1
|
Hu Y, Yang H, Li M, Zhong Z, Zhou Y, Bai F, Wang Q. Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2400884. [PMID: 39387316 DOI: 10.1002/advs.202400884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/22/2024] [Indexed: 10/15/2024]
Abstract
Inspired by the success of deep learning in predicting static protein structures, researchers are now actively exploring other deep learning algorithms aimed at predicting the conformational changes of proteins. Currently, a major challenge in the development of such models lies in the limited training data characterizing different conformational transitions. To address this issue, molecular dynamics simulations is combined with enhanced sampling methods to create a large-scale database. To this end, the study simulates the conformational changes of 2635 proteins featuring two known stable states, and collects the structural information along each transition pathway. Utilizing this database, a general deep learning model capable of predicting the transition pathway for a given protein is developed. The model exhibits general robustness across proteins with varying sequence lengths (ranging from 44 to 704 amino acids) and accommodates different types of conformational changes. Great agreement is shown between predictions and experimental data in several systems and successfully apply this model to identify a novel allosteric regulation in an important biological system, the human β-cardiac myosin. These results demonstrate the effectiveness of the model in revealing the nature of protein conformational changes.
Collapse
Affiliation(s)
- Yao Hu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Mingwei Li
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhicheng Zhong
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yongqi Zhou
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Qian Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Shirakawa KT, Sala FA, Miyachiro MM, Job V, Trindade DM, Dessen A. Architecture and genomic arrangement of the MurE-MurF bacterial cell wall biosynthesis complex. Proc Natl Acad Sci U S A 2023; 120:e2219540120. [PMID: 37186837 PMCID: PMC10214165 DOI: 10.1073/pnas.2219540120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Peptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested to associate into a multimembered complex. This idea is supported by the observation that in many eubacteria, mur genes are present in a single operon within the well conserved dcw cluster, and in some cases, pairs of mur genes are fused to encode a single, chimeric polypeptide. We performed a vast genomic analysis using >140 bacterial genomes and mapped Mur chimeras in numerous phyla, with Proteobacteria carrying the highest number. MurE-MurF, the most prevalent chimera, exists in forms that are either directly associated or separated by a linker. The crystal structure of the MurE-MurF chimera from Bordetella pertussis reveals a head-to-tail, elongated architecture supported by an interconnecting hydrophobic patch that stabilizes the positions of the two proteins. Fluorescence polarization assays reveal that MurE-MurF interacts with other Mur ligases via its central domains with KDs in the high nanomolar range, backing the existence of a Mur complex in the cytoplasm. These data support the idea of stronger evolutionary constraints on gene order when encoded proteins are intended for association, establish a link between Mur ligase interaction, complex assembly and genome evolution, and shed light on regulatory mechanisms of protein expression and stability in pathways of critical importance for bacterial survival.
Collapse
Affiliation(s)
- Karina T. Shirakawa
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, CEP Campinas, São Paulo13083-862, Brazil
| | - Fernanda Angélica Sala
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
| | - Mayara M. Miyachiro
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| | - Viviana Job
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| | - Daniel Maragno Trindade
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo13084-971, Brazil
- Univ. Grenoble Alpes, CNRS, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, Bacterial Pathogenesis Group, GrenobleF-38044, France
| |
Collapse
|
3
|
de Oliveira Rossini N, Dos Santos Silva C, Vinicius Bertacine Dias M. The crystal structure of Mycobacterium thermoresistibile MurE ligase reveals the binding mode of the substrate m-diaminopimelate. J Struct Biol 2023; 215:107957. [PMID: 36944394 DOI: 10.1016/j.jsb.2023.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
The cytoplasmatic biosynthesis of the stem peptide from the peptidoglycan in bacteria involves six steps, which have the role of three ATP-dependent Mur ligases that incorporate three consecutive amino acids to a substrate precursor. MurE is the last Mur ligase to incorporate a free amino acid. Although the structure of MurE from Mycobacterium tuberculosis (MtbMurE) was determined at 3.0Å, the binding mode of (meso-Diaminopimelate) m-DAP and the effect of substrate absence is unknown. Herein, we show the structure of MurE from M. thermoresistibile (MthMurE) in complex with ADP and m-DAP at 1.4 Å resolution. The analysis of the structure indicates key conformational changes that the substrate UDP-MurNAc-L-Ala-D-Glu (UAG) and the free amino acid m-DAP cause on the MthMurE conformation. We observed several movements of domains or loop regions that displace their position in order to perform enzymatic catalysis. Since MthMurE has a high similarity to MtbMurE, this enzyme could also guide strategies for structure-based antimicrobial discovery to fight against tuberculosis or other mycobacterial infections. Synopsis Structural characterization of Mycobacterium thermoresistibile MurE at 1.45Å resolution in complex with ADP and m-DAP shows novel conformational changes when compared to other MurE structures in complex with different ligands.
Collapse
Affiliation(s)
- Nicolas de Oliveira Rossini
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo. Av. Prof Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP. Brazil
| | - Catharina Dos Santos Silva
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo. Av. Prof Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP. Brazil
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo. Av. Prof Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP. Brazil; Department of Chemistry. The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
4
|
Gaur V, Bera S. Recent developments on UDP-N-acetylmuramoyl-L-alanine-D-gutamate ligase (Mur D) enzyme for antimicrobial drug development: An emphasis on in-silico approaches. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100137. [PMID: 36568273 PMCID: PMC9780078 DOI: 10.1016/j.crphar.2022.100137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction The rapid emergence of antibiotic resistance among various bacterial pathogens has been one of the major concerns of health organizations across the world. In this context, for the development of novel inhibitors against antibiotic-resistant bacterial pathogens, UDP-N-Acetylmuramoyl-L-Alanine-D-Glutamate Ligase (MurD) enzyme represents one of the most apposite targets. Body The present review focuses on updated advancements on MurD-targeted inhibitors in recent years along with genetic regulation, structural and functional characteristics of the MurD enzyme from various bacterial pathogens. A concise account of various crystal structures of MurD enzyme, submitted into Protein Data Bank is also discussed. Discussion MurD, an ATP dependent cytoplasmic enzyme is an important target for drug discovery. The genetic organization of MurD enzyme is well elucidated and many crystal structures of MurD enzyme are submitted into Protein Data bank. Various inhibitors against MurD enzyme have been developed so far with an increase in the use of in-silico methods in the recent past. But cell permeability barriers and conformational changes of MurD enzyme during catalytic reaction need to be addressed for effective drug development. So, a combination of in-silico methods along with experimental work is proposed to counter the catalytic machinery of MurD enzyme.
Collapse
Key Words
- Antibiotic resistance
- HTS, High Throughput Screening
- In-silico
- MD, Molecular Dynamics
- MIC, Minimum Inhibitory Concentration
- MurD
- PDB, Protein Data Bank
- PEP, Phosphoenolpyruvate
- PG, Peptidoglycan
- Peptidoglycan
- SAR, Structural Activity Relationship
- UDP-GlcNAc, UDP-N-acetylglucosamine
- UDP-Mpp, UDP-N-acetylmuramylpentapeptide
- UDP-MurNAc, UDP-N-acetylmuramicacid
- UMA, UDP N-acetylmuramoyl-l-alanine
- UNAG, UDP- N-acetylglucosamine
Collapse
|
5
|
Subedi BP, Schofield LR, Carbone V, Wolf M, Martin WF, Ronimus RS, Sutherland-Smith AJ. Structural characterisation of methanogen pseudomurein cell wall peptide ligases homologous to bacterial MurE/F murein peptide ligases. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36178458 DOI: 10.1099/mic.0.001235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Archaea have diverse cell wall types, yet none are identical to bacterial peptidoglycan (murein). Methanogens Methanobacteria and Methanopyrus possess cell walls of pseudomurein, a structural analogue of murein. Pseudomurein differs from murein in containing the unique archaeal sugar N-acetyltalosaminuronic acid instead of N-acetylmuramic acid, β-1,3 glycosidic bonds in place of β-1,4 bonds and only l-amino acids in the peptide cross-links. We have determined crystal structures of methanogen pseudomurein peptide ligases (termed pMurE) from Methanothermus fervidus (Mfer762) and Methanothermobacter thermautotrophicus (Mth734) that are structurally most closely related to bacterial MurE peptide ligases. The homology of the archaeal pMurE and bacterial MurE enzymes is clear both in the overall structure and at the level of each of the three domains. In addition, we identified two UDP-binding sites in Mfer762 pMurE, one at the exterior surface of the interface of the N-terminal and middle domains, and a second site at an inner surface continuous with the highly conserved interface of the three domains. Residues involved in ATP binding in MurE are conserved in pMurE, suggesting that a similar ATP-binding pocket is present at the interface of the middle and the C-terminal domains of pMurE. The presence of pMurE ligases in members of the Methanobacteriales and Methanopyrales, that are structurally related to bacterial MurE ligases, supports the idea that the biosynthetic origins of archaeal pseudomurein and bacterial peptidoglycan cell walls are evolutionarily related.
Collapse
Affiliation(s)
- Bishwa P Subedi
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand.,School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand.,Present address: Faculty of Medicine, Nursing and Health Sciences, Monash Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Linley R Schofield
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand
| | - Vincenzo Carbone
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand
| | - Maximilian Wolf
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand.,Present address: Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ron S Ronimus
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand
| | | |
Collapse
|
6
|
Nakagawa H, Saio T, Nagao M, Inoue R, Sugiyama M, Ajito S, Tominaga T, Kawakita Y. Conformational dynamics of a multidomain protein by neutron scattering and computational analysis. Biophys J 2021; 120:3341-3354. [PMID: 34242590 PMCID: PMC8391080 DOI: 10.1016/j.bpj.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
The flexible conformations of a multidomain protein are responsible for its biological functions. Although MurD, a 47-kDa protein that consists of three domains, sequentially changes its domain conformation from an open form to a closed form through a semiclosed form in its enzymatic reaction, the domain dynamics in each conformation remains unclear. In this study, we verify the conformational dynamics of MurD in the corresponding three states (apo and ATP- and inhibitor-bound states) with a combination of small-angle x-ray and neutron scattering (SAXS and SANS), dynamic light scattering (DLS), neutron backscattering (NBS), neutron spin echo (NSE) spectroscopy, and molecular dynamics (MD) simulations. Applying principal component analysis of the MD trajectories, twisting and open-closed domain modes are identified as the major collective coordinates. The deviations of the experimental SAXS profiles from the theoretical calculations based on the known crystal structures become smaller in the ATP-bound state than in the apo state, and a further decrease is evident upon inhibitor binding. These results suggest that domain motions of the protein are suppressed step by step of each ligand binding. The DLS and NBS data yield collective and self-translational diffusion constants, respectively, and we used them to extract collective domain motions in nanometer and nanosecond scales from the NSE data. In the apo state, MurD shows both twisting and open-closed domain modes, whereas an ATP binding suppresses twisting domain motions, and a further reduction of open-closed mode is seen in the inhibitor-binding state. These observations are consistent with the structure modifications measured by the small-angle scattering as well as the MD simulations. Such changes in the domain dynamics associated with the sequential enzymatic reactions should be related to the affinity and reaction efficiency with a ligand that binds specifically to each reaction state.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan; 2 J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan.
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Michihiro Nagao
- NIST Centre for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland; Department of Materials Science and Engineering, University of Maryland, College Park, Maryland; Department of Physics and Astronomy, University of Delaware, Newark, Delaware
| | - Rintaro Inoue
- Institute for Integrative Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, Japan
| | - Masaaki Sugiyama
- Institute for Integrative Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, Japan
| | - Satoshi Ajito
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
| | - Taiki Tominaga
- Neutron Science and Technology Center, CROSS, Tokai, Ibaraki, Japan
| | | |
Collapse
|
7
|
Saio T, Hiramatsu S, Asada M, Nakagawa H, Shimizu K, Kumeta H, Nakamura T, Ishimori K. Conformational ensemble of a multidomain protein explored by Gd 3+ electron paramagnetic resonance. Biophys J 2021; 120:2943-2951. [PMID: 34242587 DOI: 10.1016/j.bpj.2021.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022] Open
Abstract
Despite their importance in function, the conformational state of proteins and its changes are often poorly understood, mainly because of the lack of an efficient tool. MurD, a 47-kDa protein enzyme responsible for peptidoglycan biosynthesis, is one of those proteins whose conformational states and changes during their catalytic cycle are not well understood. Although it has been considered that MurD takes a single conformational state in solution as shown by a crystal structure, the solution nuclear magnetic resonance (NMR) study suggested the existence of multiple conformational state of apo MurD in solution. However, the conformational distribution has not been evaluated. In this work, we investigate the conformational states of MurD by the use of electron paramagnetic resonance (EPR), especially intergadolinium distance measurement using double electron-electron resonance (DEER) measurement. The gadolinium ions are fixed on specific positions on MurD via a rigid double-arm paramagnetic lanthanide tag that has been originally developed for paramagnetic NMR. The combined use of NMR and EPR enables accurate interpretation of the DEER distance information to the structural information of MurD. The DEER distance measurement for apo MurD shows a broad distance distribution, whereas the presence of the inhibitor narrows the distance distribution. The results suggest that MurD exists in a wide variety of conformational states in the absence of ligands, whereas binding of the inhibitor eliminates variation in conformational states. The multiple conformational states of MurD were previously implied by NMR experiments, but our DEER data provided structural characterization of the conformational variety of MurD.
Collapse
Affiliation(s)
- Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan.
| | - Soya Hiramatsu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Mizue Asada
- Instrument Center, Institute for Molecular Science, Okazaki, Japan
| | - Hiroshi Nakagawa
- Materials Sciences Research CenterTokai, Ibaraki, Japan; J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
| | - Kazumi Shimizu
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
| | | | | | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
8
|
Structural and conformational behavior of MurE ligase from Salmonella enterica serovar Typhi at different temperature and pH conditions. Int J Biol Macromol 2020; 150:389-399. [DOI: 10.1016/j.ijbiomac.2020.01.306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/20/2022]
|
9
|
Accelerating structural life science by paramagnetic lanthanide probe methods. Biochim Biophys Acta Gen Subj 2020; 1864:129332. [DOI: 10.1016/j.bbagen.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/08/2023]
|
10
|
Miyachiro MM, Granato D, Trindade DM, Ebel C, Paes Leme AF, Dessen A. Complex Formation between Mur Enzymes from Streptococcus pneumoniae. Biochemistry 2019; 58:3314-3324. [DOI: 10.1021/acs.biochem.9b00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mayara M. Miyachiro
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Daniela Granato
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
| | - Daniel Maragno Trindade
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
| | - Christine Ebel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | | | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| |
Collapse
|
11
|
Feng R, Satoh Y, Morita H, Ogasawara Y, Dairi T. Amino Acid Residues Recognizing Isomeric Glutamate Substrates in UDP- N-acetylmuramic acid-l-alanine-glutamate Synthetases. ACS Chem Biol 2019; 14:975-978. [PMID: 30977993 DOI: 10.1021/acschembio.9b00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We recently revealed that a previously unknown pathway for peptidoglycan biosynthesis operates in some microorganisms, including Xanthomonas oryzae. It involves two enzymes, MurD2 and MurL, which catalyze the ligation of l-glutamate (l-Glu) to UDP- N-acetylmuramic acid-l-alanine and the epimerization of the terminal l-Glu of the product, respectively. MurD2 of X. oryzae possesses a 26% identity with MurD of Escherichia coli (MurDec), which ligates d-Glu to UDP- N-acetylmuramic acid-l-alanine. To understand how X. oryzae MurD2 recognizes the isomer substrate, we estimated its structure based on that of MurDec during docking simulations. Several amino acid residues, which may be responsible for l-Glu recognition, were replaced with their corresponding amino acid residues in MurDec. Consequently, we obtained a mutated MurD2 enzyme that contained two amino acid substitutions and accepted only d-Glu as the substrate. We next tried to convert the substrate specificity of MurDec using the same strategy, but the mutant enzyme still accepted only d-Glu. Then, MurD of Streptococcus mutans (MurDsm), which possesses the key amino acid residue for l-Glu recognition identified in MurD2, was used for random screenings of mutant enzymes accepting l-Glu. We obtained a mutated MurDsm that had one amino acid substitution and slightly accepted l-Glu. A mutated MurDec possessing the corresponding one amino acid substitution also accepted l-Glu. Thus, we revealed that a few amino acid residues in MurD/MurD2 might control the acceptability of substrates with different stereochemistries.
Collapse
Affiliation(s)
- Ruoyin Feng
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yasuharu Satoh
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Yasushi Ogasawara
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
12
|
Morlot C, Straume D, Peters K, Hegnar OA, Simon N, Villard AM, Contreras-Martel C, Leisico F, Breukink E, Gravier-Pelletier C, Le Corre L, Vollmer W, Pietrancosta N, Håvarstein LS, Zapun A. Structure of the essential peptidoglycan amidotransferase MurT/GatD complex from Streptococcus pneumoniae. Nat Commun 2018; 9:3180. [PMID: 30093673 PMCID: PMC6085368 DOI: 10.1038/s41467-018-05602-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/17/2018] [Indexed: 11/08/2022] Open
Abstract
The universality of peptidoglycan in bacteria underlies the broad spectrum of many successful antibiotics. However, in our times of widespread resistance, the diversity of peptidoglycan modifications offers a variety of new antibacterials targets. In some Gram-positive species such as Streptococcus pneumoniae, Staphylococcus aureus, or Mycobacterium tuberculosis, the second residue of the peptidoglycan precursor, D-glutamate, is amidated into iso-D-glutamine by the essential amidotransferase MurT/GatD complex. Here, we present the structure of this complex at 3.0 Å resolution. MurT has central and C-terminal domains similar to Mur ligases with a cysteine-rich insertion, which probably binds zinc, contributing to the interface with GatD. The mechanism of amidation by MurT is likely similar to the condensation catalyzed by Mur ligases. GatD is a glutaminase providing ammonia that is likely channeled to the MurT active site through a cavity network. The structure and assay presented here constitute a knowledge base for future drug development studies.
Collapse
Affiliation(s)
- Cécile Morlot
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Newcastle Upon Tyne, NE2 4AX, United Kingdom
| | - Olav A Hegnar
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Nolwenn Simon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | - Anne-Marie Villard
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | | | - Francisco Leisico
- Departamento de Química, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, 3584, The Netherlands
| | - Christine Gravier-Pelletier
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR 8601 CNRS, Sorbonne Paris Cité (USPC), Paris, 75006, France
| | - Laurent Le Corre
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR 8601 CNRS, Sorbonne Paris Cité (USPC), Paris, 75006, France
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Newcastle Upon Tyne, NE2 4AX, United Kingdom
| | - Nicolas Pietrancosta
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR 8601 CNRS, Sorbonne Paris Cité (USPC), Paris, 75006, France
| | - Leiv Sigve Håvarstein
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - André Zapun
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France.
| |
Collapse
|
13
|
Senissar M, Manav MC, Brodersen DE. Structural conservation of the PIN domain active site across all domains of life. Protein Sci 2017; 26:1474-1492. [PMID: 28508407 DOI: 10.1002/pro.3193] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 01/26/2023]
Abstract
The PIN (PilT N-terminus) domain is a compact RNA-binding protein domain present in all domains of life. This 120-residue domain consists of a central and parallel β sheet surrounded by α helices, which together organize 4-5 acidic residues in an active site that binds one or more divalent metal ions and in many cases has endoribonuclease activity. In bacteria and archaea, the PIN domain is primarily associated with toxin-antitoxin loci, consisting of a toxin (the PIN domain nuclease) and an antitoxin that inhibits the function of the toxin under normal growth conditions. During nutritional or antibiotic stress, the antitoxin is proteolytically degraded causing activation of the PIN domain toxin leading to a dramatic reprogramming of cellular metabolism to cope with the new situation. In eukaryotes, PIN domains are commonly found as parts of larger proteins and are involved in a range of processes involving RNA cleavage, including ribosomal RNA biogenesis and nonsense-mediated mRNA decay. In this review, we provide a comprehensive overview of the structural characteristics of the PIN domain and compare PIN domains from all domains of life in terms of structure, active site architecture, and activity.
Collapse
Affiliation(s)
- M Senissar
- Centre for Bacterial Stress Response and Persistence, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus, 8000, Denmark
| | - M C Manav
- Centre for Bacterial Stress Response and Persistence, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus, 8000, Denmark
| | - D E Brodersen
- Centre for Bacterial Stress Response and Persistence, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus, 8000, Denmark
| |
Collapse
|
14
|
Feng R, Satoh Y, Ogasawara Y, Yoshimura T, Dairi T. A Glycopeptidyl-Glutamate Epimerase for Bacterial Peptidoglycan Biosynthesis. J Am Chem Soc 2017; 139:4243-4245. [DOI: 10.1021/jacs.7b01221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruoyin Feng
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13 & W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yasuharu Satoh
- Graduate School of Engineering, Hokkaido University, N13 & W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yasushi Ogasawara
- Graduate School of Engineering, Hokkaido University, N13 & W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tohru Yoshimura
- Graduate
School of Bioagricultural Sciences, Nagoya University, Furou-chou,
Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University, N13 & W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|