1
|
Pan L, McClain L, Shaw P, Donnellan N, Chu T, Finegold D, Peters D. Non-invasive epigenomic molecular phenotyping of the human brain via liquid biopsy of cerebrospinal fluid and next generation sequencing. Eur J Neurosci 2020; 52:4536-4545. [PMID: 33020990 DOI: 10.1111/ejn.14997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/15/2023]
Abstract
Our goal was to undertake a genome-wide epigenomic liquid biopsy of cerebrospinal fluid (CSF) for the comprehensive analysis of cell-free DNA (cfDNA) methylation signatures in the human central nervous system (CNS). Solution-phase hybridization and massively parallel sequencing of bisulfite converted human DNA was employed to compare methylation signatures of cfDNA obtained from CSF with plasma. Recovery of cfDNA from CSF was relatively low (68-840 pg/mL) compared to plasma (2720-8390 pg/mL) and cfDNA fragments from CSF were approximately 20 bp shorter than their plasma-derived counterparts. Distributions of CpG methylation signatures were significantly altered between CSF and plasma, both globally and at the level of functional elements including exons, introns, CpG islands, and shores. Sliding window analysis was used to identify differentially methylated regions. We found numerous gene/locus-specific differences in CpG methylation between cfDNA from CSF and plasma. These loci were more frequently hypomethylated in CSF compared to plasma. Differentially methylated CpGs in CSF were identified in genes related to branching of neurites and neuronal development. Using the GTEx RNA expression database, we found clear association between tissue-specific gene expression in the CNS and cfDNA methylation patterns in CSF. Ingenuity pathway analysis of differentially methylated regions identified an enrichment of functional pathways related to neurobiology. In conclusion, we present a genome-wide analysis of DNA methylation in human CSF. Our methods and the resulting data demonstrate the potential of epigenomic liquid biopsy of the human CNS for molecular phenotyping of brain-derived DNA methylation signatures.
Collapse
Affiliation(s)
- Lisa Pan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Lora McClain
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | | | - Nicole Donnellan
- Magee-Womens Research Institute, Pittsburgh, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, USA
| | - Tianjiao Chu
- Magee-Womens Research Institute, Pittsburgh, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, USA
| | - David Finegold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, USA
| | - David Peters
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, USA.,Magee-Womens Research Institute, Pittsburgh, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
2
|
Yuan M, Deng L, Yang Y, Sun L. Intrauterine phenotype features of fetuses with Williams-Beuren syndrome and literature review. Ann Hum Genet 2019; 84:169-176. [PMID: 31711272 DOI: 10.1111/ahg.12360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Williams-Beuren syndrome (WBS) is a well-defined multisystem chromosomal disorder that is caused by a chromosome 7q11.23 region heterozygous deletion. We explored prenatal diagnosis of WBS by ultrasound as well as multiple genetic methods to characterize the structural variants of WBS prenatally. Expanded noninvasive prenatal testing (NIPT-plus) was elected as a regular prenatal advanced screen for risk assessments of fetal chromosomal aneuploidy and genome-wide microdeletion/microduplication syndromes at the first trimester. At the second and three trimester, seven prenatal cases of WBS were evaluated for the indication of the invasive testing, the ultrasound features, cytogenetic, single-nucleotide polymorphism array (SNP array), and fluorescent quantitative PCR (QF-PCR) results. The NIPT-plus results for seven fetuses were low risk. All cryptic aberrations were detected by the SNP array as karyotyping analyses were negative. Subsequently, QF-PCR further confirmed the seven deletions. Combining our cases with 10 prenatal cases from the literature, the most common sonographic features were intrauterine growth retardation (82.35%, 14/17) and congenital cardiovascular abnormalities (58.82%, 10/17). The manifestations of cardiovascular defects mainly involve supravalvar aortic stenosis (40%, 4/10), ventricular septal defect (30%, 3/10), aortic coarctation (20%, 2/10), and peripheral pulmonary artery stenosis (20%, 2/10). To the best of our knowledge, this is the first largest prenatal study of WBS cases with detailed molecular analysis. Aortic coarctation combined with persistent left superior vena cava and right aortic arch cardiovascular defects were first reported in prenatal WBS cases by our study.
Collapse
Affiliation(s)
- Meizhen Yuan
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linbei Deng
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingjun Yang
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luming Sun
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Chu T, Yeniterzi S, Yatsenko SA, Dunkel M, Shaw PA, Bunce KD, Peters DG. Correction: High Levels of Sample-to-Sample Variation Confound Data Analysis for Non-Invasive Prenatal Screening of Fetal Microdeletions. PLoS One 2016; 11:e0163578. [PMID: 27648843 PMCID: PMC5029864 DOI: 10.1371/journal.pone.0163578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|