle Model with Anisotropic Patches for Molecular Dynamics Simulations: Application to a Coarse-Grained Model of Cellulose Nanocrystal. J Chem Theory Comput 2020; 16:3699-3711. [DOI: 10.1021/acs.jctc.0c00259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolas Rolland
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | | | - Mohit Garg
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Scientific Visualization Group, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Swedish e-Science Research Centre (SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor V. Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, SE-601 74 Norrköping, Sweden
| |
Collapse
|
7
|
Roy S, Luzhbin DA, Chen YL. Investigation of nematic to smectic phase transition and dynamical properties of strongly confined semiflexible polymers using Langevin dynamics. SOFT MATTER 2018; 14:7382-7389. [PMID: 30203825 DOI: 10.1039/c8sm01100a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigated the nematic to smectic phase transition for strongly confined semiflexible polymer solutions in slit-like confinements using GPU-accelerated Langevin dynamics. We characterized the phase transitions from the nematic to smectic phases for semi-flexible polymer solutions as the polymer density increased. The dependence for the lyotropic nematic to smectic transition can be collapsed by scaling exponents between 0.2 and 0.3. The smectic C phase is found for all the cases with the polymer orientation director tilted with respect to smectic layer lateral alignment. As the chain rigidity increases, the transition density decreases for systems in which the polymer persistence length (P) to slit height (H) ratios are 1.25, 2.5, 3.75, 5 and 25. We also characterized the polymer dynamics for the isotropic-nematic-smectic transitions. The overall polymer diffusivity decreased steadily as the polymer density increased. We observed anomalous polymer diffusion along the nematic director near the isotropic-nematic transition, similar to previously reported behavior for nematic-forming ellipsoids. Polymer diffusivity decreased sharply by two orders of magnitude upon the nematic-smectic transition.
Collapse
Affiliation(s)
- Supriya Roy
- Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China.
| | | | | |
Collapse
|
8
|
Chen W, Cui F, Liu L, Li Y. Assembled Structures of Perfluorosulfonic Acid Ionomers Investigated by Anisotropic Modeling and Simulations. J Phys Chem B 2017; 121:9718-9724. [DOI: 10.1021/acs.jpcb.7b06412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenduo Chen
- Key
Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, PR China, 130022
| | - Fengchao Cui
- Key
Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, PR China, 130022
| | - Lunyang Liu
- Key
Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, PR China, 130022
- University of Chinese Academy of Sciences, Beijing, PR China, 100049
| | - Yunqi Li
- Key
Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, PR China, 130022
| |
Collapse
|
9
|
Schurz A, Su BH, Tu YS, Lu TTY, Lin OA, Tseng YJ. G.A.M.E.: GPU-accelerated mixture elucidator. J Cheminform 2017; 9:50. [PMID: 29086161 PMCID: PMC5602814 DOI: 10.1186/s13321-017-0238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022] Open
Abstract
GPU acceleration is useful in solving complex chemical information problems. Identifying unknown structures from the mass spectra of natural product mixtures has been a desirable yet unresolved issue in metabolomics. However, this elucidation process has been hampered by complex experimental data and the inability of instruments to completely separate different compounds. Fortunately, with current high-resolution mass spectrometry, one feasible strategy is to define this problem as extending a scaffold database with sidechains of different probabilities to match the high-resolution mass obtained from a high-resolution mass spectrum. By introducing a dynamic programming (DP) algorithm, it is possible to solve this NP-complete problem in pseudo-polynomial time. However, the running time of the DP algorithm grows by orders of magnitude as the number of mass decimal digits increases, thus limiting the boost in structural prediction capabilities. By harnessing the heavily parallel architecture of modern GPUs, we designed a “compute unified device architecture” (CUDA)-based GPU-accelerated mixture elucidator (G.A.M.E.) that considerably improves the performance of the DP, allowing up to five decimal digits for input mass data. As exemplified by four testing datasets with verified constitutions from natural products, G.A.M.E. allows for efficient and automatic structural elucidation of unknown mixtures for practical procedures.. ![]()
Collapse
Affiliation(s)
- Alioune Schurz
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Bo-Han Su
- Department of Computer Science and Information Engineering, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Yi-Shu Tu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Tony Tsung-Yu Lu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Olivia A Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Yufeng J Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei, 106, Taiwan. .,Department of Computer Science and Information Engineering, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei, 106, Taiwan. .,Drug Research Center, National Taiwan University College of Medicine, No. 1 Sec. 1, Jen Ai Rord, Taipei, 106, Taiwan.
| |
Collapse
|