1
|
Sinclair NC, McDermott HJ, Lee WL, Xu SS, Acevedo N, Begg A, Perera T, Thevathasan W, Bulluss KJ. Electrically evoked and spontaneous neural activity in the subthalamic nucleus under general anesthesia. J Neurosurg 2022; 137:449-458. [PMID: 34891136 DOI: 10.3171/2021.8.jns204225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/09/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) surgery is commonly performed with the patient awake to facilitate assessments of electrode positioning. However, awake neurosurgery can be a barrier to patients receiving DBS. Electrode implantation can be performed with the patient under general anesthesia (GA) using intraoperative imaging, although such techniques are not widely available. Electrophysiological features can also aid in the identification of target neural regions and provide functional evidence of electrode placement. Here we assess the presence and positional variation under GA of spontaneous beta and high-frequency oscillation (HFO) activity, and evoked resonant neural activity (ERNA), a novel evoked response localized to the subthalamic nucleus. METHODS ERNA, beta, and HFO were intraoperatively recorded from DBS leads comprising four individual electrodes immediately after bilateral awake implantation into the subthalamic nucleus of 21 patients with Parkinson's disease (42 hemispheres) and after subsequent GA induction deep enough to perform pulse generator implantation. The main anesthetic agent was either propofol (10 patients) or sevoflurane (11 patients). RESULTS GA reduced the amplitude of ERNA, beta, and HFO activity (p < 0.001); however, ERNA amplitudes remained large in comparison to spontaneous local field potentials. Notably, a moderately strong correlation between awake ERNA amplitude and electrode distance to an "ideal" therapeutic target within dorsal STN was preserved under GA (awake: ρ = -0.73, adjusted p value [padj] < 0.001; GA: ρ = -0.69, padj < 0.001). In contrast, correlations were diminished under GA for beta (awake: ρ = -0.45, padj < 0.001; GA: ρ = -0.13, padj = 0.12) and HFO (awake: ρ = -0.69, padj < 0.001; GA: ρ = -0.33, padj < 0.001). The largest ERNA occurred at the same electrode (awake vs GA) for 35/42 hemispheres (83.3%) and corresponded closely to the electrode selected by the clinician for chronic therapy at 12 months (awake ERNA 77.5%, GA ERNA 82.5%). The largest beta amplitude occurred at the same electrode (awake vs GA) for only 17/42 (40.5%) hemispheres and 21/42 (50%) for HFO. The electrode measuring the largest awake beta and HFO amplitudes corresponded to the electrode selected by the clinician for chronic therapy at 12 months in 60% and 70% of hemispheres, respectively. However, this correspondence diminished substantially under GA (beta 20%, HFO 35%). CONCLUSIONS ERNA is a robust electrophysiological signal localized to the dorsal subthalamic nucleus subregion that is largely preserved under GA, indicating it could feasibly guide electrode implantation, either alone or in complementary use with existing methods.
Collapse
Affiliation(s)
- Nicholas C Sinclair
- 1Bionics Institute, East Melbourne
- 2Medical Bionics Department, The University of Melbourne, East Melbourne
| | - Hugh J McDermott
- 1Bionics Institute, East Melbourne
- 2Medical Bionics Department, The University of Melbourne, East Melbourne
| | | | - San San Xu
- 1Bionics Institute, East Melbourne
- 3Department of Neurology, Austin Hospital, Heidelberg
| | | | | | - Thushara Perera
- 1Bionics Institute, East Melbourne
- 2Medical Bionics Department, The University of Melbourne, East Melbourne
| | - Wesley Thevathasan
- 1Bionics Institute, East Melbourne
- 3Department of Neurology, Austin Hospital, Heidelberg
- 5Department of Medicine, The University of Melbourne, Parkville
| | - Kristian J Bulluss
- 1Bionics Institute, East Melbourne
- 6Department of Neurosurgery, St. Vincent's and Austin Hospitals, Melbourne; and
- 7Department of Surgery, The University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
2
|
Bos MJ, Buhre W, Temel Y, Joosten EAJ, Absalom AR, Janssen MLF. Effect of Anesthesia on Microelectrode Recordings During Deep Brain Stimulation Surgery: A Narrative Review. J Neurosurg Anesthesiol 2021; 33:300-307. [PMID: 31913866 DOI: 10.1097/ana.0000000000000673] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
Abstract
Deep brain stimulation (DBS) is an effective surgical treatment for patients with various neurological and psychiatric disorders. Clinical improvements rely on careful patient selection and accurate electrode placement. A common method for target localization is intraoperative microelectrode recording (MER). To facilitate MER, DBS surgery is traditionally performed under local or regional anesthesia. However, sedation or general anesthesia is sometimes needed for patients who are unable to tolerate the procedure fully awake because of severe motor symptoms, psychological distress, pain, or other forms of discomfort. The effect of anesthetic drugs on MER is controversial but likely depends on the type and dose of a particular anesthetic agent, underlying disease, and surgical target. In this narrative review, we provide an overview of the current literature on the anesthetic drugs most often used for sedation and anesthesia during DBS surgery, with a focus on their effects on MERs.
Collapse
Affiliation(s)
- Michaël J Bos
- Departments of Anesthesiology and Pain Medicine
- School for Mental Health and Neuroscience, Maastricht University, Maastricht
| | | | - Yasin Temel
- Neurosurgery
- School for Mental Health and Neuroscience, Maastricht University, Maastricht
| | - Elbert A J Joosten
- Departments of Anesthesiology and Pain Medicine
- School for Mental Health and Neuroscience, Maastricht University, Maastricht
| | - Anthony R Absalom
- Department of Anesthesiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcus L F Janssen
- Neurology
- Clinical Neurophysiology, Maastricht University Medical Center
- School for Mental Health and Neuroscience, Maastricht University, Maastricht
| |
Collapse
|
3
|
Bos MJ, de Korte-de Boer D, Alzate Sanchez AM, Duits A, Ackermans L, Temel Y, Absalom AR, Buhre WF, Roberts MJ, Janssen MLF. Impact of Procedural Sedation on the Clinical Outcome of Microelectrode Recording Guided Deep Brain Stimulation in Patients with Parkinson's Disease. J Clin Med 2021; 10:1557. [PMID: 33917205 PMCID: PMC8068017 DOI: 10.3390/jcm10081557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Subthalamic nucleus (STN) deep brain stimulation (DBS) has become a routine treatment of advanced Parkinson's disease (PD). DBS surgery is commonly performed under local anesthesia (LA) to obtain reliable microelectrode recordings. However, procedural sedation and/or analgesia (PSA) is often desirable to improve patient comfort. The impact of PSA in addition to LA on outcome is largely unknown. Therefore, we performed an observational study to assess the effect of PSA compared to LA alone during STN DBS surgery on outcome in PD patients. METHODS Seventy PD patients (22 under LA, 48 under LA + PSA) scheduled for STN DBS implantation were included. Dexmedetomidine, clonidine or remifentanil were used for PSA. The primary outcome was the change in Movement Disorders Society Unified Parkinson's Disease Rating Score III (MDS-UPDRS III) and levodopa equivalent daily dosage (LEDD) between baseline, one month before surgery, and twelve months postoperatively. Secondary outcome measures were motor function during activities of daily living (MDS-UPDRS II), cognitive alterations and surgical adverse events. Postoperative assessment was conducted in "on" stimulation and "on" medication conditions. RESULTS At twelve months follow-up, UPDRS III and UPDRS II scores in "on" medication conditions were similar between the LA and PSA groups. The two groups showed a similar LEDD reduction and an equivalent decline in executive function measured by the Stroop Color-Word Test, Trail Making Test-B, and verbal fluency. The incidence of perioperative and postoperative adverse events was similar between groups. CONCLUSION This study demonstrates that PSA during STN DBS implantation surgery in PD patients was not associated with differences in motor and non-motor outcome after twelve months compared with LA only.
Collapse
Affiliation(s)
- Michael J. Bos
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (D.d.K.-d.B.); (W.F.B.)
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (A.D.); (Y.T.); (M.L.F.J.)
| | - Dianne de Korte-de Boer
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (D.d.K.-d.B.); (W.F.B.)
| | - Ana Maria Alzate Sanchez
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (A.D.); (Y.T.); (M.L.F.J.)
| | - Annelien Duits
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (A.D.); (Y.T.); (M.L.F.J.)
- Department of Medical Psychology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands;
| | - Yasin Temel
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (A.D.); (Y.T.); (M.L.F.J.)
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands;
| | - Anthony R. Absalom
- Department of Anesthesiology, University Medical Center Groningen, Groningen University, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Wolfgang F. Buhre
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (D.d.K.-d.B.); (W.F.B.)
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (A.D.); (Y.T.); (M.L.F.J.)
| | - Mark J. Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Marcus L. F. Janssen
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (A.D.); (Y.T.); (M.L.F.J.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
4
|
Park KH, Sun S, Lim YH, Park HR, Lee JM, Park K, Jeon B, Park HP, Kim HC, Paek SH. Clinical outcome prediction from analysis of microelectrode recordings using deep learning in subthalamic deep brain stimulation for Parkinson`s disease. PLoS One 2021; 16:e0244133. [PMID: 33497391 PMCID: PMC7837468 DOI: 10.1371/journal.pone.0244133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 12/03/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for improving the motor symptoms of advanced Parkinson's disease (PD). Accurate positioning of the stimulation electrodes is necessary for better clinical outcomes. OBJECTIVE We applied deep learning techniques to microelectrode recording (MER) signals to better predict motor function improvement, represented by the UPDRS part III scores, after bilateral STN DBS in patients with advanced PD. If we find the optimal stimulation point with MER by deep learning, we can improve the clinical outcome of STN DBS even under restrictions such as general anesthesia or non-cooperation of the patients. METHODS In total, 696 4-second left-side MER segments from 34 patients with advanced PD who underwent bilateral STN DBS surgery under general anesthesia were included. We transformed the original signal into three wavelets of 1-50 Hz, 50-500 Hz, and 500-5,000 Hz. The wavelet-transformed MER was used for input data of the deep learning. The patients were divided into two groups, good response and moderate response groups, according to DBS on to off ratio of UPDRS part III score for the off-medication state, 6 months postoperatively. The ratio were used for output data in deep learning. The Visual Geometry Group (VGG)-16 model with a multitask learning algorithm was used to estimate the bilateral effect of DBS. Different ratios of the loss function in the task-specific layer were applied considering that DBS affects both sides differently. RESULTS When we divided the MER signals according to the frequency, the maximal accuracy was higher in the 50-500 Hz group than in the 1-50 Hz and 500-5,000 Hz groups. In addition, when the multitask learning method was applied, the stability of the model was improved in comparison with single task learning. The maximal accuracy (80.21%) occurred when the right-to-left loss ratio was 5:1 or 6:1. The area under the curve (AUC) was 0.88 in the receiver operating characteristic (ROC) curve. CONCLUSION Clinical improvements in PD patients who underwent bilateral STN DBS could be predicted based on a multitask deep learning-based MER analysis.
Collapse
Affiliation(s)
- Kwang Hyon Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Sukkyu Sun
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea
| | - Yong Hoon Lim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Hye Ran Park
- Department of Neurosurgery, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jae Meen Lee
- Department of Neurosurgery, Pusan National University Hospital, Busan, Korea
| | - Kawngwoo Park
- Department of Neurosurgery, Gachon University Gil Medical Center, Incheon, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Hee-Pyoung Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Chan Kim
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea
- Department of Biomedical Engineering College of Medicine, Seoul National University, Seoul, Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
- Ischemia Hypoxia Disease Institute, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Park HR, Lim YH, Song EJ, Lee JM, Park K, Park KH, Lee WW, Kim HJ, Jeon B, Paek SH. Bilateral Subthalamic Nucleus Deep Brain Stimulation under General Anesthesia: Literature Review and Single Center Experience. J Clin Med 2020; 9:jcm9093044. [PMID: 32967337 PMCID: PMC7564882 DOI: 10.3390/jcm9093044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Bilateral subthalamic nucleus (STN) Deep brain stimulation (DBS) is a well-established treatment in patients with Parkinson's disease (PD). Traditionally, STN DBS for PD is performed by using microelectrode recording (MER) and/or intraoperative macrostimulation under local anesthesia (LA). However, many patients cannot tolerate the long operation time under LA without medication. In addition, it cannot be even be performed on PD patients with poor physical and neurological condition. Recently, it has been reported that STN DBS under general anesthesia (GA) can be successfully performed due to the feasible MER under GA, as well as the technical advancement in direct targeting and intraoperative imaging. The authors reviewed the previously published literature on STN DBS under GA using intraoperative imaging and MER, focused on discussing the technique, clinical outcome, and the complication, as well as introducing our single-center experience. Based on the reports of previously published studies and ours, GA did not interfere with the MER signal from STN. STN DBS under GA without intraoperative stimulation shows similar or better clinical outcome without any additional complication compared to STN DBS under LA. Long-term follow-up with a large number of the patients would be necessary to validate the safety and efficacy of STN DBS under GA.
Collapse
Affiliation(s)
- Hye Ran Park
- Department of Neurosurgery, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Yong Hoon Lim
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea; (Y.H.L.); (E.J.S.)
| | - Eun Jin Song
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea; (Y.H.L.); (E.J.S.)
| | - Jae Meen Lee
- Department of Neurosurgery, Pusan National University Hospital, Busan 49241, Korea;
| | - Kawngwoo Park
- Department of Neurosurgery, Gachon University Gil Medical Center, Incheon 21565, Korea;
| | - Kwang Hyon Park
- Department of Neurosurgery, Chuungnam National University Sejong Hospital, Sejong 30099, Korea;
| | - Woong-Woo Lee
- Department of Neurology, Nowon Eulji Medical Center, Eulji University, Seoul 01830, Korea;
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (H.-J.K.); (B.J.)
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (H.-J.K.); (B.J.)
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea; (Y.H.L.); (E.J.S.)
- Correspondence: ; Tel.: +82-22-072-2876
| |
Collapse
|
6
|
Abstract
Abstract
Background
General anesthetics-induced changes of electrical oscillations in the basal ganglia may render the identification of the stimulation targets difficult. The authors hypothesized that while sevoflurane anesthesia entrains coherent lower frequency oscillations, it does not affect the identification of the subthalamic nucleus and clinical outcome.
Methods
A cohort of 19 patients with Parkinson’s disease with comparable disability underwent placement of electrodes under either sevoflurane general anesthesia (n = 10) or local anesthesia (n = 9). Microelectrode recordings during targeting were compared for neuronal spiking characteristics and oscillatory dynamics. Clinical outcomes were compared at 5-yr follow-up.
Results
Under sevoflurane anesthesia, subbeta frequency oscillations predominated (general vs. local anesthesia, mean ± SD; delta: 13 ± 7.3% vs. 7.8 ± 4.8%; theta: 8.4 ± 4.1% vs. 3.9 ± 1.6%; alpha: 8.1 ± 4.1% vs. 4.8 ± 1.5%; all P < 0.001). In addition, distinct dorsolateral beta and ventromedial gamma oscillations were detected in the subthalamic nucleus solely in awake surgery (mean ± SD; dorsal vs. ventral beta band power: 20.5 ± 6.6% vs. 15.4 ± 4.3%; P < 0.001). Firing properties of subthalamic neurons did not show significant difference between groups. Clinical outcomes with regard to improvement in motor and psychiatric symptoms and adverse effects were comparable for both groups. Tract numbers of microelectrode recording, active contact coordinates, and stimulation parameters were also equivalent.
Conclusions
Sevoflurane general anesthesia decreased beta-frequency oscillations by inducing coherent lower frequency oscillations, comparable to the pattern seen in the scalp electroencephalogram. Nevertheless, sevoflurane-induced changes in electrical activity patterns did not reduce electrode placement accuracy and clinical effect. These observations suggest that microelectrode-guided deep brain stimulation under sevoflurane anesthesia is a feasible clinical option.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
7
|
Bos MJ, Alzate Sanchez AM, Bancone R, Temel Y, de Greef BT, Absalom AR, Gommer ED, van Kranen-Mastenbroek VH, Buhre WF, Roberts MJ, Janssen ML. Influence of Anesthesia and Clinical Variables on the Firing Rate, Coefficient of Variation and Multi-Unit Activity of the Subthalamic Nucleus in Patients with Parkinson's Disease. J Clin Med 2020; 9:jcm9041229. [PMID: 32344572 PMCID: PMC7230272 DOI: 10.3390/jcm9041229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Microelectrode recordings (MER) are used to optimize lead placement during subthalamic nucleus deep brain stimulation (STN-DBS). To obtain reliable MER, surgery is usually performed while patients are awake. Procedural sedation and analgesia (PSA) is often desirable to improve patient comfort, anxiolysis and pain relief. The effect of these agents on MER are largely unknown. The objective of this study was to determine the effects of commonly used PSA agents, dexmedetomidine, clonidine and remifentanil and patient characteristics on MER during DBS surgery. Methods: Data from 78 patients with Parkinson’s disease (PD) who underwent STN-DBS surgery were retrospectively reviewed. The procedures were performed under local anesthesia or under PSA with dexmedetomidine, clonidine or remifentanil. In total, 4082 sites with multi-unit activity (MUA) and 588 with single units were acquired. Single unit firing rates and coefficient of variation (CV), and MUA total power were compared between patient groups. Results: We observed a significant reduction in MUA, an increase of the CV and a trend for reduced firing rate by dexmedetomidine. The effect of dexmedetomidine was dose-dependent for all measures. Remifentanil had no effect on the firing rate but was associated with a significant increase in CV and a decrease in MUA. Clonidine showed no significant effect on firing rate, CV or MUA. In addition to anesthetic effects, MUA and CV were also influenced by patient-dependent variables. Conclusion: Our results showed that PSA influenced neuronal properties in the STN and the dexmedetomidine (DEX) effect was dose-dependent. In addition, patient-dependent characteristics also influenced MER.
Collapse
Affiliation(s)
- Michael J. Bos
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands;
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Correspondence:
| | - Ana Maria Alzate Sanchez
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
| | - Raffaella Bancone
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
| | - Yasin Temel
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Bianca T.A. de Greef
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Neurology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Anthony R. Absalom
- Department of Anesthesiology, Groningen University, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Erik D. Gommer
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Vivianne H.J.M. van Kranen-Mastenbroek
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Wolfgang F. Buhre
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands;
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
| | - Mark J. Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Marcus L.F. Janssen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
8
|
Five-Year Clinical Outcomes of Local versus General Anesthesia Deep Brain Stimulation for Parkinson's Disease. PARKINSONS DISEASE 2019; 2019:5676345. [PMID: 30800263 PMCID: PMC6360066 DOI: 10.1155/2019/5676345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/15/2018] [Accepted: 12/06/2018] [Indexed: 12/03/2022]
Abstract
Background Studies comparing long-term outcomes between general anesthesia (GA) and local anesthesia (LA) for STN-DBS in Parkinson's disease (PD) are lacking. Whether patients who received STN-DBS in GA could get the same benefit without compromising electrophysiological recording is debated. Methods We compared five-year outcomes for different anesthetic methods (GA vs LA) during STN-DBS for PD. Thirty-six consecutive PD patients with similar preoperative characteristics, including age, disease duration, and severity, underwent the same surgical procedures except the GA (n=22) group with inhalational anesthesia and LA (n=14) with local anesthesia during microelectrode recording and intraoperative macrostimulation test. Surgical outcome evaluations included Unified Parkinson's Disease Rating Scale (UPDRS), Mini-Mental Status Examinations, and the Beck Depression Inventory. Stimulation parameters and coordinates of STN targeting were also collected. Results Both groups attained similar benefits in UPDRS part III from STN-DBS (GA 43.2 ± 14.1% vs. LA 46.8 ± 13.8% decrease, p=0.45; DBS on/Med off vs. DBS off/Med off) and no difference in reduction of levodopa equivalent doses (GA 47.56 ± 18.98% vs. LA 51.37 ± 31.73%, p=0.51) at the five-year follow-up. In terms of amplitude, frequency, and pulse width, the stimulation parameters used for DBS were comparable, and the coordinates of preoperative targeting and postoperative electrode tip were similar between two groups. There was no difference in STN recording length as well. Significantly less number of MER tracts in GA was found (p=0.04). Adverse effects were similar in both groups. Conclusions Our study confirmed that STN localization with microelectrode recording and patient comfort could be achieved based on equal effectiveness and safety of STN-DBS under GA compared with LA.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW With an ultimate aim of improving patients overall outcome and satisfaction, minimally invasive surgical approach is becoming more of a norm. The related anesthetic evidence has not expanded at the same rate as surgical and technological advancement. This article reviews the recent evidence on anesthesia and perioperative concerns for patients undergoing minimally invasive neurosurgery. RECENT FINDINGS Minimally invasive cranial and spinal surgeries have been made possible only by vast technological development. Points of surgical interest can be precisely located with the help of stereotaxy and neuronavigation and special endoscopes which decrease the tissue trauma. The principles of neuroanethesia remain the same, but few concerns are specific for each technique. Dexmedetomidine has a favorable profile for procedures carried out under sedation technique. As the new surgical techniques are coming up, lesser known anesthetic concerns may also come into light. SUMMARY Over the last year, little new information has been added to existing literature regarding anesthesia for minimally invasive neurosurgeries. Neuroanesthesia goals remain the same and less invasive surgical techniques do not translate into safe anesthesia. Specific concerns for each procedure should be taken into consideration.
Collapse
|
10
|
Lin SH, Lai HY, Lo YC, Chou C, Chou YT, Yang SH, Sun I, Chen BW, Wang CF, Liu GT, Jaw FS, Chen SY, Chen YY. Decreased Power but Preserved Bursting Features of Subthalamic Neuronal Signals in Advanced Parkinson's Patients under Controlled Desflurane Inhalation Anesthesia. Front Neurosci 2017; 11:701. [PMID: 29311782 PMCID: PMC5733027 DOI: 10.3389/fnins.2017.00701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) surgery of the subthalamic nucleus (STN) under general anesthesia (GA) had been used in Parkinson's disease (PD) patients who are unable tolerate awake surgery. The effect of anesthetics on intraoperative microelectrode recording (MER) remains unclear. Understanding the effect of anesthetics on MER is important in performing STN DBS surgery with general anesthesia. In this study, we retrospectively performed qualitive and quantitative analysis of STN MER in PD patients received STN DBS with controlled desflurane anesthesia or LA and compared their clinical outcome. From January 2005 to March 2006, 19 consecutive PD patients received bilateral STN DBS surgery in Hualien Tzu-Chi hospital under either desflurane GA (n = 10) or LA (n = 9). We used spike analysis (frequency and modified burst index [MBI]) and the Hilbert transform to obtain signal power measurements for background and spikes, and compared the characterizations of intraoperative microelectrode signals between the two groups. Additionally, STN firing pattern characteristics were determined using a combined approach based on the autocorrelogram and power spectral analysis, which was employed to investigate differences in the oscillatory activities between the groups. Clinical outcomes were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) before and after surgery. The results revealed burst firing was observed in both groups. The firing frequencies were greater in the LA group and MBI was comparable in both groups. Both the background and spikes were of significantly greater power in the LA group. The power spectra of the autocorrelograms were significantly higher in the GA group between 4 and 8 Hz. Clinical outcomes based on the UPDRS were comparable in both groups before and after DBS surgery. Under controlled light desflurane GA, burst features of the neuronal firing patterns are preserved in the STN, but power is reduced. Enhanced low-frequency (4–8 Hz) oscillations in the MERs for the GA group could be a characteristic signature of desflurane's effect on neurons in the STN.
Collapse
Affiliation(s)
- Sheng-Huang Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Neurology, Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Yi Lai
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chin Chou
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Yi-Ting Chou
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical and Computer Aided Engineering, Feng Chia University, Taichung, Taiwan
| | - I Sun
- Department of Life Sciences, Institute of Genome Sciences, National Yang Ming University, Taipei, China
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Ching-Fu Wang
- Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | - Guan-Tze Liu
- Department of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Fu-Shan Jaw
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Shin-Yuan Chen
- Department of Neurosurgery, Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - You-Yin Chen
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
Tamir I, Marmor-Levin O, Eitan R, Bergman H, Israel Z. Posterolateral Trajectories Favor a Longer Motor Domain in Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease. World Neurosurg 2017; 106:450-461. [DOI: 10.1016/j.wneu.2017.06.178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 01/08/2023]
|