1
|
Jennings CM, Markel AC, Domingo MJE, Miller KS, Bayer CL, Parekh SH. Collagen organization and structure in FBLN5-/- mice using label-free microscopy: implications for pelvic organ prolapse. BIOMEDICAL OPTICS EXPRESS 2024; 15:2863-2875. [PMID: 38855688 PMCID: PMC11161343 DOI: 10.1364/boe.518976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 06/11/2024]
Abstract
Pelvic organ prolapse (POP) is a gynecological disorder described by the descent of superior pelvic organs into or out of the vagina as a consequence of disrupted muscles and tissue. A thorough understanding of the etiology of POP is limited by the availability of clinically relevant samples, restricting longitudinal POP studies on soft-tissue biomechanics and structure to POP-induced models such as fibulin-5 knockout (FBLN5-/- ) mice. Despite being a principal constituent in the extracellular matrix, little is known about structural perturbations to collagen networks in the FBLN5-/- mouse cervix. We identify significantly different collagen network populations in normal and prolapsed cervical cross-sections using two label-free, nonlinear microscopy techniques. Collagen in the prolapsed mouse cervix tends to be more isotropic, and displays reduced alignment persistence via 2-D Fourier transform analysis of images acquired using second harmonic generation microscopy. Furthermore, coherent Raman hyperspectral imaging revealed elevated disorder in the secondary structure of collagen in prolapsed tissues. Our results underscore the need for in situ multimodal monitoring of collagen organization to improve POP predictive capabilities.
Collapse
Affiliation(s)
- Christian M Jennings
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Andrew C Markel
- Department of Biomedical Engineering, Tulane University, New Orleans, Lousiana, USA
| | - Mari J E Domingo
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Kristin S Miller
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, Lousiana, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Jennings CM, Markel AC, Domingo MJ, Miller KS, Bayer CL, Parekh SH. Collagen organization and structure in FLBN5-/- mice using label-free microscopy: implications for pelvic organ prolapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578106. [PMID: 38352586 PMCID: PMC10862878 DOI: 10.1101/2024.01.31.578106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pelvic organ prolapse (POP) is a gynecological disorder described by the descent of superior pelvic organs into or out of the vagina as a consequence of disrupted muscles and tissue. A thorough understanding of the etiology of POP is limited by the availability of clinically relevant samples, restricting longitudinal POP studies on soft-tissue biomechanics and structure to POP-induced models such as fibulin-5 knockout (FBLN5-/-) mice. Despite being a principal constituent in the extracellular matrix, little is known about structural perturbations to collagen networks in the FBLN5-/- mouse cervix. We identify significantly different collagen network populations in normal and prolapsed cervical cross-sections using two label-free, nonlinear microscopy techniques. Collagen in the prolapsed mouse cervix tends to be more isotropic, and displays reduced alignment persistence via 2-D Fourier Transform analysis of images acquired using second harmonic generation microscopy. Furthermore, coherent Raman hyperspectral imaging revealed elevated disorder in the secondary structure of collagen in prolapsed tissues. Our results underscore the need for in situ multimodal monitoring of collagen organization to improve POP predictive capabilities.
Collapse
Affiliation(s)
- Christian M. Jennings
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Andrew C. Markel
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Mari J.E. Domingo
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kristin S. Miller
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carolyn L. Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Sapun H. Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
3
|
Golombek S, Hoffmann T, Hann L, Mandler M, Schmidhuber S, Weber J, Chang YT, Mehling R, Ladinig A, Knecht C, Leyens J, Schlensak C, Wendel HP, Schneeberger A, Avci-Adali M. Improved tropoelastin synthesis in the skin by codon optimization and nucleotide modification of tropoelastin-encoding synthetic mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:642-654. [PMID: 37650117 PMCID: PMC10462787 DOI: 10.1016/j.omtn.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Loss of elastin due to aging, disease, or injury can lead to impaired tissue function. In this study, de novo tropoelastin (TE) synthesis is investigated in vitro and in vivo using different TE-encoding synthetic mRNA variants after codon optimization and nucleotide modification. Codon optimization shows a strong effect on protein synthesis without affecting cell viability in vitro, whereas nucleotide modifications strongly modulate translation and reduce cell toxicity. Selected TE mRNA variants (3, 10, and 30 μg) are then analyzed in vivo in porcine skin after intradermal application. Administration of 30 μg of native TE mRNA with a me1 Ψ modification or 10 and 30 μg of unmodified codon-optimized TE mRNA is required to increase TE protein expression in vivo. In contrast, just 3 μg of a codon-optimized TE mRNA variant with the me1 Ψ modification is able to increase protein expression. Furthermore, skin toxicity is investigated in vitro by injecting 30 μg of mRNA of selected TE mRNA variants into a human full-thickness skin model, and no toxic effects are observed. Thereby, for the first time, an increased dermal TE synthesis by exogenous administration of synthetic mRNA is demonstrated in vivo. Codon optimization of a synthetic mRNA can significantly increase protein expression and therapeutic outcome.
Collapse
Affiliation(s)
- Sonia Golombek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | | | - Ludmilla Hann
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Markus Mandler
- Accanis Biotech, Karl-Farkas-Gasse 22, Vienna 1030, Austria
| | | | - Josefin Weber
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Roman Mehling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Röntgenweg 13, 72076 Tübingen, Germany
| | - Andrea Ladinig
- University Clinic for Swine, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna 1210, Austria
| | - Christian Knecht
- University Clinic for Swine, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna 1210, Austria
| | - Johanna Leyens
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | | | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Mesenchymal stem cell transplantation improves biomechanical properties of vaginal tissue following full-thickness incision in aged rats. Stem Cell Reports 2022; 17:2565-2578. [DOI: 10.1016/j.stemcr.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
|
5
|
Gardella B, Scatigno AL, Belli G, Gritti A, Visoná SD, Dominoni M. Aging of Pelvic Floor in Animal Models: A Sistematic Review of Literature on the Role of the Extracellular Matrix in the Development of Pelvic Floor Prolapse. Front Med (Lausanne) 2022; 9:863945. [PMID: 35492348 PMCID: PMC9051040 DOI: 10.3389/fmed.2022.863945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pelvic organ prolapse (POP) affects many women and contributes significantly to a decrease in their quality of life causing urinary and/or fecal incontinence, sexual dysfunction and dyspareunia. To better understand POP pathophysiology, prevention and treatment, many researchers resorted to evaluating animal models. Regarding this example and because POP affects principally older women, our aim was to provide an overview of literature on the possible biomechanical changes that occur in the vaginas of animal models and their supportive structures as a consequence of aging. Papers published online from 2000 until May 2021 were considered and particular attention was given to articles reporting the effects of aging on the microscopic structure of the vagina and pelvic ligaments in animal models. Most research has been conducted on rodents because their vagina structure is well characterized and similar to those of humans; furthermore, they are cost effective. The main findings concern protein structures of the connective tissue, known as elastin and collagen. We have noticed a significant discordance regarding the quantitative changes in elastin and collagen related to aging, especially because it is difficult to detect them in animal specimens. However, it seems to be clear that aging affects the qualitative properties of elastin and collagen leading to aberrant forms which may affect the elasticity and the resilience of tissues leading to pelvic floor disease. The analysis of histological changes of pelvic floor tissues related to aging underlines how these topics appear to be not fully understood so far and that more research is necessary.
Collapse
Affiliation(s)
- Barbara Gardella
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Annachiara Licia Scatigno
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Giacomo Belli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Andrea Gritti
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Silvia Damiana Visoná
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Mattia Dominoni
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Allen-Brady K, Bortolini MAT, Damaser MS. Mouse Knockout Models for Pelvic Organ Prolapse: a Systematic Review. Int Urogynecol J 2022; 33:1765-1788. [PMID: 35088092 DOI: 10.1007/s00192-021-05066-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Mouse knockout (KO) models of pelvic organ prolapse (POP) have contributed mechanistic evidence for the role of connective tissue defects, specifically impaired elastic matrix remodeling. Our objective was to summarize what mouse KO models for POP are available and what have we learned from these mouse models about the pathophysiological mechanisms of POP development. METHODS We conducted a systematic review and reported narrative findings according to PRISMA guidelines. Two independent reviewers searched PubMed, Scopus and Embase for relevant manuscripts and conference abstracts for the time frame of January 1, 2000, to March 31, 2021. Conference abstracts were limited to the past 5 years. RESULTS The search strategy resulted in 294 total titles. We ultimately included 25 articles and an additional 11 conference abstracts. Five KO models have been studied: Loxl1, Fbln5, Fbln3, Hoxa11 and Upii-sv40t. Loxl1 and Fbln5 KO models have provided the most reliable and predictable POP phenotype. Loxl1 KO mice develop POP primarily from failure to heal after giving birth, whereas Fbln5 KO mice develop POP with aging. These mouse KO models have been used for a wide variety of investigations including genetic pathways involved in development of POP, biomechanical properties of the pelvic floor, elastic fiber deposition, POP therapies and the pathophysiology associated with mesh complications. CONCLUSIONS Mouse KO models have proved to be a valuable tool in the study of specific genes and their role in the development and progression of POP. They may be useful to study POP treatments and POP complications.
Collapse
Affiliation(s)
- Kristina Allen-Brady
- Department of Internal Medicine, University of Utah, Williams Building 295 Chipeta Way, Salt Lake City, UT, USA.
| | - Maria A T Bortolini
- Department of Gynecology, Sector of Urogynecology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Advanced Platform Technology Center, Louis Stokes Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
7
|
Deng ZM, Dai FF, Yuan MQ, Yang DY, Zheng YJ, Cheng YX. Advances in molecular mechanisms of pelvic organ prolapse (Review). Exp Ther Med 2021; 22:1009. [PMID: 34345291 PMCID: PMC8311251 DOI: 10.3892/etm.2021.10442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022] Open
Abstract
Pelvic organ prolapse (POP) is a common gynecological benign disease occurring in middle-aged and elderly females. Its incidence increases every year. To date, the majority of studies investigating its etiology have not evaluated the underlying molecular mechanisms, which has caused substantial difficulties in the prevention, treatment and prognosis of POP. In the present narrative review, recent research studies concerning the molecular mechanisms of POP were systematically reviewed and the advances were summarized. The association between the incidence of POP and the reduction of the extracellular matrix, activation of oxidative stress, genetic susceptibility, denervation of the pelvic floor and reduction of estrogen infiltration were explored. POP is mainly associated with damage of pelvic floor muscles and connective tissue, which are directly caused by pregnancy and vaginal delivery. The majority of the molecular and genetic mutations associated with POP involve specific components of connective tissue synthesis and degradation. It is likely that macroscopic parameters, such as anatomy, lifestyle and reproductive factors, interact with microscopic parameters, such as physiology and genetics in the female pelvic floor, leading to POP. Additional research studies investigating the molecular mechanisms of POP should be performed, since they may aid public health strategies. In the present narrative review, a summary of these molecular mechanisms underlying the development of POP is provided. This included the relevant proteins and genes involved. On this basis, countermeasures were proposed.
Collapse
Affiliation(s)
- Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Dong-Yong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ya-Jing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
8
|
Zhang Y, Ma Y, Chen J, Wang M, Cao Y, Li L, Yang H, Liu X, Li Y, Zhu L. Mesenchymal stem cell transplantation for vaginal repair in an ovariectomized rhesus macaque model. Stem Cell Res Ther 2021; 12:406. [PMID: 34266489 PMCID: PMC8281669 DOI: 10.1186/s13287-021-02488-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/02/2021] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Current surgical therapies for pelvic organ prolapse (POP) do not repair weak vaginal tissue and just provide support; these therapies may trigger severe complications. Stem cell-based regenerative therapy, due to its ability to reconstruct damaged tissue, may be a promising therapeutic strategy for POP. The objective of this study is to evaluate whether mesenchymal stem cell (MSC) therapy can repair weak vaginal tissue in an ovariectomized rhesus macaque model. METHODS A bilateral ovariectomy model was established in rhesus macaques to induce menopause-related vaginal injury. Ten bilaterally ovariectomized rhesus macaques were divided into two groups (n=5/group): the saline group and the MSC group. Three months after ovariectomy, saline or MSCs were injected in situ into the injured vaginal wall. The vaginal tissue was harvested 12 weeks after injection for histological and biochemical analyses to evaluate changes of extracellular matrix, microvascular density, and smooth muscle in the vaginal tissue. Biomechanical properties of the vaginal tissue were assessed by uniaxial tensile testing. Data analysis was performed with unpaired Student's t test or Mann-Whitney. RESULTS Twelve weeks after MSC transplantation, histological and biochemical analyses revealed that the content of collagen I, elastin, and microvascular density in the lamina propria of the vagina increased significantly in the MSC group compared with the saline group. And the fraction of smooth muscle in the muscularis of vagina increased significantly in the MSC group. In addition, MSC transplantation improved the biomechanical properties of the vagina by enhancing the elastic modulus. CONCLUSION Vaginal MSC transplantation could repair the weak vaginal tissue by promoting extracellular matrix ingrowth, neovascularization, and smooth muscle formation and improve the biomechanical properties of the vagina, providing a new prospective treatment for POP.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yidi Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Rheumatology, Beijing Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Cao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xudong Liu
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaqian Li
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Upregulation of PTK7 and β-catenin after vaginal mechanical dilatation: an examination of fibulin-5 knockout mice. Int Urogynecol J 2021; 32:2993-2999. [PMID: 33547906 DOI: 10.1007/s00192-021-04693-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/10/2021] [Indexed: 01/13/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Pelvic organ prolapse (POP) in women is associated with deficiency of elastic fibers, and fibulin-5 is known to be a critical protein in the synthesis of elastin. The purpose of this study is to investigate the related pathway for the synthesis of elastin via fibulin-5 using fibulin-5 knockout mice. METHODS Fibulin-5 knockout mice were generated using the CRISPR/Cas9 system, and vaginal dilatation was used to mimic vaginal delivery. We divided the mice into three groups: Fbln5+/+ mice immediately after dilatation (Fbln5+/+ day0), Fbln5+/+ mice 3 days after dilatation (Fbln5+/+ day3) and Fbln5-/- mice 3 days after dilatation (Fbln5-/- day3). Proteins related to elastogenesis in the vaginal wall were measured by liquid chromatography mass spectrometry (LC-MS/MS) analysis, and differences in the expression of these proteins between the Fbln5-/- mice and the Fbln5+/+ mice were analyzed using western blotting. RESULTS In the LC-MS/MS analysis, protein tyrosine kinase 7 (PTK7) was not detected in the Fbln5-/- day3 group, although the expression increased by > 1.5 times between the Fbln5+/+ day0 and day3 groups. PTK7 and β-catenin are known to act in the Wnt/β-catenin pathway, and both were upregulated after dilatation in the Fbln5+/+ mice, though not in the Fbln5-/- mice. CONCLUSION Our findings suggest that these proteins are involved in elastogenesis via fibulin-5, and the impairment of these proteins might be the underlying cause of POP manifestation.
Collapse
|
10
|
Zhao B, Sun Q, Fan Y, Hu X, Li L, Wang J, Cui S. Transplantation of bone marrow-derived mesenchymal stem cells with silencing of microRNA-138 relieves pelvic organ prolapse through the FBLN5/IL-1β/elastin pathway. Aging (Albany NY) 2021; 13:3045-3059. [PMID: 33460398 PMCID: PMC7880387 DOI: 10.18632/aging.202465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Nondegradable transvaginal polypropylene meshes for treating pelvic organ prolapse (POP) are now generally unavailable or banned due to serious adverse events. New tissue engineering approaches combine degradable scaffolds with mesenchymal stem/stromal cells from human endometrium (eMSC). In this study, we investigate effect of microRNA-138 (miR-138) regulation on bone marrow-derived mesenchymal stem cells (BMSCs) and the efficacy of BMSC transplantation therapy in a rat POP model. We first identified FBLN5 as a target of miR-138. miR-138, fibulin-5 (FBLN5), interleukin-1β (IL-1β), and elastin expression in uterosacral ligament of POP patients and controls were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. After isolation and identification, BMSCs were treated to alter their expression of miR-138 or FBLN5. Proliferation of BMSCs was analyzed by CCK-8. After establishing the rat pelvic floor dysfunction (PFD) model, we evaluated efficacy of BMSC injection by applying leak point pressure (LPP) and the conscious cystometry (CMG) tests. miR-138 inhibition resulted in increased viability of BMSCs and elevated their secretion of elastin, while downregulating IL-1β expression. BMSCs with inhibited miR-138 improved LPP and conscious CMG results in vivo. Taken together, miR-138 could be a potential therapeutic target for treating POP in conjunction with tissue engineering.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Qing Sun
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Yazhou Fan
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Xinming Hu
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Linyu Li
- Department of Scientific Research, Xinxiang Medical University Sanquan Medical College, Xinxiang 453003, Henan Province, PR China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, PR China
| | - Shihong Cui
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| |
Collapse
|
11
|
Paula MVBD, Lira Júnior MADF, Monteiro VCESC, Souto RP, Fernandes CE, Oliveira ED. Evaluation of the fibulin 5 gene polymorphism as a factor related to the occurrence of pelvic organ prolapse. ACTA ACUST UNITED AC 2020; 66:680-686. [PMID: 32638975 DOI: 10.1590/1806-9282.66.5.680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/08/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Pelvic organ prolapse (POP) is a very frequent situation in our population that may lead to a significant decrease in patients' quality of life. Currently, we are looking for predictive factors for the development of POPs; thus, this study seeks to evaluate whether the Fibulin 5 polymorphism (FBLN5) is associated with the occurrence of POP. METHODS This is a cohort study with postmenopausal women who were divided into groups by POP stage: POP stages 0 and I (control group) and POP stages III and IV (case group). Subsequently, analyses of genetic polymorphisms of FBLN5 were performed using the Restriction Fragment Length Polymorphism (RFLP) technique. RESULTS A total of 292 women were included in the study. Pregnancy, parity and vaginal delivery in the patients, as well as in data described in the literature, were related to the occurrence of POP in the univariate analysis. However, after binary logistic regression, home birth and age remained independent risk factors for POP. We found no association between the FBLN5 polymorphism and the occurrence of POP (p = 0.371). CONCLUSION There was no association between the FBLN5 polymorphism and the occurrence of POP in Brazilian women.
Collapse
Affiliation(s)
| | | | | | - Ricardo Peres Souto
- Departamento de Morfologia e Psicologia, Faculdade de Medicina do ABC, Santo André, SP, Brasil
| | - César Eduardo Fernandes
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina do ABC, Santo André, SP, Brasil
| | - Emerson de Oliveira
- Departamento de Ginecologia e Obstetrícia, Faculdade de medicina do ABC, Santo André, SP, Brasil
| |
Collapse
|
12
|
Protease Inhibition Improves Healing of The Vaginal Wall after Obstetrical Injury: Results from a Preclinical Animal Model. Sci Rep 2020; 10:6358. [PMID: 32286390 PMCID: PMC7156712 DOI: 10.1038/s41598-020-63031-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Vaginal delivery with obstetrical trauma is a risk factor for pelvic organ prolapse later in life. Loss of fibulin-5 (FBLN5), an elastogenesis-promoting cellular matrix protein, results in prolapse in mice. Here, we evaluated effects of pregnancy, parturition, and obstetrical injury on FBLN5 content, elastic fibers, biomechanics, and histomorphology of the vaginal wall in rats. Further, we analyzed the effects of actinonin, a protease inhibitor, on obstetrical injury of the vaginal wall. Vaginal FBLN5 decreased significantly in pregnancy, and injury resulted in further downregulation. Stiffness of the vaginal wall decreased 82% in pregnant rats and 74% (p = 0.019) with injury relative to uninjured vaginal delivery controls at 3d. Actinonin ameliorated loss of FBLN5, rescued injury-induced loss of elastic fibers and biomechanical properties after parturition, and reduced the area of injury 10-fold. We conclude that pregnancy and parturition have a profound impact on vaginal FBLN5 and biomechanics of the vaginal wall. Further, obstetrical injury has significant deleterious impact on recovery of the vaginal wall from pregnancy. Actinonin, a non-specific matrix metalloprotease inhibitor, improved recovery of the parturient vaginal wall after obstetrical injury.
Collapse
|
13
|
Florian-Rodriguez M, Chin K, Hamner J, Acevedo J, Keller P, Word RA. Effect of Protease Inhibitors in Healing of the Vaginal Wall. Sci Rep 2019; 9:12354. [PMID: 31451729 PMCID: PMC6710245 DOI: 10.1038/s41598-019-48527-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
Impaired elastogenesis and increased degradation of elastic fibers has been implicated in the pathogenesis of pelvic organ prolapse. Loss of the elastogenic organizer, fibulin-5 (FBLN5), leads to pelvic organ prolapse in mice. The objective of this study was to investigate the regulation of FBLN5 after surgical injury of the vaginal wall using the rat as a preclinical animal model. Both endogenous and recombinant FBLN5 were degraded after surgical injury. Estrogen did not alter the dramatic loss of vaginal FBLN5 in the acute phase after injury (12–48 h), but resulted in rescue of the poor recovery of FBLN5 levels in the late phase (7 d) of healing in ovariectomized animals. In contrast with estrogen, the general MMP inhibitor, actinonin, abrogated injury-induced degradation of FBLN5 significantly. Further, actinonin rescued the negative effects of injury on biomechanics, histomorphology, and elastic fibers. Control of excessive matrix degradation by local application of actinonin at the time of surgery may lead to improved elastic fiber regeneration and wound healing, thereby potentially enhancing pelvic floor recovery after reconstructive surgery for prolapse.
Collapse
Affiliation(s)
- Maria Florian-Rodriguez
- Department of Obstetrics and Gynecology Division of Female Pelvic Medicine and Reconstructive Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Kathleen Chin
- Department of Obstetrics and Gynecology Division of Female Pelvic Medicine and Reconstructive Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jennifer Hamner
- Department of Obstetrics and Gynecology Division of Female Pelvic Medicine and Reconstructive Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jesus Acevedo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Patrick Keller
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - R Ann Word
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Lescan M, Perl RM, Golombek S, Pilz M, Hann L, Yasmin M, Behring A, Keller T, Nolte A, Gruhn F, Kochba E, Levin Y, Schlensak C, Wendel HP, Avci-Adali M. De Novo Synthesis of Elastin by Exogenous Delivery of Synthetic Modified mRNA into Skin and Elastin-Deficient Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:475-484. [PMID: 29858082 PMCID: PMC5992474 DOI: 10.1016/j.omtn.2018.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/05/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
Elastin is one of the most important and abundant extracellular matrix (ECM) proteins that provide elasticity and resilience to tissues and organs, including vascular walls, ligaments, skin, and lung. Besides hereditary diseases, such as Williams-Beuren syndrome (WBS), which results in reduced elastin synthesis, injuries, aging, or acquired diseases can lead to the degradation of existing elastin fibers. Thus, the de novo synthesis of elastin is required in several medical conditions to restore the elasticity of affected tissues. Here, we applied synthetic modified mRNA encoding tropoelastin (TE) for the de novo synthesis of elastin and determined the mRNA-mediated elastin synthesis in cells, as well as ex vivo in porcine skin. EA.hy926 cells, human fibroblasts, and mesenchymal stem cells (MSCs) isolated from a patient with WBS were transfected with 2.5 μg TE mRNA. After 24 hr, the production of elastin was analyzed by Fastin assay and dot blot analyses. Compared with untreated cells, significantly enhanced elastin amounts were detected in TE mRNA transfected cells. The delivered synthetic TE mRNA was even able to significantly increase the elastin production in elastin-deficient MSCs. In porcine skin, approximately 20% higher elastin amount was detected after the intradermal delivery of synthetic mRNA by microinjection. In this study, we demonstrated the successful applicability of synthetic TE encoding mRNA to produce elastin in elastin-deficient cells as well as in skin. Thus, this auspicious mRNA-based integration-free method has a huge potential in the field of regenerative medicine to induce de novo elastin synthesis, e.g., in skin, blood vessels, or alveoli.
Collapse
Affiliation(s)
- Mario Lescan
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Regine Mariette Perl
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Sonia Golombek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Martin Pilz
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Ludmilla Hann
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Mahua Yasmin
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Andreas Behring
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Timea Keller
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Andrea Nolte
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Franziska Gruhn
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Efrat Kochba
- NanoPass Technologies, Ltd., 3 Golda Meir, 7403648 Nes Ziona, Israel
| | - Yotam Levin
- NanoPass Technologies, Ltd., 3 Golda Meir, 7403648 Nes Ziona, Israel
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Wang H, Kira Y, Hamuro A, Takase A, Tachibana D, Koyama M. Differential gene expression of extracellular-matrix-related proteins in the vaginal apical compartment of women with pelvic organ prolapse. Int Urogynecol J 2018; 30:439-446. [PMID: 29600404 DOI: 10.1007/s00192-018-3637-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/08/2018] [Indexed: 01/04/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Pelvic organ prolapse (POP) is a multifactorial disorder that impairs the quality of life (QoL) of older women in particular. The purpose of this study was to elucidate the pathogenesis of POP by focusing on the extracellular matrix (ECM). METHODS Patients were classified into two groups-with or without cervical elongation-using the POP quantification system. Specimens were obtained from 29 women with POP during hysterectomy. The expression of fibulin-5, elastin, integrin β1 (ITGβ1), lysyl oxidase-like protein-1 (LOXL1) and collagen in the vagina, uterosacral ligament, and uterine cervix was investigated by quantitative real-time polymerase chain reaction (RT-PCR) and correlation between gene levels and severity of POP examined. The location of proteins was analyzed using immunohistochemical staining and expression of fibulin-5 protein analyzed by Western blotting. RESULTS Fibulin-5 and elastin were mainly expressed in lamina propria and fibromuscular layers of the vagina and uterosacral ligament. Gene levels of fibulin-5 and ITGβ1 in uterosacral ligaments increased with severity of POP in women with cervical elongation, while no correlation was observed in women with a normal cervix. In women with uterine cervical elongation, each ECM-related gene significantly increased with POP staging. Furthermore, fibulin-5 protein also increased in the uterosacral ligament and uterine cervix. CONCLUSIONS The severity of POP and gene expression of ECM-related proteins were inversely correlated in vaginal tissue in a normal and elongated cervix. These results suggested that the differing progression of the two types of POP have a relationship with ECM-related protein.
Collapse
Affiliation(s)
- Haijiao Wang
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yukimi Kira
- Department of Research Support Platform, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Hamuro
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Aki Takase
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Daisuke Tachibana
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masayasu Koyama
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
16
|
Zhou Q, Hong L, Wang J. Identification of key genes and pathways in pelvic organ prolapse based on gene expression profiling by bioinformatics analysis. Arch Gynecol Obstet 2018; 297:1323-1332. [PMID: 29546564 DOI: 10.1007/s00404-018-4745-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/04/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE The aim of this study was to elucidate the molecular mechanisms and to identify the key genes and pathways for pelvic organ prolapse (POP) using bioinformatics analysis. METHODS The microarray data for GSE53868 included 12 POP and 12 non-POP anterior vaginal wall samples. Differentially expressed genes (DEGs) were identified by GEO2R online tool. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database, and a DEG-associated protein-protein interaction (PPI) network was constructed using STRING and visualized in Cytoscape. MCODE was used for module analysis of the PPI network. RESULTS A total of 257 upregulated and 333 downregulated genes were identified. GO and KEGG pathway enrichment analyses showed that the upregulated DEGs were strongly associated with immune response, complement activation, classical pathway, phagocytosis, and recognition; the downregulated genes were mainly associated with cellular response to zinc ion, negative regulation of growth, and apoptotic process. Based on the PPI network, IL6, MYC, CCL2, ICAM1, PTGS2, SERPINE1, ATF3, CDKN1A, and CDKN2A were screened as hub genes. The four most significant sub-modules of DEGs were extracted after network module analysis. These genes were mainly associated with the negative regulation of growth and inflammatory response. The KEGG pathway enrichment analysis revealed that these genes were associated with Mineral absorption, Jak-STAT signaling pathway, cytokine-cytokine receptor interaction, and chemokine signaling pathway. CONCLUSIONS These microarray data and bioinformatics analyses provide a useful method for the identification of key genes and pathways associated with POP. Moreover, some crucial DEGs, such as IL6, MYC, CCL2, ICAM1, PTGS2, SERPINE1, ATF3, CDKN1A, and CDKN2A, potentially play an important role in the development and progression of POP.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Jing Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| |
Collapse
|
17
|
Hypoxia Induces Apoptosis through HIF-1 α Signaling Pathway in Human Uterosacral Ligaments of Pelvic Organ Prolapse. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8316094. [PMID: 29230415 PMCID: PMC5688353 DOI: 10.1155/2017/8316094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/08/2017] [Indexed: 12/02/2022]
Abstract
The purpose of this study is to evaluate the expression of hypoxia-inducible factor-1α (HIF-1α) in women uterosacral ligament tissues with pelvic organ prolapse and women with normal uterine support structures and illuminate its relationship with apoptosis. Samples were collected from 38 women with pelvic organ prolapse and 31 age matched controls. The expression levels of HIF-1α and BNIP3 in the uterosacral ligaments were measured using immunohistochemistry, qRT-PCR, and Western blot. To assess apoptosis we performed TUNEL assay and Western blot analyses. Lastly, the short form of the Pelvic Floor Impact Questionnaire-7 (PFIQ-7) was used to evaluate prognosis of surgical patients and twenty patients finished the follow-up. The expressions of HIF-1α and BNIP3 in the uterosacral ligaments were significantly higher in patients with pelvic organ prolapse than in control group. Pearson's correlation test revealed significant positive correlations between HIF-1α and apoptosis index. Similarly, Western blot analysis showed the expression of proapoptosis proteins (Bax and Bad), Cytochrome-c, cleaved caspase-3, and caspase-9 in patients with pelvic organ prolapse was upregulated. The PFIQ-7 scores were higher in HIF-1α positive group than in the negative group. Hypoxia may contribute to the pathological process of pelvic organ prolapse by increasing apoptosis via activating HIF-1α signaling pathway.
Collapse
|