1
|
Mitchell DR, Sherratt E, Weisbecker V. Facing the facts: adaptive trade-offs along body size ranges determine mammalian craniofacial scaling. Biol Rev Camb Philos Soc 2024; 99:496-524. [PMID: 38029779 DOI: 10.1111/brv.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The mammalian cranium (skull without lower jaw) is representative of mammalian diversity and is thus of particular interest to mammalian biologists across disciplines. One widely retrieved pattern accompanying mammalian cranial diversification is referred to as 'craniofacial evolutionary allometry' (CREA). This posits that adults of larger species, in a group of closely related mammals, tend to have relatively longer faces and smaller braincases. However, no process has been officially suggested to explain this pattern, there are many apparent exceptions, and its predictions potentially conflict with well-established biomechanical principles. Understanding the mechanisms behind CREA and causes for deviations from the pattern therefore has tremendous potential to explain allometry and diversification of the mammalian cranium. Here, we propose an amended framework to characterise the CREA pattern more clearly, in that 'longer faces' can arise through several kinds of evolutionary change, including elongation of the rostrum, retraction of the jaw muscles, or a more narrow or shallow skull, which all result in a generalised gracilisation of the facial skeleton with increased size. We define a standardised workflow to test for the presence of the pattern, using allometric shape predictions derived from geometric morphometrics analysis, and apply this to 22 mammalian families including marsupials, rabbits, rodents, bats, carnivores, antelopes, and whales. Our results show that increasing facial gracility with size is common, but not necessarily as ubiquitous as previously suggested. To address the mechanistic basis for this variation, we then review cranial adaptations for harder biting. These dictate that a more gracile cranium in larger species must represent a structural sacrifice in the ability to produce or withstand harder bites, relative to size. This leads us to propose that facial gracilisation in larger species is often a product of bite force allometry and phylogenetic niche conservatism, where more closely related species tend to exhibit more similar feeding ecology and biting behaviours and, therefore, absolute (size-independent) bite force requirements. Since larger species can produce the same absolute bite forces as smaller species with less effort, we propose that relaxed bite force demands can permit facial gracility in response to bone optimisation and alternative selection pressures. Thus, mammalian facial scaling represents an adaptive by-product of the shifting importance of selective pressures occurring with increased size. A reverse pattern of facial 'shortening' can accordingly also be found, and is retrieved in several cases here, where larger species incorporate novel feeding behaviours involving greater bite forces. We discuss multiple exceptions to a bite force-mediated influence on facial proportions across mammals which lead us to argue that ecomorphological specialisation of the cranium is likely to be the primary driver of facial scaling patterns, with some developmental constraints as possible secondary factors. A potential for larger species to have a wider range of cranial functions when less constrained by bite force demands might also explain why selection for larger sizes seems to be prevalent in some mammalian clades. The interplay between adaptation and constraint across size ranges thus presents an interesting consideration for a mechanistically grounded investigation of mammalian cranial allometry.
Collapse
Affiliation(s)
- D Rex Mitchell
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, 2522, Australia
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- South Australian Museum, Adelaide, South Australia, 5000, Australia
| | - Vera Weisbecker
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
2
|
Kilbourne BM. Differing limb functions and their potential influence upon the diversification of the mustelid hindlimb skeleton. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Though form-function relationships of the mammalian locomotor system have been investigated for over a century, recent models of trait evolution have hitherto been seldom used to identify likely evolutionary processes underlying the locomotor system’s morphological diversity. Using mustelids, an ecologically diverse carnivoran lineage, I investigated whether variation in hindlimb skeletal morphology functionally coincides with climbing, digging, swimming and generalized locomotor habits by using 15 linear traits of the femur, tibia, fibula, calcaneum and metatarsal III across 44 species in a principal component analysis. I subsequently fit different models of Brownian motion and adaptive trait diversification individually to each trait. Climbing, digging and swimming mustelids occupy distinct regions of phenotypic space characterized by differences in bone robustness. Models of adaptive and neutral evolution are, respectively, the best fits for long bone lengths and muscle in-levers, suggesting that different kinds of traits may be associated with different evolutionary processes. However, simulations based upon models of best fit reveal low statistical power to rank the models. Though differences in mustelid hindlimb skeletal morphology appear to coincide with locomotor habits, further study, with sampling expanded beyond the Mustelidae, is necessary to better understand to what degree adaptive evolution shapes morphological diversity of the locomotor system.
Collapse
Affiliation(s)
- Brandon M Kilbourne
- Museum für Naturkunde Berlin, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| |
Collapse
|
3
|
Baskin J, Dickinson E, DuBois J, Galiano H, Hartstone-Rose A. ? Amphictis (Carnivora, Ailuridae) from the Belgrade Formation of North Carolina, USA. PeerJ 2020; 8:e9284. [PMID: 32714653 PMCID: PMC7353912 DOI: 10.7717/peerj.9284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 11/20/2022] Open
Abstract
Miocene terrestrial mammals are poorly known from the Atlantic Coastal Plain. Fossils of the Order Carnivora from this time and region are especially rare. We describe a carnivoran mandible with a p4 from the late Oligocene or early early Miocene Belgrade Formation in Jones County, North Carolina. Comparisons are made with carnivoran jaws with similar premolar and molar lengths from the late Oligocene and Miocene of North America and Eurasia. These indicate that the North Carolina jaw is assignable to the Ailuridae, a family whose only living member is the red panda. The jaw is tentatively referred to Amphictis, a genus known elsewhere from the late Oligocene and early Miocene of Europe and the early Miocene (Hemingfordian) of North America. The North Carolina mandible compares best with the late Oligocene (MP 28) Amphictis ambiguus from Pech du Fraysse, France, the oldest known member of the Family Ailuridae, and with the early Miocene (MN 1-MN 2a) A. schlosseri from southwestern Germany. This identification is compatible with a late late Arikareean (Ar4, early Miocene, MN 2-3 equivalent) age assignment for the other terrestrial mammals of the Belgrade Formation.
Collapse
Affiliation(s)
- Jon Baskin
- Department of Biological and Health Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States of America.,UT Jackson School of Geoscience, University of Texas at Austin, Austin, TX, United States of America
| | - Edwin Dickinson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | | | - Henry Galiano
- Maxilla & Mandible, Ltd., New York, NY, United States of America
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
4
|
Jiangzuo Q, Flynn JJ. The Earliest Ursine Bear Demonstrates the Origin of Plant-Dominated Omnivory in Carnivora. iScience 2020; 23:101235. [PMID: 32559731 PMCID: PMC7303987 DOI: 10.1016/j.isci.2020.101235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/26/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022] Open
Abstract
In Carnivora, increases in body size often lead to dietary specialization toward hypercarnivory. Ursine bears (Tremarctos and Ursus), however, are the only omnivorous Carnivora that evolved large body sizes (i.e., >50 kg). Traits contributing to their gigantism, and how those traits evolved, have never been studied. Here we propose that special dental characters of Ursinae (parallel buccal and lingual ridges) permit a sagittally oriented mastication associated with increasing emphasis on plant foods. This pattern can be traced back to a new early diverging bear of plant-dominated omnivorous diet, Aurorarctos tirawa gen. et sp. nov. from the late Middle Miocene of North America, which was supported as the earliest known ursine bear by phylogenetic analysis. The anatomical transition to increased masticatory efficiency, probably together with the ability to hibernate, helped bears break prior ecological limitations on body size and led to the evolution of a distinctive lineage of herbivorous-omnivorous, large-bodied Carnivora.
Collapse
Affiliation(s)
- Qigao Jiangzuo
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China; Division of Paleontology, American Museum of Natural History, New York 10024, USA.
| | - John J Flynn
- Division of Paleontology, American Museum of Natural History, New York 10024, USA
| |
Collapse
|
5
|
Valenciano A, Govender R. New insights into the giant mustelids (Mammalia, Carnivora, Mustelidae) from Langebaanweg fossil site (West Coast Fossil Park, South Africa, early Pliocene). PeerJ 2020; 8:e9221. [PMID: 32547866 PMCID: PMC7271888 DOI: 10.7717/peerj.9221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Giant mustelids are a paraphyletic group of mustelids found in the Neogene of Eurasia, Africa and North America. Most are known largely from dental remains, with their postcranial skeleton mostly unknown. Here, we describe new craniodental and postcranial remains of the large lutrine Sivaonyx hendeyi and the leopard-size gulonine Plesiogulo aff. monspessulanus from the early Pliocene site Langebaanweg, South Africa. The new material of the endemic S. hendeyi, includes upper incisors and premolars, and fragmentary humerus, ulna and a complete astragalus. Its postcrania shares more traits with the living Aonyx capensis than the late Miocene Sivaonyx beyi from Chad. Sivaonyx hendeyi could therefore be tentatively interpreted as a relatively more aquatic taxon than the Chadian species, comparable to A. capensis. The new specimens of Plesiogulo comprise two edentulous maxillae, including one of a juvenile individual with incomplete decidual dentition, and a fragmentary forelimb of an adult individual. The new dental measurements point to this form being amongst the largest specimens of the genus. Both P3-4 differs from the very large species Plesiogulo botori from late Miocene of Kenya and Ethiopia. This confirms the existence of two distinct large species of Plesiogulo in Africa during the Mio/Pliocene, P. botori in the Late Miocene of Eastern Africa (6.1–5.5 Ma) and Plesiogulo aff. monspessulanus at the beginning of the Pliocene in southern Africa (5.2 Ma). Lastly, we report for the first time the presence of both Sivaonyx and Plesiogulo in MPPM and LQSM at Langebaanweg, suggesting that the differences observed from the locality may be produced by sedimentation or sampling biases instead of temporal replacement within the carnivoran guild.
Collapse
Affiliation(s)
- Alberto Valenciano
- Department of Research and Exhibitions, Iziko Museums of South Africa, Cape Town, South Africa.,Department of Biological Science, University of Cape Town, Cape Town, South Africa
| | - Romala Govender
- Department of Research and Exhibitions, Iziko Museums of South Africa, Cape Town, South Africa.,Department of Biological Science, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Paterson RS, Rybczynski N, Kohno N, Maddin HC. A Total Evidence Phylogenetic Analysis of Pinniped Phylogeny and the Possibility of Parallel Evolution Within a Monophyletic Framework. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00457] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Paterson R, Samuels JX, Rybczynski N, Ryan MJ, Maddin HC. The earliest mustelid in North America. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractUntil now, the pre-Miocene fossil record of mustelids in North America has been restricted to specimens attributable to oligobunine taxa and isolated remains tentatively allocated to the genus Plesictis. In the present study, we report on a nearly complete cranium and a referred dentary of a new genus and species of mustelid. The specimens were recovered from the Turtle Cove and Kimberly Members of the John Day Formation, Oregon, USA.These excellently preserved specimens more confidently confirm the presence of mustelids in the Early and Late Oligocene (Early and Late Arikareean) of North America. Like the holotype specimen of ‘Plesictis’ julieni, the new species lacks an alisphenoid canal and a postprotocrista on the M1 (synapomorphies of Mustelidae), but retains a dorsally deep suprameatal fossa (a feature occasionally suggested to be unique to Procyonidae). Phylogenetic analyses, applying parsimony and Bayesian inference to combined molecular (five genes totalling 5490 bp) and morphological data, recover this new species of mustelid as sister-species to ‘Plesictis’ julieni. The results of these analyses reveal that the new genus is a close relative of other species of Plesictis and several taxa traditionally allied with Oligobuninae, thereby rendering Oligobuninae paraphyletic. We further discuss the significance of the relatively small size of this new mustelid as it relates to predictions based on increased aridification of the palaeoclimate and the expansion of open habitats in the Oligocene.
Collapse
Affiliation(s)
- Ryan Paterson
- Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
- Department of Paleobiology, Canadian Museum of Nature, Gatineau, Ontario, Canada
| | - Joshua X Samuels
- Department of Geosciences, East Tennessee State University, Johnson City, TN, USA
| | - Natalia Rybczynski
- Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
- Department of Paleobiology, Canadian Museum of Nature, Gatineau, Ontario, Canada
| | - Michael J Ryan
- Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
- Department of Vertebrate Paleontology, Cleveland Museum of Natural History, Cleveland, OH, USA
| | - Hillary C Maddin
- Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
- Department of Paleobiology, Canadian Museum of Nature, Gatineau, Ontario, Canada
| |
Collapse
|
8
|
Law CJ. Evolutionary shifts in extant mustelid (Mustelidae: Carnivora) cranial shape, body size and body shape coincide with the Mid-Miocene Climate Transition. Biol Lett 2019; 15:20190155. [PMID: 31138097 DOI: 10.1098/rsbl.2019.0155] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Environmental changes can lead to evolutionary shifts in phenotypic traits, which in turn facilitate the exploitation of novel adaptive landscapes and lineage diversification. The global cooling, increased aridity and expansion of open grasslands during the past 50 Myr are prime examples of new adaptive landscapes that spurred lineage and ecomorphological diversity of several mammalian lineages such as rodents and large herbivorous megafauna. However, whether these environmental changes facilitated evolutionary shifts in small- to mid-sized predator morphology is unknown. Here, I used a complete cranial and body morphological dataset to examine the timing of evolutionary shifts in cranial shape, body size and body shape within extant mustelids (martens, otters, polecats and weasels) during the climatic and environmental changes of the Cenozoic. I found that evolutionary shifts in all three traits occurred within extant mustelid subclades just after the onset of the Mid-Miocene Climate Transition. These mustelid subclades first shifted towards more elongate body plans followed by concurrent shifts towards smaller body sizes and more robust crania. I hypothesize that these cranial and body morphological shifts enabled mustelids to exploit novel adaptive zones associated with the climatic and environmental changes of the Mid to Late Miocene, which facilitated significant increases in clade carrying capacity.
Collapse
Affiliation(s)
- Chris J Law
- Ecology and Evolutionary Biology, University of California Santa Cruz , 130 McAllister Way, Santa Cruz, CA 95060 , USA
| |
Collapse
|
9
|
New Early Miocene Material of Iberictis, the Oldest Member of the Wolverine Lineage (Carnivora, Mustelidae, Guloninae). J MAMM EVOL 2018. [DOI: 10.1007/s10914-018-9445-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Samuels JX, Bredehoeft KE, Wallace SC. A new species of Gulo from the Early Pliocene Gray Fossil Site (Eastern United States); rethinking the evolution of wolverines. PeerJ 2018; 6:e4648. [PMID: 29682423 PMCID: PMC5910791 DOI: 10.7717/peerj.4648] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/30/2018] [Indexed: 11/26/2022] Open
Abstract
The wolverine (Gulo gulo) is the largest living terrestrial member of the Mustelidae; a versatile predator formerly distributed throughout boreal regions of North America and Eurasia. Though commonly recovered from Pleistocene sites across their range, pre-Pleistocene records of the genus are exceedingly rare. Here, we describe a new species of Gulo from the Gray Fossil Site in Tennessee. Based on biostratigraphy, a revised estimate of the age of the Gray Fossil Site is Early Pliocene, near the Hemphillian—Blancan transition, between 4.9 and 4.5 Ma. This represents the earliest known occurrence of a wolverine, more than one million years earlier than any other record. The new species of wolverine described here shares similarities with previously described species of Gulo, and with early fishers (Pekania). As the earliest records of both Gulo and Pekania are known from North America, this suggests the genus may have evolved in North America and dispersed to Eurasia later in the Pliocene. Both fauna and flora at the Gray Fossil Site are characteristic of warm/humid climates, which suggests wolverines may have become ‘cold-adapted’ relatively recently. Finally, detailed comparison indicates Plesiogulo, which has often been suggested to be ancestral to Gulo, is not likely closely related to gulonines, and instead may represent convergence on a similar niche.
Collapse
Affiliation(s)
- Joshua X Samuels
- Department of Geosciences, East Tennessee State University, Johnson City, TN, United States of America.,Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, Johnson City, TN, United States of America
| | - Keila E Bredehoeft
- Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, Johnson City, TN, United States of America
| | - Steven C Wallace
- Department of Geosciences, East Tennessee State University, Johnson City, TN, United States of America.,Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, Johnson City, TN, United States of America
| |
Collapse
|