1
|
Chiu‐Werner A, Jones M. Human land-use changes the diets of sympatric native and invasive mammal species. Ecol Evol 2023; 13:e10800. [PMID: 38077517 PMCID: PMC10700046 DOI: 10.1002/ece3.10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
The consequences of biological invasions and habitat degradation for native biodiversity depend on how species cope with the individual and synergetic challenges these processes present. To assess the impact of anthropogenic land-use on the food web architecture of an invaded community, we examine the diets of nine native and two highly invasive mammal species at different trophic levels, inhabiting different land-uses across six biogeographic regions in Tasmania, Australia. We use two complementary methods, environmental DNA metabarcoding analysis (eDNA) of faeces and stable isotope analysis (SIA) of nitrogen (N) and carbon (C) in whole blood, to account for the high interindividual and temporal variability in the diets of multiple species simultaneously. eDNA showed regionalisation in the diet of smaller species, with land-use further defining dietary taxa within each region. SIA revealed that bioregion and land-use influence the δ13C values of all carnivore species and omnivores, whereas the δ15N values of these species are influenced only by land-use and not bioregion. Including multiple species showed that native rats are changing their diet in response to the presence of invasive rats, an impact that would have otherwise been attributed to land-use. Our findings demonstrate that human activities and invasive species are moulding the diets of invaded communities, raising questions about the potential impacts that dietary modifications will have on the life-history traits and the evolutionary consequences these modifications might have on the survival of native species. This highlights the urgency of including human activities in ecological studies and the importance of targeting multispecies assemblages to gain a better understanding of synergetic impacts on native biodiversity.
Collapse
Affiliation(s)
- Antje Chiu‐Werner
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Menna Jones
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
2
|
Bergstrom BJ, Scruggs SB, Vieira EM. Tropical savanna small mammals respond to loss of cover following disturbance: A global review of field studies. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1017361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Small-mammal faunas of tropical savannas consist of endemic assemblages of murid rodents, small marsupials, and insectivores on four continents. Small mammals in tropical savannas are understudied compared to other tropical habitats and other taxonomic groups (e.g., Afrotropical megafauna or Neotropical rainforest mammals). Their importance as prey, ecosystem engineers, disease reservoirs, and declining members of endemic biodiversity in tropical savannas compels us to understand the factors that regulate their abundance and diversity. We reviewed field studies published in the last 35 years that examined, mostly experimentally, the effects of varying three primary endogenous disturbances in tropical savanna ecosystems—fire, large mammalian herbivory (LMH), and drought—on abundance and diversity of non-volant small mammals. These disturbances are most likely to affect habitat structure (cover or concealment), food availability, or both, for ground-dwelling small mammalian herbivores, omnivores, and insectivores. Of 63 studies (included in 55 published papers) meeting these criteria from the Afrotropics, Neotropics, and northern Australia (none was found from southern Asia), 29 studies concluded that small mammals responded (mostly negatively) to a loss of cover (mostly from LMH and fire); four found evidence of increased predation on small mammals in lower-cover treatments (e.g., grazed or burned). Eighteen studies concluded a combination of food- and cover-limitation explained small-mammal responses to endogenous disturbances. Only two studies concluded small-mammal declines in response to habitat-altering disturbance were caused by food limitation and not related to cover reduction. Evidence to date indicates that abundance and richness of small savanna mammals, in general (with important exceptions), is enhanced by vegetative cover (especially tall grass, but sometimes shrub cover) as refugia for these prey species amid a “landscape of fear,” particularly for diurnal, non-cursorial, and non-fossorial species. These species have been called “decreasers” in response to cover reduction, whereas a minority of small-mammal species have been shown to be “increasers” or disturbance-tolerant. Complex relationships between endogenous disturbances and small-mammal food resources are important secondary factors, but only six studies manipulated or measured food resources simultaneous to habitat manipulations. While more such studies are needed, designing effective ones for cryptic consumer communities of omnivorous dietary opportunists is a significant challenge.
Collapse
|
3
|
Fleming PA, Stobo-Wilson AM, Crawford HM, Dawson SJ, Dickman CR, Doherty TS, Fleming PJS, Newsome TM, Palmer R, Thompson JA, Woinarski JCZ. Distinctive diets of eutherian predators in Australia. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220792. [PMID: 36312571 PMCID: PMC9554524 DOI: 10.1098/rsos.220792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/16/2022] [Indexed: 06/01/2023]
Abstract
Introduction of the domestic cat and red fox has devastated Australian native fauna. We synthesized Australian diet analyses to identify traits of prey species in cat, fox and dingo diets, which prey were more frequent or distinctive to the diet of each predator, and quantified dietary overlap. Nearly half (45%) of all Australian terrestrial mammal, bird and reptile species occurred in the diets of one or more predators. Cat and dingo diets overlapped least (0.64 ± 0.27, n = 24 location/time points) and cat diet changed little over 55 years of study. Cats were more likely to have eaten birds, reptiles and small mammals than foxes or dingoes. Dingo diet remained constant over 53 years and constituted the largest mammal, bird and reptile prey species, including more macropods/potoroids, wombats, monotremes and bandicoots/bilbies than cats or foxes. Fox diet had greater overlap with both cats (0.79 ± 0.20, n = 37) and dingoes (0.73 ± 0.21, n = 42), fewer distinctive items (plant material, possums/gliders) and significant spatial and temporal heterogeneity over 69 years, suggesting the opportunity for prey switching (especially of mammal prey) to mitigate competition. Our study reinforced concerns about mesopredator impacts upon scarce/threatened species and the need to control foxes and cats for fauna conservation. However, extensive dietary overlap and opportunism, as well as low incidence of mesopredators in dingo diets, precluded resolution of the debate about possible dingo suppression of foxes and cats.
Collapse
Affiliation(s)
- Patricia A. Fleming
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Alyson M. Stobo-Wilson
- NESP Threatened Species Recovery Hub, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
- CSIRO Land and Water, PMB 44, Winnellie, Northern Territory 0822, Australia
| | - Heather M. Crawford
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Stuart J. Dawson
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, Western Australia 6151, Australia
| | - Chris R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building A08, Camperdown, New South Wales 2006, Australia
| | - Tim S. Doherty
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building A08, Camperdown, New South Wales 2006, Australia
| | - Peter J. S. Fleming
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange Agricultural Institute, 1447 Forest Road, Orange, New South Wales 2800, Australia
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
- Institute for Agriculture and the Environment, Centre for Sustainable Agricultural Systems, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| | - Thomas M. Newsome
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building A08, Camperdown, New South Wales 2006, Australia
| | - Russell Palmer
- Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia
| | - Jim A. Thompson
- Queensland Museum Network, PO Box 3300, South Brisbane BC, Queensland 4101, Australia
| | - John C. Z. Woinarski
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
| |
Collapse
|
4
|
Hernandez‐Santin L, Goldizen AW, Fisher DO. Northern quolls in the Pilbara persist in high‐quality habitat, despite a decline trajectory consistent with range eclipse by feral cats. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Lorna Hernandez‐Santin
- School of Biological Sciences University of Queensland St. Lucia Queensland Australia
- Centre for Mined Land Rehabilitation Sustainable Minerals Institute, University of Queensland St. Lucia Queensland Australia
| | - Anne W. Goldizen
- School of Biological Sciences University of Queensland St. Lucia Queensland Australia
| | - Diana O. Fisher
- School of Biological Sciences University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
5
|
Bruce T, Williams SE, Amin R, L'Hotellier F, Hirsch BT. Laying low: Rugged lowland rainforest preferred by feral cats in the Australian Wet Tropics. Ecol Evol 2022; 12:e9105. [PMID: 35845357 PMCID: PMC9277418 DOI: 10.1002/ece3.9105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022] Open
Abstract
Invasive mesopredators are responsible for the decline of many species of native mammals worldwide. Feral cats have been causally linked to multiple extinctions of Australian mammals since European colonization. While feral cats are found throughout Australia, most research has been undertaken in arid habitats, thus there is a limited understanding of feral cat distribution, abundance, and ecology in Australian tropical rainforests. We carried out camera-trapping surveys at 108 locations across seven study sites, spanning 200 km in the Australian Wet Tropics. Single-species occupancy analysis was implemented to investigate how environmental factors influence feral cat distribution. Feral cats were detected at a rate of 5.09 photographs/100 days, 11 times higher than previously recorded in the Australian Wet Tropics. The main environmental factors influencing feral cat occupancy were a positive association with terrain ruggedness, a negative association with elevation, and a higher affinity for rainforest than eucalypt forest. These findings were consistent with other studies on feral cat ecology but differed from similar surveys in Australia. Increasingly harsh and consistently wet weather conditions at higher elevations, and improved shelter in topographically complex habitats may drive cat preference for lowland rainforest. Feral cats were positively associated with roads, supporting the theory that roads facilitate access and colonization of feral cats within more remote parts of the rainforest. Higher elevation rainforests with no roads could act as refugia for native prey species within the critical weight range. Regular monitoring of existing roads should be implemented to monitor feral cats, and new linear infrastructure should be limited to prevent encroachment into these areas. This is pertinent as climate change modeling suggests that habitats at higher elevations will become similar to lower elevations, potentially making the environment more suitable for feral cat populations.
Collapse
Affiliation(s)
- Tom Bruce
- Centre for Tropical Environmental and Sustainability ScienceCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Stephen E. Williams
- Centre for Tropical Environmental and Sustainability ScienceCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | | | | | - Ben T. Hirsch
- Centre for Tropical Environmental and Sustainability ScienceCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Smithsonian Tropical Research InstitutePanamaPanama
| |
Collapse
|
6
|
Home Range and Activity Patterns of Free-Ranging Cats: A Case Study from a Chinese University Campus. Animals (Basel) 2022; 12:ani12091141. [PMID: 35565567 PMCID: PMC9103849 DOI: 10.3390/ani12091141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In this study, we used collar-mounted sensors to determine the home range size of free-ranging cats on a Chinese university campus. Twenty-nine adult cats (fifteen males and fourteen females) were tracked via attached GPS units from October 2018 to June 2020. Throughout the study, home range sizes ranged from 0.56 to 19.83 ha at 95% KDE for all cats. The home range of free-ranging cats is affected by the breeding status and sex; for example, male cats tend to have a larger home range size in the breeding season than in the non-breeding season, and in the breeding season, male cats generally have a larger home range than females. In the study of activity patterns, we provided the activity steps of free-ranging cats at different times of the day, and the mean (±SE) number of steps a cat takes per day was 19,863.96 ± 1627.21. The results show that free-ranging cats have more intense activities at twilight and relatively lower activity intensity in the afternoon. Our study provided a case study of the home range and activity patterns of free-ranging cats living on a Chinese university campus, and provided theoretical support for the management and conservation implications of free-ranging cats in cities. Abstract Human activities and the available resources influence the home range and activity patterns of free-ranging cats. Our objective in this study was to determine sex and breeding season vs. non-breeding season home range size, as well as activity patterns for unowned free-ranging cats at a university campus in China. Twenty-nine adult cats (fifteen males and fourteen females) were tracked with attached GPS units from October 2018 to June 2020. We considered the effects of sex and breeding status on the home range size of free-ranging cats. Male cats had larger home ranges (95% KDE: 12.60 ± 2.61 ha) than female cats (95% KDE: 5.02 ± 1.34 ha) in the breeding season. There was a seasonal effect on the home range size of male cats; for example, during the non-breeding season, the home range (95% KDE: 6.68 ± 1.22 ha) was smaller than that during the breeding season (95% KDE: 12.60 ± 2.61 ha), while female cats tended to have larger home ranges in the non-breeding season (95% KDE: 7.73 ± 2.77 ha) than in the breeding season (95% KDE: 5.02 ± 1.34 ha). We used the number of activity steps to measure the activity intensity of cats to explore their activity patterns. The mean (±SE) number of steps a cat takes per day was 19,863.96 ± 1627.21. There were two peak periods of activity in a day, 6:00–10:00 and 17:00–21:00. Our study provided a case study of the home range and activity patterns of free-ranging cats living on a Chinese university campus, and the results show that the home range of free-ranging cats is affected by the breeding status and sex, and free-ranging cats have more intense activities at twilight and relatively lower activity intensity in the afternoon. The results provided theoretical support for the management and conservation implications of free-ranging cats in cities.
Collapse
|
7
|
Moseby K, McGregor H. Feral Cats Use Fine Scale Prey Cues and Microhabitat Patches of Dense Vegetation When Hunting Prey in Arid Australia. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
8
|
Jones ME, Bain GC, Hamer RP, Proft KM, Gardiner RZ, Dixon KJ, Kittipalawattanapol K, Zepeda de Alba AL, Ranyard CE, Munks SA, Barmuta LA, Burridge CP, Johnson CN, Davidson NJ. Research supporting restoration aiming to make a fragmented landscape ‘functional’ for native wildlife. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Radford IJ, Corey B, Carnes K, Shedley E, McCaw L, Woolley LA. Landscape-Scale Effects of Fire, Cats, and Feral Livestock on Threatened Savanna Mammals: Unburnt Habitat Matters More Than Pyrodiversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.739817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Northern Australia has undergone significant declines among threatened small and medium-sized mammals in recent decades. Conceptual models postulate that predation by feral cats is the primary driver, with changed disturbance regimes from fire and feral livestock in recent decades reducing habitat cover and exacerbating declines. However, there is little guidance on what scale habitat and disturbance attributes are most important for threatened mammals, and what elements and scale of fire mosaics actually support mammals. In this study, we test a series of hypotheses regarding the influence of site-scale (50 × 50 m) habitat and disturbance attributes, as well as local-scale (1 km radius), meta-local scale (3 km), landscape-scale (5 km) and meta-landscape scale (10 km) fire mosaic attributes on mammal abundance and richness. We found that habitat cover (rock, perennial grass, and shrub cover) at the site-scale had a positive effect, and disturbance factors (feral cats, fire, feral livestock) had a negative influence on mammal abundance and richness. Models supported site-scale habitat and disturbance factors as more important for mammals than broader-scale (local up to meta-landscape scale) fire mosaic attributes. Finally, we found that increasing the extent of ≥ 4 year unburnt habitat, and having an intermediate percentage (ca. 25%) of recently burnt (1-year burnt) habitat within the mosaic, were the most important functional elements of the fire mosaic at broad scales for mammals. Contrary to expectations, diversity of post-fire ages (‘pyrodiversity’) was negatively associated with mammal abundance and richness. These results highlight the need for management to promote retention of longer unburnt vegetation in sufficient patches across savanna landscapes (particularly of shrub and fruiting trees), maintain low-intensity patchy fire regimes, reduce the extent of intense late dry season wildfires, and to reduce the impact of feral livestock. This study provides further evidence for the role of feral cats in northern Australian mammal declines, and highlights the need for increased research into the efficacy of cat control methodologies in reducing biodiversity impacts in these extensive landscapes.
Collapse
|
10
|
Palmer R, Anderson H, Richards B, Craig MD, Gibson L. Does aerial baiting for controlling feral cats in a heterogeneous landscape confer benefits to a threatened native meso-predator? PLoS One 2021; 16:e0251304. [PMID: 33961676 PMCID: PMC8104397 DOI: 10.1371/journal.pone.0251304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/24/2021] [Indexed: 11/19/2022] Open
Abstract
Introduced mammalian predators can have devastating impacts on recipient ecosystems and disrupt native predator–prey relationships. Feral cats (Felis catus) have been implicated in the decline and extinction of many Australian native species and developing effective and affordable methods to control them is a national priority. While there has been considerable progress in the lethal control of feral cats, effective management at landscape scales has proved challenging. Justification of the allocation of resources to feral cat control programs requires demonstration of the conservation benefit baiting provides to native species susceptible to cat predation. Here, we examined the effectiveness of a landscape-scale Eradicat® baiting program to protect threatened northern quolls (Dasyurus hallucatus) from feral cat predation in a heterogeneous rocky landscape in the Pilbara region of Western Australia. We used camera traps and GPS collars fitted to feral cats to monitor changes in activity patterns of feral cats and northern quolls at a baited treatment site and unbaited reference site over four years. Feral cat populations appeared to be naturally sparse in our study area, and camera trap monitoring showed no significant effect of baiting on cat detections. However, mortality rates of collared feral cats ranged from 18–33% after baiting, indicating that the program was reducing cat numbers. Our study demonstrated that feral cat baiting had a positive effect on northern quoll populations, with evidence of range expansion at the treatment site. We suggest that the rugged rocky habitat preferred by northern quolls in the Pilbara buffered them to some extent from feral cat predation, and baiting was sufficient to demonstrate a positive effect in this relatively short-term project. A more strategic approach to feral cat management is likely to be required in the longer-term to maximise the efficacy of control programs and thereby improve the conservation outlook for susceptible threatened fauna.
Collapse
Affiliation(s)
- Russell Palmer
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
| | - Hannah Anderson
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
| | - Brooke Richards
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
| | - Michael D. Craig
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Western Australia, Australia
- Environmental and Conservation Sciences, Murdoch University, Western Australia, Australia
| | - Lesley Gibson
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Western Australia, Australia
- * E-mail:
| |
Collapse
|
11
|
Hamer RP, Gardiner RZ, Proft KM, Johnson CN, Jones ME. A triple threat: high population density, high foraging intensity and flexible habitat preferences explain high impact of feral cats on prey. Proc Biol Sci 2021; 288:20201194. [PMID: 33402069 DOI: 10.1098/rspb.2020.1194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Alien mammalian carnivores have contributed disproportionately to global loss of biodiversity. In Australia, predation by the feral cat and red fox is one of the most significant causes of the decline of native vertebrates. To discover why cats have greater impacts on prey than native predators, we compared the ecology of the feral cat to a marsupial counterpart, the spotted-tailed quoll. Individual prey are 20-200 times more likely to encounter feral cats, because of the combined effects of cats' higher population densities, greater intensity of home-range use and broader habitat preferences. These characteristics also mean that the costs to the prey of adopting anti-predator behaviours against feral cats are likely to be much higher than adopting such behaviours in response to spotted-tailed quolls, due to the reliability and ubiquity of feral cat cues. These results help explain the devastating impacts of cats on wildlife in Australia and other parts of the world.
Collapse
Affiliation(s)
- Rowena P Hamer
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia.,Tasmanian Land Conservancy, Hobart, Tasmania 7005, Australia
| | - Riana Z Gardiner
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Kirstin M Proft
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Christopher N Johnson
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Menna E Jones
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| |
Collapse
|
12
|
Thomas H, Cameron SF, Campbell HA, Micheli-Campbell MA, Kirke EC, Wheatley R, Wilson RS. Rocky escarpment versus savanna woodlands: comparing diet and body condition as indicators of habitat quality for the endangered northern quoll (Dasyurus hallucatus). WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
ContextUnderstanding what constitutes high-quality habitat for threatened species is critical for conservation management planning. The endangered northern quoll (Dasyurus hallucatus) has experienced an uneven range contraction among habitat types. Once common across multiple habitats of northern mainland Australia, declining populations have now contracted to rocky escarpments.
AimThe island refuge of Groote Eylandt, Northern Territory, Australia, has not experienced the declines as seen on mainland Australia. Here, northern quolls persist in both rocky escarpment and savanna woodland, which provides a rare opportunity to investigate the habitat quality of rocky escarpments and savanna woodland for the northern quoll.
MethodsNorthern quolls (n=111) were trapped in both rocky escarpment (n=61) and savanna woodland (n=50) habitats before the breeding season (May). We conducted body condition assessment, scat analysis, and measured trophic niche breadth of individuals occupying each habitat type.
Key resultsFemale quolls occupying rocky escarpments exhibited a lower body condition than did quolls occupying savanna woodland. Quolls from rocky escarpments consumed a significantly higher proportion of mammals and fed within a narrower dietary niche than did those occupying savanna woodland.
ConclusionsQuolls had adapted to the dietary resources available within each habitat type, suggesting that the lack of quolls in savanna woodland on the mainland is due to factors other than availability of dietary resources.
ImplicationsGroote Eylandt is of critical conservation significance, where high numbers of northern quolls exist in both rocky escarpment and savanna woodland habitats. For population viability on the mainland, managing threats such as feral predators and inappropriate fire regimes in savanna woodland, particularly those surrounding rocky escarpment, should be prioritised.
Collapse
|
13
|
Moore HA, Dunlop JA, Jolly CJ, Kelly E, Woinarski JCZ, Ritchie EG, Burnett S, van Leeuwen S, Valentine LE, Cowan MA, Nimmo DG. A brief history of the northern quoll (Dasyurus hallucatus): a systematic review. AUSTRALIAN MAMMALOGY 2021. [DOI: 10.1071/am21002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Tuft K, Legge S, Frank ASK, James AI, May T, Page E, Radford IJ, Woinarski JCZ, Fisher A, Lawes MJ, Gordon IJ, Johnson CN. Cats are a key threatening factor to the survival of local populations of native small mammals in Australia’s tropical savannas: evidence from translocation trials with Rattus tunneyi. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
ContextInvasive predators are a key threat to biodiversity worldwide. In Australia, feral cats are likely to be responsible for many extinctions of native mammal species in the south and centre of the continent.
AimsHere we examine the effect of feral cats on native rodent populations in the second of two translocation experiments.
MethodsIn a wild-to-wild translocation, we introduced pale field rats, Rattus tunneyi, whose populations are declining in the wild, into two pairs of enclosures where accessibility by feral cats was manipulated.
Key resultsIndividual rats translocated into enclosures accessible to cats were rapidly extirpated after cats were first detected visiting the enclosures. Rats in the enclosure not exposed to cats were 6.2 times more likely to survive than those exposed to cats. Two individual cats were responsible for the deaths of all but 1 of 18 cat-accessible rats. Rats in the site with denser ground cover persisted better than in the site with more open cover.
ConclusionsThese results are consistent with our previous study of a different native rat species in the same experimental setup, and provide further evidence that, even at low densities, feral cats can drive local populations of small mammals to extinction.
ImplicationsEffective feral cat control may be necessary to enable recovery of small mammals.
Collapse
|
15
|
Diet of invasive cats, rats and tegu lizards reveals impact over threatened species in a tropical island. Perspect Ecol Conserv 2020. [DOI: 10.1016/j.pecon.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Stobo‐Wilson AM, Stokeld D, Einoder LD, Davies HF, Fisher A, Hill BM, Mahney T, Murphy BP, Stevens A, Woinarski JCZ, Rangers B, Warddeken Rangers, Gillespie GR. Habitat structural complexity explains patterns of feral cat and dingo occurrence in monsoonal Australia. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Alyson M. Stobo‐Wilson
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Darwin NT Australia
- Flora and Fauna Division Department of Environment and Natural Resources Northern Territory Government Darwin NT Australia
| | - Danielle Stokeld
- Flora and Fauna Division Department of Environment and Natural Resources Northern Territory Government Darwin NT Australia
| | - Luke D. Einoder
- Flora and Fauna Division Department of Environment and Natural Resources Northern Territory Government Darwin NT Australia
| | - Hugh F. Davies
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Darwin NT Australia
| | - Alaric Fisher
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Darwin NT Australia
- Flora and Fauna Division Department of Environment and Natural Resources Northern Territory Government Darwin NT Australia
| | - Brydie M. Hill
- Flora and Fauna Division Department of Environment and Natural Resources Northern Territory Government Darwin NT Australia
| | - Terry Mahney
- Flora and Fauna Division Department of Environment and Natural Resources Northern Territory Government Darwin NT Australia
| | - Brett P. Murphy
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Darwin NT Australia
| | - Alys Stevens
- Warddeken Land Management Limited Darwin NT Australia
| | - John C. Z. Woinarski
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Darwin NT Australia
| | | | | | - Graeme R. Gillespie
- Flora and Fauna Division Department of Environment and Natural Resources Northern Territory Government Darwin NT Australia
| |
Collapse
|
17
|
Heiniger J, Davies HF, Gillespie GR. Status of mammals on Groote Eylandt: Safe haven or slow burn? AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jaime Heiniger
- Flora and Fauna Division; Department of Environment and Natural Resources; Northern Territory Government; Berrimah Northern Territory 0828 Australia
| | - Hugh F Davies
- NESP Threatened Species Recovery Hub; Research Institute for the Environment and Livelihoods; Charles Darwin University; Casuarina Northern Territory Australia
| | - Graeme R. Gillespie
- Flora and Fauna Division; Department of Environment and Natural Resources; Northern Territory Government; Berrimah Northern Territory 0828 Australia
- School of Biosciences; The University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
18
|
Soyumert A. Camera-Trapping Two Felid Species: Monitoring Eurasian Lynx (Lynx lynx) and Wildcat (Felis silvestris) Populations in Mixed Temperate Forest Ecosystems. MAMMAL STUDY 2020. [DOI: 10.3106/ms2019-0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Anıl Soyumert
- Game and Wildlife Programme, Kastamonu University, Araç, 37800, Kastamonu, Turkey
| |
Collapse
|
19
|
Heiniger J, Cameron SF, Madsen T, Niehaus AC, Wilson RS. Demography and spatial requirements of the endangered northern quoll on Groote Eylandt. WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
ContextAustralia has experienced the highest number of mammal extinctions of any continent over the past two centuries. Understanding the demography and spatial requirements of populations before declines occur is fundamental to confirm species trajectory, elucidate causes of decline and develop effective management strategies.
AimsWe evaluated the demography and spatial requirements of a northern quoll, Dasyurus hallucatus, population on Groote Eylandt, Northern Territory. Groote Eylandt is considered a refuge for the species because key threatening processes are absent or limited; cane toads and introduced ungulates are absent, feral cats are infrequently detected and the fire regime is benign compared with mainland Northern Territory.
MethodsWe conducted a 4-year capture–mark–recapture study to monitor growth, reproduction and survival of northern quolls within a 128-ha area, and we evaluated spatial requirements by attaching GPS units to both sexes. To assess the status of the Groote Eylandt population, we compared the demographics with existing data from mainland populations.
Key resultsThe average density of northern quolls was 0.33ha−1. However, there was a 58% decline in female density, primarily between 2012 and 2013, corresponding with a decrease in female body mass. Females survived and bred in up to 3 years and adult survival rates did not vary among years, suggesting that juvenile recruitment drives population fluctuations. Male quolls were semelparous, with die-off occurring in the months following breeding. The median female and male home ranges were 15.7ha and 128.6ha respectively, and male ranges increased significantly during breeding, with 1616ha being the largest recorded.
ConclusionsThe northern quoll population on Groote Eylandt had a higher density, female survival and reproductive success than has been previously recorded on the mainland. However, a marked decline was recorded corresponding with a decrease in female mass, indicating below-average rainfall as the likely cause.
ImplicationsGroote Eylandt remains a refuge for the endangered northern quoll. However, even in the absence of key threatening processes, the population has declined markedly, highlighting the impact of environmental fluctuations. Maintaining the ecological integrity of Groote Eylandt is imperative for population recovery, and managing threats on the mainland over appropriate spatial scales is necessary to increase population resilience.
Collapse
|
20
|
Rowland J, Hoskin CJ, Burnett S. Distribution and diet of feral cats (Felis catus) in the Wet Tropics of north-eastern Australia, with a focus on the upland rainforest. WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
ContextFeral cats have been identified as a key threat to Australia’s biodiversity, particularly in arid areas and tropical woodlands. Their presence, abundance and potential impacts in rainforest have received less attention.
AimsTo investigate the distribution and diet of feral cats (Felis catus) in upland rainforest of the Wet Tropics.
MethodsWe collated available occurrence records from the Wet Tropics, and data from upland camera-trapping surveys over an 8-year period, to assess geographic and elevational distribution of feral cats in the bioregion. We also assessed the diet of feral cats from scats collected at upland sites.
Key resultsFeral cats are widespread through the Wet Tropics bioregion, from the lowlands to the peaks of the highest mountains (>1600m), and in all vegetation types. Abundance appears to vary greatly across the region. Cats were readily detected during camera-trap surveys in some upland rainforest areas (particularly in the southern Atherton Tablelands and Bellenden Ker Range), but were never recorded in some areas (Thornton Peak, the upland rainforest of Windsor Tableland and Danbulla National Park) despite numerous repeated camera-trap surveys over the past 8 years at some of these sites. Scat analysis suggested that small mammals comprise ~70% of the diet of feral cats at an upland rainforest site. Multivariate analysis could not detect a difference in mammal community at sites where cats were detected or not.
ConclusionsFeral cats are widespread in the Wet Tropics and appear to be common in some upland areas. However, their presence and abundance are variable across the region, and the drivers of this variability are not resolved. Small mammals appear to be the primary prey in the rainforest, although the impacts of cats on the endemic and threatened fauna of the Wet Tropics is unknown.
ImplicationsGiven their documented impact in some ecosystems, research is required to examine the potential impact of cats on Wet Tropics fauna, particularly the many upland endemic vertebrates. Studies are needed on (1) habitat and prey selection, (2) population dynamics, and (3) landscape source–sink dynamics of feral cats in the Wet Tropics.
Collapse
|
21
|
Lavery TH, Alabai M, Holland P, Qaqara C, Vatohi N. Feral cat abundance, density and activity in tropical island rainforests. WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract ContextIntroduced predators, especially cats, are a major cause of extinction globally. Accordingly, an extensive body of literature has focussed on the ecology and management of feral cats in continental and island systems alike. However, geographic and climatic gaps remain, with few studies focusing on rainforests or tropical islands of the south-western Pacific. AimsWe aimed to estimate cat densities and elucidate activity patterns of cats and sympatric birds and mammals in tropical island rainforests. We hypothesised that cat activity would be most influenced by the activity of introduced rodents and ground-dwelling birds that are predominant prey on islands. MethodsWe used camera traps to detect feral cats, pigs, rodents and birds on four tropical islands in the south-western Pacific. We used spatial capture–recapture models to estimate the abundance and density of feral cats. Relative abundance indices, and temporal overlaps in activity were calculated for feral cats, pigs, rodents, and birds. We used a generalised linear model to test for the influence of pig, rodent, and bird abundance on feral cat abundance. Key resultsThe species most commonly detected by our camera traps was feral cat, with estimated densities between 0.31 and 2.65 individuals km−2. Pigs and introduced rodents were the second- and third-most commonly detected fauna respectively. Cat activity was bimodal, with peaks in the hours before dawn and after dusk. Cat abundance varied with site and the abundance of rodents. ConclusionsFeral cats are abundant in the tropical rainforests of our study islands, where one bird and two mammal species are now presumed extinct. Introduced rodents possibly amplify the abundance and impacts of feral cats at our sites. Peak cat activity following dusk did not clearly overlap with other species detected by our camera traps. We postulate cats may be partly focussed on hunting frogs during this period. ImplicationsCats are likely to be a major threat to the highly endemic fauna of our study region. Management of feral cats will benefit from further consideration of introduced prey such as rodents, and their role in hyperpredation. Island archipelagos offer suitable opportunities to experimentally test predator–prey dynamics involving feral cats.
Collapse
|
22
|
Hohnen R, Berris K, Hodgens P, Mulvaney J, Florence B, Murphy BP, Legge SM, Dickman CR, Woinarski JCZ. Pre-eradication assessment of feral cat density and population size across Kangaroo Island, South Australia. WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Context Feral cats (Felis catus) are a significant threat to wildlife in Australia and globally. In Australia, densities of feral cats vary across the continent and also between the mainland and offshore islands. Densities on small islands may be at least an order of magnitude higher than those in adjacent mainland areas. To provide cat-free havens for biodiversity, cat-control and eradication programs are increasingly occurring on Australian offshore islands. However, planning such eradications is difficult, particularly on large islands where cat densities could vary considerably.
Aims In the present study, we examined how feral cat densities vary among three habitats on Kangaroo Island, a large Australian offshore island for which feral cat eradication is planned.
Methods Densities were compared among the following three broad habitat types: forest, forest–farmland boundaries and farmland. To detect cats, three remote-camera arrays were deployed in each habitat type, and density around each array was calculated using a spatially explicit capture–recapture framework.
Key results The average feral cat density on Kangaroo Island (0.37 cats km−2) was slightly higher than that on the Australian mainland. Densities varied from 0.06 to 3.27 cats km−2 and were inconsistent within broad habitat types. Densities were highest on farms that had a high availability of macropod and sheep carcasses. The relationship between cat density and the proportion of cleared land in the surrounding area was weak. The total feral cat population of Kangaroo Island was estimated at 1629±661 (mean±s.e.) individuals.
Conclusions Cat densities on Kangaroo Island are highly variable and may be locally affected by factors such as prey and carrion availability.
Implications For cat eradication to be successful, resources must be sufficient to control at least the average cat density (0.37 cats km−2), with additional effort around areas of high carcass availability (where cats are likely to be at a higher density) potentially also being required.
Collapse
|
23
|
Woolley L, Geyle HM, Murphy BP, Legge SM, Palmer R, Dickman CR, Augusteyn J, Comer S, Doherty TS, Eager C, Edwards G, Harley DK, Leiper I, McDonald PJ, McGregor HW, Moseby KE, Myers C, Read JL, Riley J, Stokeld D, Turpin JM, Woinarski JC. Introduced catsFelis catuseating a continental fauna: inventory and traits of Australian mammal species killed. Mamm Rev 2019. [DOI: 10.1111/mam.12167] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leigh‐Ann Woolley
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Casuarina NT0909Australia
| | - Hayley M. Geyle
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Casuarina NT0909Australia
| | - Brett P. Murphy
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Casuarina NT0909Australia
| | - Sarah M. Legge
- NESP Threatened Species Recovery Hub Centre for Biodiversity and Conservation Science University of Queensland St Lucia Qld4072Australia
- Fenner School of Environment and Society The Australian National University Canberra ACT2602Australia
| | - Russell Palmer
- Department of Biodiversity, Conservation and Attractions Locked Bag 104, Bentley Delivery Centre WA 6983 Australia
| | - Christopher R. Dickman
- NESP Threatened Species Recovery Hub, Desert Ecology Research Group School of Life and Environmental Sciences A08 University of Sydney NSW2006Australia
| | - John Augusteyn
- Queensland Parks and Wildlife Service PO Box 3130Red HillQld4701Australia
| | - Sarah Comer
- Department of Biodiversity, Conservation and Attractions South Coast Region Albany WA6330Australia
| | - Tim S. Doherty
- Centre for Integrative Ecology School of Life and Environmental Sciences (Burwood Campus) Deakin University Geelong Vic3220Australia
| | | | - Glenn Edwards
- Department of Environment and Natural ResourcesAlice Springs NT0871Australia
| | - Dan K.P. Harley
- Wildlife Conservation and Science Department Zoos Victoria PO Box 248 Healesville Vic.3777Australia
| | - Ian Leiper
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Casuarina NT0909Australia
| | - Peter J. McDonald
- Department of Environment and Natural ResourcesAlice Springs NT0871Australia
| | - Hugh W. McGregor
- NESP Threatened Species Recovery Hub School of Biological Sciences University of Tasmania Private Bag 55 Hobart Tas7001Australia
| | | | - Cecilia Myers
- Dunkeld Pastoral Co Pty Ltd P.O. Box 50 Dunkeld Vic3294Australia
| | - John L. Read
- School of Earth and Environmental Sciences University of Adelaide Adelaide SA5000Australia
| | - Joanna Riley
- School of Biological Sciences University of Bristol 24 Tyndall Ave BristolBS8 1TQUK
| | - Danielle Stokeld
- Department of Environment and Natural ResourcesBerrimah NT0828Australia
| | - Jeff M. Turpin
- Department of Terrestrial Zoology Western Australian Museum 49 Kew Street Welshpool WA6106Australia
| | - John C.Z. Woinarski
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Casuarina NT0909Australia
| |
Collapse
|
24
|
Moro D, Dunlop J, Williams MR. Northern quoll persistence is most sensitive to survivorship of juveniles. WILDLIFE RESEARCH 2019. [DOI: 10.1071/wr18010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Context
Projecting the population trajectory of endangered species using models requires conservation practitioners to evaluate how variations in life history parameters may change a population’s viability. This is particularly important for species that occur as fragmented populations and whose densities are naturally low. Simulations may be used to identify conservation actions that have a higher likelihood of reducing a species’ extinction risk.
Aims
The aim was to apply population viability models to the northern quoll (Dasyurus hallucatus) under alternative scenarios.
Methods
The current (baseline) northern quoll demographic trajectories were evaluated using field-collected data derived from monitoring programs. The impact of alternative scenarios of mortality (for example, due to increased predation by introduced predators) and population supplementation (either from populations elsewhere or from captive breeding) on the viability of a northern quoll population was then determined.
Key results
Under current conditions, individual Pilbara populations of northern quoll are projected to persist for over 20 years. However, these populations are sensitive to extinction events. Population growth rate and local extinction risk were most sensitive to changes in juvenile mortality as low as 5% per annum. Increased mortality of the juvenile age cohort above current levels resulted in a projected decline in population size of 22–54%, with a moderate-to-high chance (20–96%) of local extinction within 20 years. Supplementing the population produced a moderate increase in quoll persistence over this time period.
Conclusions
Populations of northern quolls in the Pilbara, and potentially elsewhere in their range, are highly sensitive to even small perturbations in juvenile mortality rates. The continued persistence of quoll populations in fragmented refuges is characteristic of a species that functions as a dynamic metapopulation in the face of high environmental perturbations.
Implications
Increased juvenile mortality above current levels – for example through the spread of cane toads or invasion of feral cats – may have serious implications for the persistence of the current network of northern quoll populations and other mammals that exhibit population fragmentation in arid environments. Estimates of survival rates for the juvenile cohort of quolls would improve diagnosis of a species’ population dynamics as well as inform practitioners of key life-history sensitivities.
Collapse
|
25
|
Taggart PL, Fancourt BA, Bengsen AJ, Peacock DE, Hodgens P, Read JL, McAllister MM, Caraguel CGB. Evidence of significantly higher island feral cat abundance compared with the adjacent mainland. WILDLIFE RESEARCH 2019. [DOI: 10.1071/wr18118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Feral cats (Felis catus) impact the health and welfare of wildlife, livestock and humans worldwide. They are particularly damaging where they have been introduced into island countries such as Australia and New Zealand, where native prey species evolved without feline predators. Kangaroo Island, in South Australia, is Australia’s third largest island and supports several threatened and endemic species. Cat densities on Kangaroo Island are thought to be greater than those on the adjacent South Australian mainland, based on one cat density estimate on the island that is higher than most estimates from the mainland. The prevalence of cat-borne disease in cats and sheep is also higher on Kangaroo Island than the mainland, suggesting higher cat densities. A recent continental-scale spatial model of cat density predicted that cat density on Kangaroo Island should be about double that of the adjacent mainland. However, although cats are believed to have severe impacts on some native species on the island, other species that are generally considered vulnerable to cat predation have relatively secure populations on the island compared with the mainland.
Aims
The present study aimed to compare feral cat abundance between Kangaroo Island and the adjacent South Australian mainland using simultaneous standardised methods. Based on previous findings, we predicted that the relative abundance of feral cats on Kangaroo Island would be approximately double that on the South Australian mainland.
Methods
Standardised camera trap surveys were used to simultaneously estimate the relative abundance of feral cats on Kangaroo Island and the adjacent South Australian mainland. Survey data were analysed using the Royle–Nichols abundance-induced heterogeneity model to estimate feral cat relative abundance at each site.
Key results
Cat abundance on the island was estimated to be over 10 times greater than that on the adjacent mainland.
Conclusions
Consistent with predictions, cat abundance on the island was greater than on the adjacent mainland. However, the magnitude of this difference was much greater than expected.
Implications
The findings show that the actual densities of cats at local sites can vary substantially from predictions generated by continental-scale models. The study also demonstrates the value of estimating abundance or density simultaneously across sites using standardised methods.
Collapse
|
26
|
Davies HF, McCarthy MA, Firth RSC, Woinarski JCZ, Gillespie GR, Andersen AN, Rioli W, Puruntatameri J, Roberts W, Kerinaiua C, Kerinauia V, Womatakimi KB, Murphy BP. Declining populations in one of the last refuges for threatened mammal species in northern Australia. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12596] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hugh F. Davies
- Quantitative and Applied Ecology Group The University of Melbourne Parkville Victoria 3010 Australia
| | - Michael A. McCarthy
- Quantitative and Applied Ecology Group The University of Melbourne Parkville Victoria 3010 Australia
| | - Ronald S. C. Firth
- Research Institute for the Environment and Livelihoods Charles Darwin University Casuarina Northern Territory Australia
- Strategen Environmental Subiaco Western Australia Australia
| | - John C. Z. Woinarski
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Casuarina Northern Territory Australia
- Flora and Fauna Division Department of Environment and Natural Resources Northern Territory Government Berrimah Northern Territory Australia
| | - Graeme R. Gillespie
- Flora and Fauna Division Department of Environment and Natural Resources Northern Territory Government Berrimah Northern Territory Australia
- School of BioSciences The University of Melbourne Parkville Victoria Australia
| | - Alan N. Andersen
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Casuarina Northern Territory Australia
| | - Willie Rioli
- Tiwi Land Council Winnellie Northern Territory Australia
| | | | - Willie Roberts
- Tiwi Land Council Winnellie Northern Territory Australia
| | | | | | | | - Brett P. Murphy
- NESP Threatened Species Recovery Hub Research Institute for the Environment and Livelihoods Charles Darwin University Casuarina Northern Territory Australia
| |
Collapse
|
27
|
Ibbett M, Woinarski JCZ, Oakwood M. Declines in the mammal assemblage of a rugged sandstone environment in Kakadu National Park, Northern Territory, Australia. AUSTRALIAN MAMMALOGY 2018. [DOI: 10.1071/am17011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There has been marked recent decline in the terrestrial mammal fauna across much of northern Australia, with most documentation of such decline for lowland areas. Here we report changes in the assemblage of small mammals in a rugged sandstone environment (Nawurlandja, in Kakadu National Park) over intermittent sampling between 1977 and 2002. Four native mammal species were commonly recorded in the original sampling: sandstone antechinus (Pseudantechinus bilarni), northern quoll (Dasyurus hallucatus), Arnhem rock-rat (Zyzomys maini) and common rock-rat (Z. argurus). Trap success rates declined significantly for the northern quoll, Arnhem rock-rat and all species combined, but increased for the common rock-rat. Despite being recorded commonly in the initial (1977–79) study, no Arnhem rock-rats were recorded in the most recent (2002) sampling. Trap success rates for northern quoll declined by ~90% from 1977–79 to 2002. The reasons for change are not clear-cut. Notably, all sampling occurred before the arrival of cane toads (Rhinella marina), a factor that has caused severe decline in northern quoll numbers elsewhere. Fire was more frequent in the sampling area in the period preceding the 2002 sampling than it was in the period preceding the initial (1977–79) sampling, and this may have contributed to change in mammal abundance.
Collapse
|
28
|
Woinarski JCZ, Murphy BP, Palmer R, Legge SM, Dickman CR, Doherty TS, Edwards G, Nankivell A, Read JL, Stokeld D. How many reptiles are killed by cats in Australia? WILDLIFE RESEARCH 2018. [DOI: 10.1071/wr17160] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Feral cats (Felis catus) are a threat to biodiversity globally, but their impacts upon continental reptile faunas have been poorly resolved. Aims To estimate the number of reptiles killed annually in Australia by cats and to list Australian reptile species known to be killed by cats. Methods We used (1) data from >80 Australian studies of cat diet (collectively >10 000 samples), and (2) estimates of the feral cat population size, to model and map the number of reptiles killed by feral cats. Key results Feral cats in Australia’s natural environments kill 466 million reptiles yr–1 (95% CI; 271–1006 million). The tally varies substantially among years, depending on changes in the cat population driven by rainfall in inland Australia. The number of reptiles killed by cats is highest in arid regions. On average, feral cats kill 61 reptiles km–2 year–1, and an individual feral cat kills 225 reptiles year–1. The take of reptiles per cat is higher than reported for other continents. Reptiles occur at a higher incidence in cat diet than in the diet of Australia’s other main introduced predator, the European red fox (Vulpes vulpes). Based on a smaller sample size, we estimate 130 million reptiles year–1 are killed by feral cats in highly modified landscapes, and 53 million reptiles year–1 by pet cats, summing to 649 million reptiles year–1 killed by all cats. Predation by cats is reported for 258 Australian reptile species (about one-quarter of described species), including 11 threatened species. Conclusions Cat predation exerts a considerable ongoing toll on Australian reptiles. However, it remains challenging to interpret the impact of this predation in terms of population viability or conservation concern for Australian reptiles, because population size is unknown for most Australian reptile species, mortality rates due to cats will vary across reptile species and because there is likely to be marked variation among reptile species in their capability to sustain any particular predation rate. Implications This study provides a well grounded estimate of the numbers of reptiles killed by cats, but intensive studies of individual reptile species are required to contextualise the conservation consequences of such predation.
Collapse
|
29
|
Molyneux J, Pavey CR, James AI, Carthew SM. Habitat use by the brush-tailed mulgara (Dasycercus blythi). AUST J ZOOL 2017. [DOI: 10.1071/zo17032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the largest remaining marsupial predators to persist across the Australian arid zone, despite increasing pressures, is the brush-tailed mulgara (Dasycercus blythi). Although D. blythi populations have declined since European settlement, they are currently considered stable, persisting in small, low-density isolated populations during periods of low rainfall. The main threat to the species is currently thought to be large introduced and feral predators. Through spool and line tracking, we examined how the species utilises its surroundings in relation to access to food resources and exposure to predators during a low-rainfall period. We found that D. blythi uses the open space between vegetation, a microhabitat that is known to support important prey species. We found that some individuals experiencing greater physiological demands consistently used resource-rich patches (such as termite mounds). We also identified the repeated use of great desert skink (Liopholis kintorei) burrows, which may provide access to prey items (such as young skinks), protection from predators and/or thermoregulation benefits. This study shows that D. blythi utilises several components in the landscape to increase access to reliable food resources and shows little active selection for areas that provide protection from predators.
Collapse
|