1
|
Biolato M, Terranova R, Viceconti N, Marrone G, Miele L, Giustiniani MC, Francalanci P, Gazzellone A, Bauleo A, Falcone E, Genuardi M, Grieco A. A novel ABCB11 variant in compound heterozygosity: BRIC2 or PFIC2? Gastroenterol Rep (Oxf) 2024; 12:goae022. [PMID: 38665279 PMCID: PMC11045280 DOI: 10.1093/gastro/goae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/18/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Affiliation(s)
- Marco Biolato
- Department of Medical and Surgical Sciences, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Rosy Terranova
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Nicholas Viceconti
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Giuseppe Marrone
- Department of Medical and Surgical Sciences, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Luca Miele
- Department of Medical and Surgical Sciences, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Maria Cristina Giustiniani
- Department of Medical and Surgical Sciences, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Paola Francalanci
- Department of Pathology, Children’s Hospital Bambino Gesù IRCCS, Rome, Italy
| | - Annalisa Gazzellone
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Alessia Bauleo
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza, Italy
| | - Elena Falcone
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza, Italy
| | - Maurizio Genuardi
- Department of Medical and Surgical Sciences, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Antonio Grieco
- Department of Medical and Surgical Sciences, CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
2
|
Xie S, Wei S, Ma X, Wang R, He T, Zhang Z, Yang J, Wang J, Chang L, Jing M, Li H, Zhou X, Zhao Y. Genetic alterations and molecular mechanisms underlying hereditary intrahepatic cholestasis. Front Pharmacol 2023; 14:1173542. [PMID: 37324459 PMCID: PMC10264785 DOI: 10.3389/fphar.2023.1173542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Hereditary cholestatic liver disease caused by a class of autosomal gene mutations results in jaundice, which involves the abnormality of the synthesis, secretion, and other disorders of bile acids metabolism. Due to the existence of a variety of gene mutations, the clinical manifestations of children are also diverse. There is no unified standard for diagnosis and single detection method, which seriously hinders the development of clinical treatment. Therefore, the mutated genes of hereditary intrahepatic cholestasis were systematically described in this review.
Collapse
Affiliation(s)
- Shuying Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Wang
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting He
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhao Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Yang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawei Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Chang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Manyi Jing
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanling Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Selim N, Omair H, El-Karaksy H, Fathy M, Mahmoud E, Baroudy S, Fathy M, Yassin N. A study of exons 14, 15, and 24 of the ABCB11 gene in Egyptian children with normal GGT cholestasis. Arab J Gastroenterol 2022; 23:15-19. [PMID: 35153175 DOI: 10.1016/j.ajg.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
|
4
|
Al-Hussaini A, Lone K, Bashir MS, Alrashidi S, Fagih M, Alanazi A, AlYaseen S, Almayouf A, Alruwaithi M, Asery A. ATP8B1, ABCB11, and ABCB4 Genes Defects: Novel Mutations Associated with Cholestasis with Different Phenotypes and Outcomes. J Pediatr 2021; 236:113-123.e2. [PMID: 33915153 DOI: 10.1016/j.jpeds.2021.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To characterize the clinical, laboratory, histologic, molecular features, and outcome of gene-confirmed progressive familial intrahepatic cholestasis (PFIC) 1-3 among Arabs and to evaluate for "genotype-phenotype" correlations. STUDY DESIGN We retrospectively reviewed charts of 65 children (ATP8B1 defect = 5, ABCB11 = 35, ABCB4 = 25) who presented between 2008 and 2019 with cholestasis. The clinical phenotype of a disease was categorized based on response of cholestasis and itching to ursodeoxycholic acid and ultimate outcome, into mild (complete response), intermediate (partial response, nonprogressive), and severe (progression to end-stage liver disease). RESULTS Overall, 27 different mutations were identified (ATP8B1, n = 5; ABCB11, n = 11; ABCB4, n = 11), comprising 10 novel ones. Six patients with heterozygous missense mutations (ATP8B1, n = 2; ABCB11, n = 4) had transient cholestasis. Of the remaining 3 patients with PFIC1, 2 developed severe phenotype (splicing and frameshift mutations). Of the remaining 31 patients with PFIC2, 25 developed severe disease (15 due to frameshift and splicing mutations). Of 25 patients with PFIC3, 10 developed a severe phenotype (1 splicing and 3 frameshift mutations; 6 missense). Patients with PFIC2 had significantly shorter survival time and more rapid disease progression than patients with PFIC3 (P < .001). Patients with frameshift mutations in ABCB11 gene (p.Thr127Hisfs∗6) and ABCB4 gene (p.Phe210Serfs∗5) had significantly shorter survival time than missense mutations (P = .011; P = .0039, respectively). CONCLUSIONS We identified genotype-phenotype correlations among mutations in ABCB11 and ABCB4 genes, which underscore the prognostic value of early genetic diagnosis. The disease course in patients with PFIC3 could be favorably modified by ursodeoxycholic acid therapy.
Collapse
Affiliation(s)
- Abdulrahman Al-Hussaini
- Division of Pediatric Gastroenterology, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Prince Abdullah bin Khalid Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Khurram Lone
- Division of Pediatric Gastroenterology, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Muhammed Salman Bashir
- Department of Biostatistics, Research Services Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sami Alrashidi
- Division of Pediatric Gastroenterology, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mosa Fagih
- Department of Pathology and Laboratory Medicine, King Saud Medical City, Riyadh, Saudi Arabia
| | - Alanoud Alanazi
- Division of Pediatric Gastroenterology, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Salem AlYaseen
- Division of Pediatric Gastroenterology, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulaziz Almayouf
- Division of Pediatric Gastroenterology, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Muhanad Alruwaithi
- Division of Pediatric Gastroenterology, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Asery
- Division of Pediatric Gastroenterology, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Li LT, Li ZD, Yang Y, Lu Y, Xie XB, Chen L, Feng JY, Knisely AS, Wang JS. ABCB11 deficiency presenting as transient neonatal cholestasis: Correlation with genotypes and BSEP expression. Liver Int 2020; 40:2788-2796. [PMID: 32808743 DOI: 10.1111/liv.14642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS ABCB11 deficiency presenting in infancy is believed generally to manifest as persistent/progressive cholestasis. We describe a group of patients with biallelic ABCB11 variants whose disorder manifested as transient neonatal cholestasis (TNC). METHODS Neonatal intrahepatic cholestasis in 68 children (31 males) with biallelic predictedly pathogenic variants (PPV) in ABCB11 was classified as transient (TNC group, n = 23, 11 males), intermittent (benign recurrent intrahepatic cholestasis [BRIC] group, n = 3, 1 male) or persistent/ progressive (progressive familial intrahepatic cholestasis [PFIC] group, n = 42, 19 males). Clinical, genetic and bile salt export pump (BSEP) expression information was correlated with outcomes. RESULTS The median onset age of jaundice was 3 days (birth to 2 months) for the TNC group and 10.5 days (birth to 3 months) for the PFIC group (P = .034). The median length of follow-up of TNC patients was 44 months (12 months-168 months). At presentation, hepatobiliary-injury biomarker values were similar between the groups (P > .05). TNC patients (17/23) more often than PFIC patients (20/42, P = .041) harboured biallelic non-null variants (predicted not to terminate translation prematurely). TNC patient livers (7/7) more often than PFIC patient livers (5/16, P = .005) expressed immunohistochemically detectable BSEP. Kaplan-Meier analysis showed better prognosis for patients with BSEP expression (P = .009). Too few BRIC patients were available for statistical study. CONCLUSIONS Neonatal cholestasis associated with biallelic PPV in ABCB11 can resolve temporarily or persistently in one third of cases. Resolution is more likely in patients with biallelic non-null PPV or with liver BSEP expression.
Collapse
Affiliation(s)
- Li-Ting Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Zhong-Die Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Ye Yang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Lian Chen
- Department of Pathology, Children's Hospital of Fudan University, Shanghai, China
| | - Jia-Yan Feng
- Department of Pathology, Children's Hospital of Fudan University, Shanghai, China
| | - A S Knisely
- Institut für Pathologie, Medizinische Universität Graz, Graz, Austria
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
6
|
Molecular findings in children with inherited intrahepatic cholestasis. Pediatr Res 2020; 87:112-117. [PMID: 31450232 DOI: 10.1038/s41390-019-0548-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Genetic defects account for a substantial proportion of pediatric cholestasis. This study explored the molecular findings in a large cohort of Chinese patients with inherited cholestasis. METHODS Between January 2012 and June 2016, 809 Chinese pediatric patients with suspected inherited intrahepatic cholestasis were evaluated by Sanger sequencing and/or panel sequencing. RESULTS Of the 809 patients, 273 (33.7%) obtained a genetic diagnosis. The rate of positive genetic diagnosis in patients with disease onset at 0-3 month of age was higher than that in patients with disease onset at 4 month of age or later. There were 17 distinct genetic defects diagnosed. The top 4 resulted from mutations in SLC25A13 (44.3%), JAG1 (24.5%), ABCB11 (11.0%), and ATP8B1 (5.9%). All 17 genetic disorders were diagnosed in patients with disease onset at 0-3 months of age; but only 5 were diagnosed in patients with disease onset beyond 4 months of age. A total of 217 distinct pathogenic variants, including 41 novel variants, were identified. Ten recurrent mutations were detected in SLC25A13, ATP8B1, and CYP27A1. They accounted for 48.2% of the total 477 mutant alleles. CONCLUSIONS There were 17 distinct genetic disorders diagnosed in Chinese pediatric patients with inherited cholestasis.
Collapse
|
7
|
Nicastro E, Di Giorgio A, Marchetti D, Barboni C, Cereda A, Iascone M, D'Antiga L. Diagnostic Yield of an Algorithm for Neonatal and Infantile Cholestasis Integrating Next-Generation Sequencing. J Pediatr 2019; 211:54-62.e4. [PMID: 31160058 DOI: 10.1016/j.jpeds.2019.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/15/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate the performance of a diagnostic protocol for neonatal/infantile cholestasis in which the main clinical patterns steered the early use of different genetic testing strategies. STUDY DESIGN An observational study was conducted between 2012 and 2017 in a tertiary care setting on a prospective cohort of children with cholestasis occurring at ≤1 year of age and persisting ≥6 weeks, to measure the detection rate of underlying monogenic diseases. After the exclusion of biliary atresia, a clinically driven genetic testing was performed, entailing 3 different approaches with different wideness: confirmatory single-gene testing; focused virtual panels; and wide search through trio whole-exome sequencing. RESULTS We enrolled 125 children (66 female, median age 2 months); 96 (77%) patients had hypocholic stools and were evaluated rapidly to exclude biliary atresia, which was the final diagnosis in 74 (59%). Overall, 50 patients underwent genetic testing, 6 with single confirmatory gene testing, 38 through panels, and 6 with trio whole-exome sequencing because of complex phenotype. The genetic testing detection rate was 60%: the final diagnosis was Alagille syndrome in 11, progressive familial intrahepatic cholestasis type 2 in 6, alpha-1-antitrypsin deficiency in 3, and progressive familial intrahepatic cholestasis type 3 in 2; a further 7 genetic conditions were identified in 1 child each. Overall, only 18 of 125 (14%) remained with an indeterminate etiology. CONCLUSIONS This protocol combining clinical and genetic assessment proved to be an effective diagnostic tool for neonatal/infantile cholestasis, identifying inherited disorders with a high detection rate. It also could allow a noninvasive diagnosis in children presenting with colored stools.
Collapse
Affiliation(s)
- Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy.
| | - Angelo Di Giorgio
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Daniela Marchetti
- Medical Genetics Laboratory, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Barboni
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Cereda
- Clinical Genetics, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Iascone
- Medical Genetics Laboratory, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Lorenzo D'Antiga
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
8
|
Sharma A, Poddar U, Agnihotry S, Phadke SR, Yachha SK, Aggarwal R. Spectrum of genomic variations in Indian patients with progressive familial intrahepatic cholestasis. BMC Gastroenterol 2018; 18:107. [PMID: 29973134 PMCID: PMC6032793 DOI: 10.1186/s12876-018-0835-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/26/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis (PFIC) is caused by variations in ATP8B1, ABCB11 or ABCB4 genes. Data on genetic variations in Indian patients with PFIC are lacking. METHODS Coding and splice regions of the three genes were sequenced in unrelated Indian children with PFIC phenotype. The variations identified were looked for in parents, 30 healthy persons and several variation databases, and their effect was assessed in-silico. RESULTS Among 25 children (aged 1-144 months), nine (36%) had unique major genomic variations (ATP8B1: 4, ABCB11: 3 and ABCB4: 2). Seven had homozygous variations, which were assessed as 'pathogenic' or 'likely pathogenic'. These included: (i) four amino acid substitutions (ATP8B1: c.1660G > A/p.Asp554Asn and c.2941G > A/p.Glu981Lys; ABCB11: c.548 T > C/p.Met183Thr; ABCB4: c.431G > A/p.Arg144Gln); (ii) one 3-nucleotide deletion causing an amino acid deletion (ATP8B1: c.1587_1589delCTT/p.Phe529del); (iii) one single-nucleotide deletion leading to frame-shift and premature termination (ABCB11: c.1360delG/p.Val454Ter); and (iv) a complex inversion of 4 nucleotides with a single-nucleotide insertion leading to frame-shift and premature termination (ATP8B1: c.[589_592inv;592_593insA]/p.Gly197LeufsTer10). Two variations were found in heterozygous form: (i) a splice-site variation likely to cause abnormal splicing (ABCB11: c.784 + 1G > C), and (ii) a nucleotide substitution that created a premature stop codon (ABCB4: c.475C > T/p.Arg159Ter); these were considered as variations of uncertain significance. Three of the nine variations were novel. CONCLUSIONS Nine major genomic variations, including three novel ones, were identified in nearly one-third of Indian children with PFIC. No variation was identified in nearly two-thirds of patients, who may have been related to variations in promoter or intronic regions of the three PFIC genes, or in other bile-salt transport genes.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Ujjal Poddar
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Shikha Agnihotry
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Shubha R. Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Surender K. Yachha
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| |
Collapse
|
9
|
Wang NL, Qiu YL, Guan WC, Li G, Lu Y, Zhang MH, Luan WS, Wang JS. Splicing analysis of rare/novel synonymous or intronic variants identified in ABCB11 heterozygotes presenting as progressive intrahepatic cholestasis with low γ-glutamyltransferase. Hepatol Res 2018; 48:574-584. [PMID: 29316097 DOI: 10.1111/hepr.13055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/01/2018] [Accepted: 01/05/2018] [Indexed: 02/08/2023]
Abstract
AIM The aim of this study was to analyze the pathogenicity of rare/novel synonymous or intronic variants identified in ABCB11 heterozygotes presenting as progressive intrahepatic cholestasis with low γ-glutamyltransferase. METHODS The enrolled variants were identified in ABCB11 between October 2009 and June 2016. The effects on pre-RNA splicing were analyzed by in silico tools and minigene splicing assay. RESULTS There were three intronic (c.908 + 5G > A, c.2815-8A > G, and c.612-15_-6del10bp) and two synonymous (c.1809G > A, p.K603 K and c.2418C > T, p.G806G) variants with unknown significance identified in ABCB11 of five ABCB11 heterozygotes. Parental studies were carried out for four patients, and revealed that the variants with unknown significance were compound heterozygous with other pathogenic variants. The five variants with unknown significance had minor allele frequency <0.1% or were absent from controls, and had positive prediction results by in silico tools. The effects on pre-RNA splicing were further confirmed by minigene splicing assay. c.908 + 5A caused abnormal splicing in at least 78.5 ± 3.8% of products using a cryptic splice site (ss) 22 nucleotides (nt) upstream of the wild-type (WT) 5'ss. Seven nucleotides of intron 22 upstream of the WT 3'ss was retained for all products from c.2815-8G. c.612-15_-6del caused exon 8 skipping in 24.8 ± 7.7% of products, and 55 nt of exon 8 downstream of the WT 3'ss removal in remaining products. c.1809A led to exon 15 skipping. c.2418 T removed exon 20 and 62 nt of exon 21 downstream of the WT 3'ss by using a cryptic ss. CONCLUSIONS We successfully identified five pathogenic synonymous or intronic variants with some common features. These features might help to choose the right variant for further functional assay.
Collapse
Affiliation(s)
- Neng-Li Wang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China.,The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Yi-Ling Qiu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Wen-Cai Guan
- The Central Laboratory, Jinshan Hospital of Fudan University, Shanghai, China
| | - Gang Li
- The Molecular Genetic Diagnosis Center, Shanghai Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Mei-Hong Zhang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Wei-Sha Luan
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
10
|
Imagawa K, Hayashi H, Sabu Y, Tanikawa K, Fujishiro J, Kajikawa D, Wada H, Kudo T, Kage M, Kusuhara H, Sumazaki R. Clinical phenotype and molecular analysis of a homozygous ABCB11 mutation responsible for progressive infantile cholestasis. J Hum Genet 2018; 63:569-577. [PMID: 29507376 DOI: 10.1038/s10038-018-0431-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 01/26/2023]
Abstract
The bile salt export pump (BSEP) plays an important role in biliary secretion. Mutations in ABCB11, the gene encoding BSEP, induce progressive familial intrahepatic cholestasis type 2 (PFIC2), which presents with severe jaundice and liver dysfunction. A less severe phenotype, called benign recurrent intrahepatic cholestasis type 2, is also known. About 200 missense mutations in ABCB11 have been reported. However, the phenotype-genotype correlation has not been clarified. Furthermore, the frequencies of ABCB11 mutations differ between Asian and European populations. We report a patient with PFIC2 carrying a homozygous ABCB11 mutation c.386G>A (p.C129Y) that is most frequently reported in Japan. The pathogenicity of BSEPC129Y has not been investigated. In this study, we performed the molecular analysis of this ABCB11 mutation using cells expressing BSEPC129Y. We found that trafficking of BSEPC129Y to the plasma membrane was impaired and that the expression of BSEPC129Y on the cell surface was significantly lower than that in the control. The amount of bile acids transported via BSEPC129Y was also significantly lower than that via BSEPWT. The transport activity of BSEPC129Y may be conserved because the amount of membrane BSEPC129Y corresponded to the uptake of taurocholate into membrane vesicles. In conclusion, we demonstrated that c.386G>A (p.C129Y) in ABCB11 was a causative mutation correlating with the phenotype of patients with PFIC2, impairment of biliary excretion from hepatocytes, and the absence of canalicular BSEP expression in liver histological assessments. Mutational analysis in ABCB11 could facilitate the elucidation of the molecular mechanisms underlying the development of intrahepatic cholestasis.
Collapse
Affiliation(s)
- Kazuo Imagawa
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan. .,Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yusuke Sabu
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken Tanikawa
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daigo Kajikawa
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hiroki Wada
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Toyoichiro Kudo
- Department of Pediatrics, Mito Saiseikai General Hospital, Ibaraki, Japan
| | - Masayoshi Kage
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Sumazaki
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Wu D, Liu X, Xue F, Zheng H, Shou Y, Jiang W. A new medical diagnosis method based on Z-numbers. APPL INTELL 2017. [DOI: 10.1007/s10489-017-1002-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Wang NL, Lu YL, Zhang P, Zhang MH, Gong JY, Lu Y, Xie XB, Qiu YL, Yan YY, Wu BB, Wang JS. A Specially Designed Multi-Gene Panel Facilitates Genetic Diagnosis in Children with Intrahepatic Cholestasis: Simultaneous Test of Known Large Insertions/Deletions. PLoS One 2016; 11:e0164058. [PMID: 27706244 PMCID: PMC5051675 DOI: 10.1371/journal.pone.0164058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Large indels are commonly identified in patients but are not detectable by routine Sanger sequencing and panel sequencing. We specially designed a multi-gene panel that could simultaneously test known large indels in addition to ordinary variants, and reported the diagnostic yield in patients with intrahepatic cholestasis. METHODS The panel contains 61 genes associated with cholestasis and 25 known recurrent large indels. The amplicon library was sequenced on Ion PGM system. Sequencing data were analyzed using a routine data analysis protocol and an internal program encoded for large indels test simultaneously. The validation phase was performed using 54 patients with known genetic diagnosis, including 5 with large insertions. At implement phase, 141 patients with intrahepatic cholestasis were evaluated. RESULTS At validation phase, 99.6% of the variations identified by Sanger sequencing could be detected by panel sequencing. Following the routine protocol, 99.8% of false positives could be filtered and 98.8% of retained variations were true positives. Large insertions in the 5 patients with known genetic diagnosis could be correctly detected using the internal program. At implementation phase, 96.9% of the retained variations, following the routine protocol, were confirmed to be true. Twenty-nine patients received a potential genetic diagnosis when panel sequencing data were analyzed using the routine protocol. Two additional patients, who were found to harbor large insertions in SLC25A13, obtained a potential genetic diagnosis when sequencing data were further analyzed using the internal program. A total of 31 (22.0%) patients obtained a potential genetic diagnosis. Nine different genetic disorders were diagnosed, and citrin deficiency was the commonest. CONCLUSION Specially designed multi-gene panel can correctly detect large indels simultaneously. By using it, we assigned a potential genetic diagnosis to 22.0% of patients with intrahepatic cholestasis.
Collapse
Affiliation(s)
- Neng-Li Wang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yu-Lan Lu
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Ping Zhang
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Mei-Hong Zhang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jing-Yu Gong
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi-Ling Qiu
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Yan-Yan Yan
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Bing-bing Wu
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (JSW); (BBW)
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (JSW); (BBW)
| |
Collapse
|