1
|
Lendino A, Castellanos AA, Pigott DM, Han BA. A review of emerging health threats from zoonotic New World mammarenaviruses. BMC Microbiol 2024; 24:115. [PMID: 38575867 PMCID: PMC10993514 DOI: 10.1186/s12866-024-03257-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Despite repeated spillover transmission and their potential to cause significant morbidity and mortality in human hosts, the New World mammarenaviruses remain largely understudied. These viruses are endemic to South America, with animal reservoir hosts covering large geographic areas and whose transmission ecology and spillover potential are driven in part by land use change and agriculture that put humans in regular contact with zoonotic hosts.We compiled published studies about Guanarito virus, Junin virus, Machupo virus, Chapare virus, Sabia virus, and Lymphocytic Choriomeningitis virus to review the state of knowledge about the viral hemorrhagic fevers caused by New World mammarenaviruses. We summarize what is known about rodent reservoirs, the conditions of spillover transmission for each of these pathogens, and the characteristics of human populations at greatest risk for hemorrhagic fever diseases. We also review the implications of repeated outbreaks and biosecurity concerns where these diseases are endemic, and steps that countries can take to strengthen surveillance and increase capacity of local healthcare systems. While there are unique risks posed by each of these six viruses, their ecological and epidemiological similarities suggest common steps to mitigate spillover transmission and better contain future outbreaks.
Collapse
Affiliation(s)
- Arianna Lendino
- The George Washington University, Milken Institute for Public Health, Washington, DC, 20052, USA
| | | | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave, Suite 600, Seattle, WA, 98121, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, 98121, USA
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA.
| |
Collapse
|
2
|
Wang MQ, Wen Z, Ke J, Chesters D, Li Y, Chen JT, Luo A, Shi X, Zhou QS, Liu XJ, Ma K, Bruelheide H, Schuldt A, Zhu CD. Tree communities and functional traits determine herbivore compositional turnover. Oecologia 2023; 203:205-218. [PMID: 37831151 DOI: 10.1007/s00442-023-05463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
There are many factors known to drive species turnover, although the mechanisms by which these operate are less clear. Based on comprehensive datasets from the largest tree diversity experiment worldwide (BEF-China), we used shared herbivore species (zeta diversity) and multi-site generalized dissimilarity modelling to investigate the patterns and determinants of species turnover of Lepidoptera herbivores among study plots across a gradient in tree species richness. We found that zeta diversity declined sharply with an increasing number of study plots, with complete changes in caterpillar species composition observed even at the fine spatial scale of our study. Plant community characteristics rather than abiotic factors were found to play key roles in driving caterpillar compositional turnover, although these effects varied with an increasing number of study plots considered, due to the varying contributions of rare and common species to compositional turnover. Our study reveals details of the impact of phylogeny- and trait-mediated processes of trees on herbivore compositional turnover, which has implications for forest management and conservation and shows potential avenues for maintenance of heterogeneity in herbivore communities.
Collapse
Affiliation(s)
- Ming-Qiang Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 4 Renmin South Road, Wuhou District, Chengdu, 610041, China
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- Forest Nature Conservation, University of Göttingen, Buesgenweg 3, 37077, Göttingen, Germany
| | - Zhixin Wen
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Jinzhao Ke
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 4 Renmin South Road, Wuhou District, Chengdu, 610041, China
- College of Biological Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Douglas Chesters
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jing-Ting Chen
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- College of Biological Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Arong Luo
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xiaoyu Shi
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Qing-Song Zhou
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xiao-Juan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- School of Resources and Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 101314, China
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Andreas Schuldt
- Forest Nature Conservation, University of Göttingen, Buesgenweg 3, 37077, Göttingen, Germany.
| | - Chao-Dong Zhu
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
- College of Biological Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
3
|
Vallejos-Garrido P, Pino K, Espinoza-Aravena N, Pari A, Inostroza-Michael O, Toledo-Muñoz M, Castillo-Ravanal B, Romero-Alarcón V, Hernández CE, Palma RE, Rodríguez-Serrano E. The importance of the Andes in the evolutionary radiation of Sigmodontinae (Rodentia, Cricetidae), the most diverse group of mammals in the Neotropics. Sci Rep 2023; 13:2207. [PMID: 36750620 PMCID: PMC9905555 DOI: 10.1038/s41598-023-28497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
The Andean mountains stand out for their striking species richness and endemicity that characterize many emblematic Neotropical clades distributed in or around these mountains. The radiation of the Sigmodontinae subfamily, the most diversified mammalian group in the Neotropics, has been historically related to Andean orogenesis. We aim to evaluate this interplay between geological processes and biological responses through the diversification dynamics, the biogeographical history, and the range evolution of the subfamily. For these, we built the most comprehensive phylogeny and gathered 14,836 occurrences for the subfamily. We identified one shift in the speciation rate in the genus Akodon, which suffered their Andean radiation after the arrival of non-Andean ancestors. Our biogeographic analyses show multiple dispersal paths throughout the evolution that allowed this subfamily to colonize all Neotropics. The Northern Andes and Central-Southern Andes were the most important sources of diversity. In addition, the Central-Southern Andes were the most relevant sink, receiving the highest number of lineages. The Andean region exhibited higher speciation and turnover rates than non-Andean regions. Thus, our results support the crucial role of the Andean Mountains in the Sigmodontinae radiation, acting as a "macroevolutionary cradle" and "species attractor" for several sigmodontine lineages at different times, and as a "species pump" becoming the biogeographic source of multiple widely distributed neotropical lineages. Then, complex macroevolutionary dynamics would explain these rodents' high extant Andean diversity and their wide distribution in the Neotropics.
Collapse
Affiliation(s)
- Paulo Vallejos-Garrido
- Programa de Doctorado en Sistemática y Biodiversidad, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Vida Silvestre Investigadores Limitada, Concepción, Chile
| | - Kateryn Pino
- Programa de Doctorado en Sistemática y Biodiversidad, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Museo de Historia Natural, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Nicolás Espinoza-Aravena
- Programa de Doctorado en Sistemática y Biodiversidad, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Alexander Pari
- Programa de Doctorado en Sistemática y Biodiversidad, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Museo de Historia Natural, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Oscar Inostroza-Michael
- Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Macarena Toledo-Muñoz
- Programa de Magíster en Ciencias Mención Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Boris Castillo-Ravanal
- Programa de Magíster en Ciencias Mención Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | | | - Cristián E Hernández
- Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Universidad Católica de Santa María, Arequipa, Perú
| | - R Eduardo Palma
- Laboratorio de Biología Evolutiva, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Rodríguez-Serrano
- Laboratorio de Mastozoología, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
4
|
Decoupled Patterns of Diversity and Disparity Characterize an Ecologically Specialized Lineage of Neotropical Cricetids. Evol Biol 2023. [DOI: 10.1007/s11692-022-09596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Elevational biodiversity gradients in the Neotropics: Perspectives from freshwater caddisflies (Insecta: Trichoptera). PLoS One 2022; 17:e0272229. [PMID: 35930543 PMCID: PMC9355261 DOI: 10.1371/journal.pone.0272229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
Aquatic insects in the order Trichoptera are extremely diverse in number of species and their trophic roles. However, their distribution and diversity patterns are poorly known in the Neotropics, including the species restricted to tropical mountain ecosystems. Recent studies in tropical mountains have shown high levels of endemism of aquatic insects and changes in the composition of communities over short distances. Still, the incidence of environmental filters that explain such patterns has not been addressed quantitatively. Given the relevance of understanding Trichoptera spatial diversity patterns to prioritize conservation areas for freshwaters, as well as to obtain baseline information to predict changes in aquatic communities facing global environmental changes, we assessed the species distribution and assemblages of caddisflies along an elevational gradient from 600 to 3,600 m a.s.l. on the equatorial Andes. In this area, we had long-term continuous climate data with hourly resolution. We collected adult caddisflies in seven localities along this gradient using light traps. We sampled each locality for two hours after sunset for three consecutive days. All specimens collected were identified to species or morphospecies. Our results showed an increase in species and genera numbers with decreasing altitude, albeit no significant. Minimum air temperature is the main environmental variable explaining Trichoptera community assemblages. β‐diversity (taxon turnover among sites), as opposed to species richness, increased with altitude and showed a bimodal distribution along the elevation gradient for both genera and species assemblages, which resulted in a significant shift in community composition of species and genera at 2,000 m a.s.l. Our null-models confirm the observed patterns of B-diversity are non-random and suggest a strong environmental filtering of tropical caddisflies community assemblies and turnover. Geographic distance coupled with changes in environmental conditions along the elevation gradient explained a high percentage of community variance, as documented for other taxa (e.g., vascular plants), suggesting the importance of securing habitat connectivity along the altitudinal gradient to protect aquatic insect diversity effectively.
Collapse
|
6
|
Maestri R, Luza AL, Hartz SM, de Freitas TRO, Patterson BD. Bridging macroecology and macroevolution in the radiation of sigmodontine rodents. Evolution 2022; 76:1790-1805. [PMID: 35794070 DOI: 10.1111/evo.14561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023]
Abstract
Investigations of phenotypic disparity across geography often ignore macroevolutionary processes. As a corollary, the random null expectations to which disparity is compared and interpreted may be unrealistic. We tackle this issue by representing, in geographical space, distinct processes of phenotypic evolution underlying ecological disparity. Under divergent natural selection, assemblages in a given region should have empirical disparity higher than expected under an evolutionarily oriented null model, whereas the opposite may indicate constraints on phenotypic evolution. We gathered phylogenies, biogeographic distributions, and data on the skull morphology of sigmodontine rodents to discover which regions of the Neotropics were more influenced by divergent, neutral, or constrained phenotypic evolution. We found that regions with higher disparity than expected by the evolutionary-oriented null model, in terms of both size and shape, were concentrated in the Atlantic Forest, suggesting a larger role for divergent natural selection there. Phenotypic disparity in the rest of South America, mainly the Amazon basin, northeastern Brazil, and Southern Andes, was constrained-lower than predicted by the evolutionary model. We also demonstrated equivalence between the disparity produced by randomization-based null models and constrained-evolution null models. Therefore, including evolutionary simulations into the null modeling framework used in ecophylogenetics can strengthen inferences on the processes underlying phenotypic evolution.
Collapse
Affiliation(s)
- Renan Maestri
- Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Brazil.,Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, 60605
| | - André L Luza
- Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Brazil
| | - Sandra M Hartz
- Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Brazil
| | - Thales R O de Freitas
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Brazil
| | - Bruce D Patterson
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, 60605
| |
Collapse
|
7
|
Zhang Y, Yu F, Yi X, Zhou W, Liu R, Holyoak M, Cao L, Zhang M, Chen J, Zhang Z, Yan C. Evolutionary and ecological patterns of scatter- and larder-hoarding behaviours in rodents. Ecol Lett 2022; 25:1202-1214. [PMID: 35230727 DOI: 10.1111/ele.13992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
Scatter- and larder hoarding are the primary strategies of food-hoarding animals and have important implications for plant-animal interactions and plant recruitment. However, their origins and influencing factors have not been fully investigated across a wide range of taxa. Our systematic literature search amassed data for 183 seed-hoarding rodent species worldwide and tested relationships of seed-hoarding behaviours with phylogenetic signal, functional traits and environmental factors. We found that the evolution of hoarding strategies was not random in phylogeny, and scatter hoarding originated independently multiple times from larder hoarding. Rodents with higher encephalisation quotient (relative brain size), omnivorous diet (related to dependence on seeds) and inhabiting lower latitudes were disproportionately likely to scatter hoard. Despite body mass's potential relationship with competition through food defence, it was associated with food-hoarding strategy only in a few families. Our results show the need to study the community and ecological context of food-hoarding behaviours.
Collapse
Affiliation(s)
- Yongjun Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fei Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xianfeng Yi
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Weiwei Zhou
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rui Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Lin Cao
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Mingming Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Jiani Chen
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chuan Yan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Yousefi M, Mahmoudi A, Kafash A, Khani A, Kryštufek B. Biogeography of rodents in Iran: species richness, elevational distribution and their environmental correlates. MAMMALIA 2022. [DOI: 10.1515/mammalia-2021-0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Rodent biogeographic studies are disproportionately scarce in Iran, however, they are an ideal system to understand drivers of biodiversity distributions in the country. The aims of the present research are to determine (i) the pattern of rodent richness across the country, (ii) quantify their elevational distribution patterns, and (iii) explore the underlying mechanisms. To reach these goals, an updated species list was compiled based on the latest taxonomic revisions, published until December 2021. We mapped all 76 rodent species distributions to develop the first map of rodent richness in Iran. We furthermore investigated their elevational distribution patterns in the following four geographic regions based on 100 m intervals; the Zagros Mountains, north of Alborz Mountains, south of Alborz and Kopet-Dagh mountains, and central and east mountains. North-east of Iran, Zagros Mountains, Alborz Mountains, and northwestern of Iran showed the highest richness and were identified as biodiversity hotspots of rodents in the country. This study highlights the importance of past climate change as the key driver of rodent richness in Iran. We showed that rodents’ elevational distribution patterns differ among geographic regions. Areas and elevational zones with the highest species richness should be prioritized for the conservation planning of rodents in Iran.
Collapse
Affiliation(s)
- Masoud Yousefi
- College of Agriculture & Natural Resources, University of Tehran , Daneshkadeh Ave. , Karaj 77871-31587 , Iran
| | - Ahmad Mahmoudi
- Department of Biology , Faculty of Science, Urmia University , Urmia , Iran
| | - Anooshe Kafash
- Department of Environmental Sciences , Faculty of Natural Resources, University of Tehran , Tehran , Iran
| | - Ali Khani
- Khorasan-e Razavi Provincial Office of the Department of the Environment , Mashhad , Iran
| | - Boris Kryštufek
- Slovenian Museum of Natural History , Prešernova 20, 1000 Ljubljana , Slovenia
| |
Collapse
|
9
|
Carmignotto AP, Pardini R, de Vivo M. Habitat Heterogeneity and Geographic Location as Major Drivers of Cerrado Small Mammal Diversity Across Multiple Spatial Scales. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.739919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Cerrado biome is one of the global hotspots of biodiversity, and non-volant small mammals represent a significant portion of Cerrado species richness (45%) and endemism (86%). Nevertheless, we still lack a comprehensive picture of small mammal diversity patterns and drivers throughout the Cerrado. Here we surveyed small mammals across 45 sites to address species richness, abundance, and composition patterns and their drivers within and across sites, habitats, and localities at the world’s most diverse tropical savanna. As hypothesized, we found: (1) rich assemblages (12–21 species) characterized by few abundant and several intermediate-level and rare species; dominated by oryzomyine and akodontine cricetid rodents, and thylamyine and marmosine within marsupials, each tribe showing distinct habitat requirements; (2) strong habitat selectivity, with assemblages composed of forest dwellers, savanna specialists, and grassland inhabitants; and (3) similar species richness (α-diversity) but high species turnover (β-diversity) across sites, habitats, and localities, suggesting that horizontal stratification (within localities) and geographic location (across the Cerrado) are key drivers of small mammal diversity in tropical savannas. Thus, habitat heterogeneity and geographic location can be inferred as the main factors shaping species richness, abundance, and composition across the analyzed multiple spatial scales. Moreover, we found that geographical distance as well as the distance to neighbor biomes better explained species turnover, indicating landscape history and phylogenetic constraints as the major determinants of Cerrado small mammal diversity, as also evidenced for plants and other animal groups. These data highlight the need to preserve the mosaic of habitats across the different regions of the biome to conserve most of the Cerrado biodiversity.
Collapse
|
10
|
Dambros C, Cáceres N, Baselga A. The prevalence of temperature and dispersal limitation as drivers of diversity in Neotropical small mammals. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristian Dambros
- Department of Ecology and Evolution CCNE Universidade Federal de Santa Maria 97.105‐900 Santa Maria Brazil
| | - Nilton Cáceres
- Department of Ecology and Evolution CCNE Universidade Federal de Santa Maria 97.105‐900 Santa Maria Brazil
| | - Andrés Baselga
- Departamento de Zoología, Genética y Antropología Física Universidad de Santiago de Compostela Santiago de Compostela Spain
| |
Collapse
|
11
|
Luza AL, Maestri R, Debastiani VJ, Patterson BD, Hartz SM, Duarte LDS. Is evolution faster at ecotones? A test using rates and tempo of diet transitions in Neotropical Sigmodontinae (Rodentia, Cricetidae). Ecol Evol 2021; 11:18676-18690. [PMID: 35003701 PMCID: PMC8717272 DOI: 10.1002/ece3.8476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Abstract
We evaluated whether evolution is faster at ecotones as niche shifts may be needed to persist under unstable environment. We mapped diet evolution along the evolutionary history of 350 sigmodontine species. Mapping was used in three new tip-based metrics of trait evolution - Transition Rates, Stasis Time, and Last Transition Time - which were spatialized at the assemblage level (aTR, aST, aTL). Assemblages were obtained by superimposing range maps on points located at core and ecotone of the 93 South American ecoregions. Using Linear Mixed Models, we tested whether ecotones have species with more changes from the ancestral diet (higher aTR), have maintained the current diet for a shorter time (lower aST), and have more recent transitions to the current diet (lower aLT) than cores. We found lower aTR, and higher aST and aLT at ecotones than at cores. Although ecotones are more heterogeneous, both environmentally and in relation to selection pressures they exert on organisms, ecotone species change little from the ancestral diet as generalist habits are necessary toward feeding in ephemeral environments. The need to incorporate phylogenetic uncertainty in tip-based metrics was evident from large uncertainty detected. Our study integrates ecology and evolution by analyzing how fast trait evolution is across space.
Collapse
Affiliation(s)
- André Luís Luza
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
- Departamento de Ecologia e EvoluçãoUniversidade Federal de Santa MariaSanta MariaRio Grande do SulCEP 97105‐900Brazil
| | - Renan Maestri
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
- Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Vanderlei Júlio Debastiani
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
| | - Bruce D. Patterson
- Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Sandra Maria Hartz
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
| | - Leandro D. S. Duarte
- Programa de Pós‐Graduação em EcologiaDepartamento de EcologiaInstituto de BiociênciasUniversidade Federal do Rio Grande do SulBairro AgronomiaRio Grande do SulCEP 91501‐970Brazil
| |
Collapse
|
12
|
Santos F, Lima MGM, Espinosa S, Ahumada JA, Jansen PA, Spironello WR, Hurtado J, Juen L, Peres CA. Site and species contribution to β-diversity in terrestrial mammal communities: Evidence from multiple Neotropical forest sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147946. [PMID: 34058582 DOI: 10.1016/j.scitotenv.2021.147946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
In a scenario where escalating human activities lead to several environmental changes and, consequently, affect mammal abundance and distribution, β-diversity may increase due to differences among sites. Using the ecological uniqueness approach, we analyzed β-diversity patterns of ground-dwelling mammal communities recorded through comprehensive camera trap monitoring within eight tropical forests protected areas in Mesoamerica and South America under variable landscape contexts. We aimed to investigate whether the contribution of single sites (LCBD) and single species (SCBD) to overall β-diversity could be explained by community metrics and environmental variables, and by species metrics and biological traits, respectively. Total β-diversity was also partitioned into species replacement and richness difference. We related LCBD to species richness, total relative abundance, functional indices, and environmental variables (tree basal area, protected area size, NDVI, and precipitation seasonality), and SCBD to species naïve occupancy, relative abundance, and morphoecological traits via beta regression. Our findings showed that LCBD was primarily explained by variation in species richness, rather than relative abundance and functional metrics. Protected area size and tree basal area were also important in explaining variation in LCBD. SCBD was strongly related to naïve occupancy and relative abundance, but not to biological traits, such as body mass, trophic energy level, activity cycle, and taxonomic category. Local β-diversity was a result of species replacements and to a lesser extent differences in species richness. Our approach was useful in examining and comparing the ecological uniqueness among different sites, revealing the regional scale current status of mammal diversity. High LCBD values comprised sites embedded within smaller habitat extents, hosting lower tree basal areas, and harboring low species richness. SCBD showed that relatively ubiquitous species that occur at variable abundances across sites contributed most to β-diversity.
Collapse
Affiliation(s)
- Fernanda Santos
- Programa de Pós-graduação em Ecologia, Universidade Federal do Pará, Belém, Pará, Brazil; Departamento de Mastozoologia, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil.
| | | | - Santiago Espinosa
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Escuela de Ciencias Biologicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jorge A Ahumada
- Moore Center for Science, Conservation International, Arlington, VA, USA
| | - Patrick A Jansen
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, the Netherlands; Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| | - Wilson R Spironello
- Grupo de Pesquisa de Mamíferos Amazônicos, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Johanna Hurtado
- Independent consultant of Wildlife Management and Conservation, Heredia, Costa Rica
| | - Leandro Juen
- Laboratório de Ecologia e Conservação, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Carlos A Peres
- Centre for Ecology, Evolution and Conservation, School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
13
|
d’ Hiriart S, Cueto G, Ortiz PE, Teta P, Jayat J. Spatial variation of small mammal communities in northwestern Argentina. MAMMALIA 2021. [DOI: 10.1515/mammalia-2020-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Northwestern Argentina (NWA) is a region characterized by a complex geomorphology, and encompasses six ecoregions in a relatively small area. The environmental heterogeneity of NWA and the sensitivity of small mammals towards environmental and landscape changes constitute a good scenario to assess the factors that influence small mammal diversity patterns in the region. We studied small mammal communities obtained from pellet samples in 24 localities of NWA. We identified 50 non-volant small mammal species and obtained topographic, climate and land cover variables. Our results show that small mammal communities respond to environmental factors at a regional scale. Such variations were explained in different proportions by the geographic position of the collecting sites, landscape and climate. Furthermore, the combined effect of these factors was the main determinant of species abundance patterns. Our results support the need of large-scale approaches to study communities, since the explanations of the observed patterns are simpler and more general. We emphasize the importance of considering the combined effect of different environmental predictors, which allows determining the amount of species variation that is spatially structured, and within that, the amount of variation related to the influence of the measured environmental variables.
Collapse
Affiliation(s)
- Sofía d’ Hiriart
- División Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” , Avenida Ángel Gallardo 470 , C1405DJR Buenos Aires , Argentina
| | - Gerardo Cueto
- Departamento de Ecología, Genética y Evolución , Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria , 2160 Intendente Guiraldes , C1428EGA Ciudad Autónoma de Buenos Aires , Argentina
| | - Pablo E. Ortiz
- Instituto Superior de Correlación Geológica (INSUGEO, CONICET) , 4000 San Miguel de Tucumán , Tucumán , Argentina
| | - Pablo Teta
- División Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” , Avenida Ángel Gallardo 470 , C1405DJR Buenos Aires , Argentina
| | - J. Pablo Jayat
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Miguel Lillo , 4000 San Miguel de Tucumán , Argentina
| |
Collapse
|
14
|
Bubadué J, Cáceres N, Melo G, Sponchiado J, Battistella T, Newton J, Meloro C. Niche partitioning in small mammals: interspecific and biome-level analyses using stable isotopes. J Mammal 2021. [DOI: 10.1093/jmammal/gyab063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Small mammal assemblages from South America provide a unique opportunity to measure coexistence and niche partitioning between marsupials and placentals. We tested how these two major clades partition environmental resources by comparing stable isotopic ratios of similar sized Didelphidae and Sigmodontinae in four Brazilian biomes: Pampas grassland, Pantanal wetland, Cerrado woodland savanna, and Atlantic Forest. Generally, didelphid isotopic niche follows a scaling law, because we found an association between δ15N enrichment and body mass. Sigmodontines that primarily partition the environment via forest strata showed a greater intake of C4 or/and crassulacean acid metabolism (CAM) plants than didelphids, as reflected by their wider trophic niche. Values of δ13C were highest in savannas and grasslands (Cerrado and Pampas biomes), and values of δ15N were highest in the Atlantic Forest (in sigmodontines) and Pampas (in didelphids). While assessing patterns between the two major Brazilian biomes (Atlantic Forest and Cerrado), we found evidence of a broader trophic niche for both clades in the Cerrado. In the Atlantic Forest, niche occupation by Didelphidae was completely enclosed within the Sigmodontinae trophic niche. Both clades showed less overlap in the Cerrado, a less productive environment. Our results highlight the importance of a comparative framework and the use of stable isotopes for testing ecological questions related to how small mammalian communities partition their niche.
Collapse
Affiliation(s)
- Jamile Bubadué
- Programa de Pós-Graduação em Biodiversidade Animal, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Mastozoologia, Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Nilton Cáceres
- Laboratório de Mastozoologia, Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Geruza Melo
- Programa de Pós-Graduação em Biodiversidade Animal, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Mastozoologia, Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jonas Sponchiado
- Laboratório de Mastozoologia, Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Thaís Battistella
- Programa de Pós-Graduação em Biodiversidade Animal, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Mastozoologia, Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jason Newton
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, IFCE, Jaguaribe, CE, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, IFFar, Alegrete, RS, Brazil
- National Environmental Isotope Facility, East Kilbride, United Kingdom
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological & Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
15
|
Moreno Cárdenas PA, Tinoco N, Albuja L, Patterson BD. A new species of Rhagomys (Rodentia, Sigmodontinae) from southeastern Ecuador. J Mammal 2021. [DOI: 10.1093/jmammal/gyaa104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
During a faunal survey in the foothills of the Ecuadoran Andes southwest of the Cordillera del Cóndor, a mouse of uncertain affinities was taken in a fishing net. Various external characters suggested that it was a member of the genus Rhagomys, previously unrecorded in Ecuador. Comparisons with the external, cranial, and dental morphology both of Rhagomys rufescens and R. longilingua identified a number of unique characters, including its long, narrow rostrum and incisive foramina and the reduced anterolingual conule on its M1 procingulum. We describe the mouse as a new species of Rhagomys; both its morphology and molecular analyses suggest that it is sister to R. longilingua. This record of Rhagomys in southern Ecuador extends the known distribution of the genus 700 km northward and adds yet another genus and species to Ecuador’s extensive list of rodent species.
Collapse
Affiliation(s)
| | - Nicolás Tinoco
- Museo de Zoología sección Mastozoología de la Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Luis Albuja
- Instituto Nacional de Biodiversidad (MECN), Quito, Ecuador
| | - Bruce D Patterson
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago IL 60605, USA
| |
Collapse
|
16
|
D'Bastiani E, Campião KM. Disentangling the beta-diversity in anuran parasite communities. Parasitology 2021; 148:327-332. [PMID: 33092668 PMCID: PMC11010044 DOI: 10.1017/s0031182020002061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 11/05/2022]
Abstract
There is great heterogeneity in parasite communities among hosts, understanding the nature and drivers of such variations is still a great scientific quest. Here, we analyse the variation in parasite communities by addressing the following questions: (i) What is the beta-diversity component (nestedness or turnover) that most contributes to beta diversity in parasite communities among anuran species? (ii) Does the beta diversity of parasite communities follow a non-random pattern? (iii) Is the dissimilarity in composition of parasite communities related to the phylogenetic or functional dissimilarity among hosts? We found that turnover in parasite assemblages was the main component of beta diversity, but the variation observed both in the total beta diversity and in its components did not differ from the respective null models. The dissimilarity among parasite communities was not related to the phylogenetic species variability or functional dissimilarity among anuran species for most localities. In short, our findings may indicate a process of resource tracking by the parasite species, in which the resource may not necessarily be conserved phylogenetically in their hosts.
Collapse
Affiliation(s)
- Elvira D'Bastiani
- Postgraduate Program in Ecology and Conservation, Federal University of Paraná, Laboratory of Biological Interaction – Biological Sciences, Caixa Postal (P.O. Box) 19031, CEP (Postal Code) 81531-990, Curitiba, PR, Brazil
| | - Karla M. Campião
- Department of Zoology, Federal University of Paraná, Laboratory of Biological Interaction – Biological Sciences, Caixa Postal (P.O. Box) 19031, CEP (Postal Code) 81531-990, Curitiba, PR, Brazil
| |
Collapse
|
17
|
Novillo A, Ojeda R. Turnover, richness difference and nestedness of rodent assemblages along the southern Andes elevation gradient. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Agustina Novillo
- Instituto de Biodiversidad Neotropical – CONICET Universidad Nacional de Tucumán (UNT) Cúpulas Horco Molle Yerba Buena Tucumán Argentina
- Grupo de Investigaciones de Biodiversidad (GIB) Instituto Argentino de Zonas Áridas (IADIZA) CONICET Mendoza Argentina
| | - Ricardo Ojeda
- Grupo de Investigaciones de Biodiversidad (GIB) Instituto Argentino de Zonas Áridas (IADIZA) CONICET Mendoza Argentina
| |
Collapse
|
18
|
Brito J, Koch C, Percequillo AR, Tinoco N, Weksler M, Pinto CM, Pardiñas UFJ. A new genus of oryzomyine rodents (Cricetidae, Sigmodontinae) with three new species from montane cloud forests, western Andean cordillera of Colombia and Ecuador. PeerJ 2020; 8:e10247. [PMID: 33240614 PMCID: PMC7664470 DOI: 10.7717/peerj.10247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022] Open
Abstract
The Andean cloud forests of western Colombia and Ecuador are home to several endemic mammals; members of the Oryzomyini, the largest Sigmodontinae tribe, are extensively represented in the region. However, our knowledge about this diversity is still incomplete, as evidenced by several new taxa that have been described in recent years. Extensive field work in two protected areas enclosing remnants of Chocó montane forest recovered a high diversity of small mammals. Among them, a medium-sized oryzomyine is here described as a new genus having at least three new species, two of them are named and diagnosed. Although externally similar to members of the genera Nephelomys and Tanyuromys, the new genus has a unique molar pattern within the tribe, being characterized by a noticeable degree of hypsodonty, simplification, lamination, and third molar compression. A phylogeny based on a combination of molecular markers, including nuclear and mitochondrial genes, and morphological data recovered the new genus as sister to Mindomys, and sequentially to Nephelomys. The new genus seems to be another example of a sigmodontine rodent unique to the Chocó biogeographic region. Its type species inhabits cloud forest between 1,600 and 2,300 m in northernmost Ecuador (Carchi Province); a second species is restricted to lower montane forest, 1,200 m, in northern Ecuador (Imbabura Province); a third putative species, here highlighted exclusively by molecular evidence from one immature specimen, is recorded in the montane forest of Reserva Otonga, northern Ecuador (Cotopaxi Province). Finally, the new genus is also recorded in southernmost Colombia (Nariño Department), probably represented there also by a new species. These species are spatially separated by deep river canyons through Andean forests, resulting in marked environmental discontinuities. Unfortunately, Colombian and Ecuadorian Pacific cloud forests are under rapid anthropic transformation. Although the populations of the type species are moderately abundant and occur in protected areas, the other two persist in threatened forest fragments.
Collapse
Affiliation(s)
- Jorge Brito
- Instituto Nacional de Biodiversidad (INABIO), Quito, Ecuador
| | - Claudia Koch
- Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Bonn, Germany
| | - Alexandre R. Percequillo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Nicolás Tinoco
- Sección de Mastozoología, Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Marcelo Weksler
- Setor de Mastozoologia, Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C. Miguel Pinto
- Observatorio de Biodiversidad Ambiente y Salud (OBBAS), Quito, Ecuador
| | - Ulyses F. J. Pardiñas
- Instituto Nacional de Biodiversidad (INABIO), Quito, Ecuador
- Instituto de Diversidad y Evolución Austral (IDEAus—CONICET), Puerto Madryn, Argentina
| |
Collapse
|
19
|
Disproportionate extinction of South American mammals drove the asymmetry of the Great American Biotic Interchange. Proc Natl Acad Sci U S A 2020; 117:26281-26287. [PMID: 33020313 PMCID: PMC7585031 DOI: 10.1073/pnas.2009397117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The biological interchange between North and South America associated with the formation of the Isthmus of Panama is key to defining current gradients of species diversity. A major gap in our understanding of the interchange is its asymmetry, where mammals of North American origin attained higher diversity in South America than vice versa. The prevailing view is that this asymmetry resulted from higher origination of immigrant mammals in South America. In contrast, we find that asymmetry results from high extinction of native mammals in South America, which reduced the diversity of native mammals available to disperse northwards. These results shed light on the legacy of the biotic interchange to understand the current patterns of species diversity across the Americas. The interchange between the previously disconnected faunas of North and South America was a massive experiment in biological invasion. A major gap in our understanding of this invasion is why there was a drastic increase in the proportion of mammals of North American origin found in South America. Four nonmutually exclusive mechanisms may explain this asymmetry: 1) Higher dispersal rate of North American mammals toward the south, 2) higher origination of North American immigrants in South America, 3) higher extinction of mammals with South American origin, and 4) similar dispersal rate but a larger pool of native taxa in North versus South America. We test among these mechanisms by analyzing ∼20,000 fossil occurrences with Bayesian methods to infer dispersal and diversification rates and taxonomic selectivity of immigrants. We find no differences in the dispersal and origination rates of immigrants. In contrast, native South American mammals show higher extinction. We also find that two clades with North American origin (Carnivora and Artiodactyla) had significantly more immigrants in South America than other clades. Altogether, the asymmetry of the interchange was not due to higher origination of immigrants in South America as previously suggested, but resulted from higher extinction of native taxa in southern South America. These results from one of the greatest biological invasions highlight how biogeographic processes and biotic interactions can shape continental diversity.
Collapse
|
20
|
Ribeiro R, Ricklefs RE, Marinho-Filho J. Partitioning beta diversity to unravel mechanisms underlying the distributions of nonvolant small mammls in Brazil’s Cerrado. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Abstract
Species distributions and the mechanisms that produce patterns in the occupation space are recurrent themes in community ecology. Here, we examine beta diversity among assemblages of small mammals in the Cerrado domain of Brazil to partition the effects of turnover and nestedness on species distributions. Our objective was to evaluate whether balanced spatial variation in abundance (β bal) and abundance gradients (β gra) are congruent within and among habitats and localities of the Brazilian Cerrado. In addition, we wanted to understand whether ecological mechanisms, such as dispersal limitation, habitat filtering, and species sorting, drive the distribution patterns of the Cerrado small mammals. We analyzed the occurrence and abundances of small mammals from 16 localities widely distributed across the Cerrado biome, and grouped our data with respect to two distinct spatial scales. Baselga’s Bray–Curtis index of dissimilarity and its respective partitions, i.e., balanced variation in abundance (β bal) and abundance gradients (β gra), were estimated between sampling units at the two spatial scales. Thus, we used exponential models to search for distance decay in species similarity between pairs of localities and between similar habitats. Our results show that differences between small mammal assemblages in the Cerrado are driven mainly by species replacement rather than independent gain or loss of species, both at small and large scales. The spatial turnover patterns of small mammals in the Cerrado biome are determined by a combination of large scale (biogeographic, spatial) and local mechanisms (low dispersal and habitat specificity). However, processes occurring at small scales seem to be more important in species sorting than processes occurring at large scales. The spatial configuration of the landscape and the extent and quality of habitats strongly influence the rate of species turnover in Cerrado. Thus, protecting the different types of habitats should be of prime importance to conserving the diversity of Cerrado small mammals.
Collapse
Affiliation(s)
- Raquel Ribeiro
- Departamento de Ecologia, Universidade de Brasilia, CEP Brasília, DF, Brazil
| | - Robert E Ricklefs
- Department of Biology, University of Missouri at St. Louis, One University Boulevard, St. Louis, MO, USA
| | - Jader Marinho-Filho
- Departamento de Zoologia, Universidade de Brasília, CEP Brasilia, DF, Brazil
| |
Collapse
|
21
|
Krasnov BR, Shenbrot GI, van der Mescht L, Khokhlova IS. Drivers of compositional turnover are related to species' commonness in flea assemblages from four biogeographic realms: zeta diversity and multi-site generalised dissimilarity modelling. Int J Parasitol 2020; 50:331-344. [PMID: 32224122 DOI: 10.1016/j.ijpara.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022]
Abstract
We investigated drivers of species turnover in fleas parasitic on small mammals in four biogeographic realms using novel methodology (zeta diversity, and Multi-Site Generalised Dissimilarity Modelling). We asked whether (i) flea turnover was better explained by host turnover or environmental variables; (ii) different factors drive the turnover of rare and widespread fleas; (iii) the factors affecting the turnover of rare or widespread fleas differ between realms; and (iv) environmental variables drive flea turnover directly or via their effects on hosts. Dissimilarity in host species composition was the most important factor affecting flea turnover in all realms. In the Afrotropics, the Nearctic, and the Neotropics, this was true mainly for rare species, whereas the zeta diversity of the Palearctic hosts exerted a strong effect on the turnover of both rare and widespread fleas. Dissimilarity in temperature contributed the most to the turnover of rare fleas in the Neotropics and the Palearctic, whereas the turnover of widespread species in these realms was strongly affected by dissimilarity in precipitation. In the Nearctic, dissimilarity in precipitation or temperature mostly affected the turnover of rare fleas or common species, respectively. In the Afrotropics, dissimilarity in the Normalised Difference Vegetation Index and temperature affected the turnover of all species, independently of their level of commonness, while dissimilarity in rainfall was important for the turnover of rare fleas. The responses of flea assemblages to environmental factors represented a combination of direct responses and responses mediated via effects on host turnover. We conclude that host turnover is a more important factor than environmental dissimilarity in its effect on flea species turnover. However, the relative effects of host composition and environment, as well as those of temperature, precipitation and the amount of vegetation, on flea turnover differ (i) between realms and (ii) between rare and common fleas.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel.
| | - Georgy I Shenbrot
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Luther van der Mescht
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Irina S Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
22
|
Santos VM, Silva Cáceres ME, Lücking R. Diversity of foliicolous lichens in isolated montane rainforests (Brejos) of northeastern Brazil and their biogeography in a neotropical context. Ecol Res 2019. [DOI: 10.1111/1440-1703.12071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Viviane M. Santos
- Centro de Biociências, Departamento de Micologia Universidade Federal de Pernambuco Recife Brazil
- Departamento de Biociências Universidade Federal de Sergipe Itabaiana Brazil
| | - Marcela E. Silva Cáceres
- Centro de Biociências, Departamento de Micologia Universidade Federal de Pernambuco Recife Brazil
- Departamento de Biociências Universidade Federal de Sergipe Itabaiana Brazil
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum Freie Universität Berlin Berlin Germany
| |
Collapse
|
23
|
Stevens RD, Rowe RJ, Badgley C. Gradients of mammalian biodiversity through space and time. J Mammal 2019. [DOI: 10.1093/jmammal/gyz024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Richard D Stevens
- Department of Natural Resources Management and Museum of Texas Tech University, Lubbock, TX, USA
| | - Rebecca J Rowe
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Catherine Badgley
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Abstract
Abstract
We provide insights into the diversity of small non-volant mammals (SNVMs) in the Reserva Geobotánica Pululahua, a peri-urban natural area of Quito, Pichincha province, Ecuador. Based on Sherman-like traps and pitfall traps, we recorded 21 species of SNVMs. They represent 40% of the total species reported for the entire province, and include six species that are endemic to the northwestern slope of the Ecuadorian Andes. Despite its proximity to the city of Quito (less than 5 km), Pululahua seems to have an average richness compared with other similar localities in the Ecuadorian Andes. Our results are a baseline for future conservation plans for SNVMs.
Collapse
Affiliation(s)
- Jenny Curay
- Instituto Nacional de Biodiversidad (INABIO), Calle Rumipamba 341 y Av. de los Shyris , Quito , Ecuador
- Departamento de Biología, Facultad de Ciencias , Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253 , Quito , Ecuador
| | - Víctor Romero
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre y Roca, Aptdo.17-01-2184 , Quito , Ecuador
- Departamento de Estudios Ambientales , Universidad Simón Bolívar, Sartenejas , Caracas 1080 , Venezuela
| | - Jorge Brito
- Instituto Nacional de Biodiversidad (INABIO), Calle Rumipamba 341 y Av. de los Shyris , Quito , Ecuador
- Departamento de Biología, Facultad de Ciencias , Escuela Politécnica Nacional, Av. Ladrón de Guevara E11-253 , Quito , Ecuador
| |
Collapse
|
25
|
Varzinczak LH, Moura MO, Lima CS, Passos FC. How do bat, rodent, and marsupial communities respond to spatial and environmental gradients? Insights from a deconstruction of mammal beta diversity from the Atlantic Forest of South America. Oecologia 2018; 189:851-861. [PMID: 30382388 DOI: 10.1007/s00442-018-4288-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/22/2018] [Indexed: 11/26/2022]
Abstract
Space and environment are fundamental in influencing the community structure. However, their relative influences vary according to species' biological characteristics. Here we test whether differences in life-history traits mainly linked to dispersal abilities influence bat, rodent and marsupial beta diversity along spatial and environmental gradients. We expect bat beta diversity to be weakly related with space in comparison to dispersal-limited rodents and marsupials. Using data from communities distributed along the Atlantic Forest of South America, we calculated the total beta diversity and its turnover and nestedness components for each group. We estimated the strength of correlation of beta diversity and its components along spatial and environmental gradients, comparing their importance within and between groups. Space had the higher influence on rodent and marsupial beta diversity. For bats, both gradients influenced similarly their community composition. Between taxa, the influence of these gradients did not differ for rodents and marsupials, while bats presented a stronger relationship with environment compared to non-volant small mammals. Also, all groups presented a similar influence of the spatial gradients on their community structure, despite their differences in dispersal abilities. Our results suggest that differences in biological characteristics partially influence the community structure of these mammals, with their responses along space likely reflecting similar biogeographical dynamics affecting their distribution. Overall, our results improve the understanding of the processes structuring these communities, highlighting the benefits of comparative analyses within a beta diversity perspective to better understand the influence of multiple processes on the community assembly along geographical gradients.
Collapse
Affiliation(s)
- Luiz H Varzinczak
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil.
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil.
| | - Mauricio O Moura
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil
| | - Camila S Lima
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil
| | - Fernando C Passos
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, 81531-990, Brazil
| |
Collapse
|
26
|
Fergnani PN, Ruggiero A. The latitudinal diversity gradient in South American mammals revisited using a regional analysis approach: The importance of climate at extra-tropical latitudes and history towards the tropics. PLoS One 2017; 12:e0184057. [PMID: 28873434 PMCID: PMC5584750 DOI: 10.1371/journal.pone.0184057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
The latitudinal diversity gradient has been considered a consequence of a shift in the impact of abiotic and biotic factors that limit species distributions from the poles to the equator, thus influencing species richness variation. It has also been considered the outcome of evolutionary processes that vary over geographical space. We used six South American mammal groups to test the association of environmental and evolutionary factors and the ecological structuring of mammal assemblages with spatial variation in taxonomic richness (TR), at a spatial resolution of 110 km x 110 km, at tropical and extra-tropical latitudes. Based on attributes that represent what mammal species do in ecosystems, we estimated ecological diversity (ED) as a mean pairwise ecological distance between all co-occurring taxa. The mean pairwise phylogenetic distance between all co-occurring taxa (AvPD) was used as an estimation of phylogenetic diversity. Geographically Weighted Regression analyses performed separately for each mammal group identified tropical and extra-tropical high R2 areas where environmental and evolutionary factors strongly accounted for richness variation. Temperature was the most important predictor of TR in high R2 areas outside the tropics, as was AvPD within the tropics. The proportion of TR variation accounted for by environment (either independently or combined with AvPD) was higher in tropical areas of high richness and low ecological diversity than in tropical areas of high richness and high ecological diversity. In conclusion, we confirmed a shift in the impact of environmental factors, mainly temperature, that best account for mammal richness variation in extra-tropical regions, whereas phylogenetic diversity best accounts for richness variation within the tropics. Environment in combination with evolutionary history explained the coexistence of a high number of ecologically similar species within the tropics. Consideration of the influence of contemporary environmental variables and evolutionary history is crucial to understanding of the latitudinal diversity gradient.
Collapse
Affiliation(s)
- Paula Nilda Fergnani
- Laboratorio Ecotono, Centro Regional Universitario Bariloche-Universidad Nacional del Comahue, INIBIOMA-CONICET, San Carlos de Bariloche, Argentina
- * E-mail:
| | - Adriana Ruggiero
- Laboratorio Ecotono, Centro Regional Universitario Bariloche-Universidad Nacional del Comahue, INIBIOMA-CONICET, San Carlos de Bariloche, Argentina
| |
Collapse
|
27
|
Maestri R, Monteiro LR, Fornel R, Upham NS, Patterson BD, Freitas TRO. The ecology of a continental evolutionary radiation: Is the radiation of sigmodontine rodents adaptive? Evolution 2017; 71:610-632. [DOI: 10.1111/evo.13155] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Renan Maestri
- Programa de Pós‐Graduação em Ecologia Universidade Federal do Rio Grande do Sul Porto Alegre RS 91501 Brazil
- Integrative Research Center Field Museum of Natural History Chicago Illinois 60605
| | - Leandro Rabello Monteiro
- Laboratório de Ciências Ambientais, CBB Universidade Estadual do Norte Fluminense Campos dos Goytacazes RJ 28013 Brazil
| | - Rodrigo Fornel
- Programa de Pós‐Graduação em Ecologia Universidade Regional Integrada do Alto Uruguai e das Missões Campus Erechim RS 99709 Brazil
| | - Nathan S. Upham
- Integrative Research Center Field Museum of Natural History Chicago Illinois 60605
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut 06511
| | - Bruce D. Patterson
- Integrative Research Center Field Museum of Natural History Chicago Illinois 60605
| | - Thales Renato Ochotorena Freitas
- Programa de Pós‐Graduação em Ecologia Universidade Federal do Rio Grande do Sul Porto Alegre RS 91501 Brazil
- Departamento de Genética Universidade Federal do Rio Grande do Sul Porto Alegre RS 91501 Brazil
| |
Collapse
|